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Abstract

Motivation: Most methods for pairwise and multiple genome alignment use fast local homology

search tools to identify anchor points, i.e. high-scoring local alignments of the input sequences.

Sequence segments between those anchor points are then aligned with slower, more sensitive

methods. Finding suitable anchor points is therefore crucial for genome sequence comparison;

speed and sensitivity of genome alignment depend on the underlying anchoring methods.

Results: In this article, we use filtered spaced word matches to generate anchor points for genome

alignment. For a given binary pattern representing match and don’t-care positions, we first search

for spaced-word matches, i.e. ungapped local pairwise alignments with matching nucleotides at

the match positions of the pattern and possible mismatches at the don’t-care positions. Those

spaced-word matches that have similarity scores above some threshold value are then extended

using a standard X-drop algorithm; the resulting local alignments are used as anchor points. To

evaluate this approach, we used the popular multiple-genome-alignment pipeline Mugsy and

replaced the exact word matches that Mugsy uses as anchor points with our spaced-word-based

anchor points. For closely related genome sequences, the two anchoring procedures lead to mul-

tiple alignments of similar quality. For distantly related genomes, however, alignments calculated

with our filtered-spaced-word matches are superior to alignments produced with the original

Mugsy program where exact word matches are used to find anchor points.

Availability and implementation: http://spacedanchor.gobics.de

Contact: chris.leimeister@stud.uni-goettingen.de or bmorgen@gwdg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The most fundamental task in biological sequence analysis is to align

two or several nucleic-acid or protein sequences—either globally,

over their entire length, or locally, by restricting the alignment to a

single region of homology. Standard approaches to global alignment

assume that the input sequences derived from a common ancestor,

and that evolutionary events are limited to substitutions and small

insertions and deletions. In this case, sequence homologies can be

represented by global sequence alignments, that is, by inserting gap

characters into the sequences such that evolutionarily related se-

quence positions are arranged on top of each other. Under most

scoring schemes, calculating an optimal alignment of two sequences

takes time proportional to the product of their lengths and is there-

fore limited to rather short sequences (Durbin et al., 1998; Gotoh,

1982; Morgenstern, 2002; Needleman and Wunsch, 1970; Smith

and Waterman, 1981).
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With the rapidly increasing number of partially or fully

sequenced genomes, alignment of genomic sequences has become an

important field of research in bioinformatics, see Earl et al. (2014)

for a recent review and evaluation of some of the most popular

approaches. Here, the first challenge is the sheer size of the input

sequences which makes it impossible to use traditional algorithms

with quadratic run time. A second challenge is the fact that related

genomes often share multiple local homologies, interrupted by non-

conserved parts of the sequences where no significant similarities

can be detected. This means that neither global alignment methods

(Needleman and Wunsch, 1970) nor strictly local methods (Altschul

et al., 1990; Smith and Waterman, 1981) are appropriate to repre-

sent the homologies between entire genomes. Finally, homologies do

not generally occur in the same relative order in different genomes,

because of duplications and large-scale genome rearrangements.

Since it is not possible, in general, to represent homologies among

genomes in one single alignment, advanced genome aligners return

alignments of so-called Locally Collinear Blocks, i.e. blocks of seg-

ments of the input sequences where orthologous genes appear in the

same linear order.

Since the late 1990s, efforts have been made to a address the

above issues, and many approaches to genome-sequence alignment

have been published. One of the first multiple-alignment programs

that could be applied to genomic sequences was DIALIGN

(Morgenstern et al., 1996, 2002). This program composes multiple

alignments from chains of local pairwise alignments, and it does not

penalize gaps; it is therefore able to align sequences where local

homologies are separated by non-homologous regions. The program

was initially not designed for large genomic sequences, though, and

it is limited to sequences up to around 10 kb. Moreover, DIALIGN

is not able to deal with duplications, rearrangements or homologies

on different strands of the DNA double helix.

To align longer sequences, most programs for genomic align-

ment rely on some sort of anchoring (Huang et al., 2006;

Morgenstern et al., 2006). In a first step, they use a fast local align-

ment method to identify high-scoring local homologies, so-called an-

chor points. Next, chains of such local alignments are calculated

and, finally, sequence segments between the selected anchor points

are aligned with a slower but more sensitive alignment method. For

multiple sequence sets, either pairwise or multiple local alignments

can be used as anchor points. A pioneering tool to find anchor

points for genomic alignment is MUMmer (Delcher et al., 1999); the

current version of the program is considered the state-of-the-art in

alignment anchoring (Kurtz et al., 2004). MUMmer uses maximal

unique matches as pairwise anchor points. The genome aligner

MGA, by contrast, uses maximal exact matches involving all input

sequences (Höhl et al., 2002). Both MUMmer and MGA use suffix

trees (Kurtz, 1999) and related data structures to rapidly identify the

pairwise or multiple word matches. MUMmer and MGA can rapidly

align entire bacterial genomes; MUMmer was also used in the A.

thaliana genome project (The Arabidopsis Genome Initiative, 2000).

However, since the number of exact word matches decreases with

increasing evolutionary distances, these approaches are most useful

if closely related genomes are to be compared, such as different

strains of E. coli.

Other approaches to genome alignment are OWEN (Ogurtsov

et al., 2002), AVID (Bray et al., 2003), MAVID (Bray and Pachter,

2003), LAGAN and Multi-LAGAN (Brudno et al., 2003b),

CHAOS/DIALIGN (Brudno et al., 2003a), the VISTA genome pipe-

line (Dubchak et al., 2009), TBA (Blanchette et al., 2004) and

Mauve (Darling et al., 2004), see Dewey and Pachter (2006) and

Batzoglou (2005) for review. All of these methods use anchor points,

and most of them are able to deal with duplications and genome

rearrangements. Some genome aligners use statistical properties of

the sequences (Bradley et al., 2009; Darling et al., 2004); other

methods are based on graphs, for example on A-Bruijn graphs

(Raphael et al., 2004) or on cactus graphs (Paten et al., 2011). A fur-

ther development of Mauve, called progressiveMauve (Darling

et al., 2010), uses palindromic spaced seeds (Darling et al., 2006) in-

stead of exact word matches as anchor points. Spaced seeds are used

for sequence-analysis tasks such as database searching (Choi et al.,

2004; Ma et al., 2002; Noé, 2017; Xu et al., 2006), read mapping

(B�rinda et al., 2015; David et al., 2011; Langmead et al., 2009; Noé

et al., 2010; Ounit and Lonardi, 2015), alignment-free sequence

comparison (Leimeister et al., 2014) or pathogen detection Deneke

et al. (2017). Such pattern-based approaches are often superior to

methods based on contiguous words or word matches, see for ex-

ample Li et al. (2006). In Mauve, palindromic patterns are used to

cover both DNA strands of the input sequences.

Mugsy (Angiuoli and Salzberg, 2011) is a popular software pipe-

line for multiple genome alignment. In a first step, this program uses

nucmer (Kurtz et al., 2004) to construct all pairwise alignments of

the input sequences. Nucmer, in turn, uses MUMmer to find exact

unique word matches which are used as alignment anchor points.

An alignment graph is constructed from these pairwise alignments

using the SeqAn software (Döring et al., 2008), and Locally

Collinear Blocks are constructed. Finally, a multiple alignment is

calculated using SeqAn:: TCoffee (Rausch et al., 2008). Mugsy has

been designed to rapidly align closely related genomes, such as dif-

ferent strains of a bacterium. Here, it produces alignments of high

quality. On more distantly related genomes, however, the program

is often outperformed by other multiple aligners (Earl et al., 2014).

Finding anchor points is the most important step in whole-

genome sequence alignment. Here, a trade-off between speed, sensi-

tivity and precision has to be made. A sufficient number of anchor

points is necessary to reduce the run time of the subsequent, more

sensitive alignment routine. Wrongly chosen anchor points, on the

other hand, can substantially deteriorate the quality of the final out-

put alignment. They may not only lead to misalignments of non-

homologous parts of the sequences but may also prevent biologically

relevant, true homologies from being aligned. Also, if the number of

anchor points is too large, finding optimal chains of anchor points

can become computationally expensive.

In this article, we apply the filtered spaced word matches

(FSWM) approach (Leimeister et al., 2017) to find pairwise anchor

points for genomic alignment. We use a hit-and-extend approach

where high-scoring spaced-word matches are used as seeds. More

precisely, for a given binary pattern of length ‘ representing match

and don’t care positions, we identify spaced-word matches—i.e.

pairs of length-‘ segments from the input sequences with matching

nucleotides at the match positions and possible mismatches at the

don’t care positions. For each such spaced-word match, we then cal-

culate a similarity score, and we keep only those spaced-word

matches that have a score above a certain threshold. These matches

are then extended to gap-free alignments, similar as in BLAST

(Altschul et al., 1990). To evaluate the anchor points generated by

our approach, we modified the Mugsy pipeline by using our anchor-

ing procedure instead of the original anchor points in Mugsy that

are based on exact word matches. For closely related input sequen-

ces, these two different anchoring procedures lead to alignments of

similar quality. Our anchor points are clearly superior, however, if

distal sequences are to be aligned, where most other alignment

approaches either fail to produce meaningful alignments or require

an unacceptable amount of time.
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Through our website at http://spacedanchor.gobics.de, we pro-

vide the modified Mugsy pipeline with our anchoring approach, as a

pipeline for genome-sequence alignment that can be readily

installed. In addition, we provide a stand-alone version of our soft-

ware, such that software developers can integrate our anchor points

into their own sequence-analysis pipelines.

2 Results

2.1 Filtered spaced word matches
For a sequence S of length L over an alphabet R and 0 < i � L; S½i�
denotes the ith symbol of S, and jSj denotes the length of S.

Throughout this article, a pattern is a word over {0, 1}. For a pattern

P, a position i is called a match position if P½i� ¼ 1 and a don’t-care

positions otherwise. The number of match positions in a pattern P is

called the weight of P. For an alphabet R, a pattern P, and a wild-

card character ‘*’ not contained in R, a spaced word with respect to

P is a word w over R [ f�g, such that w½k� ¼ � if and only if k is a

don’t-care position, see also Leimeister et al. (2014) and Horwege

et al. (2014). We say that a spaced word w with respect to a pattern

P occurs in a sequence S at some position i, if i � jSj � jPj þ 1, and

if S½iþ k� 1� ¼ w½k� for all match positions k of P.

For sequences S1 and S2, a pattern P, and positions i and j, we

say that there is spaced-word match between S1 and S2 at (i, j) with

respect to P if the same spaced word occurs at i in S1 and at j in S2—

in other words, if for all match positions k in P, one has

S1½iþ k� 1� ¼ S2½jþ k� 1�:

For the two sequences S1 and S2 below, for example, there is a

spaced-word match with respect to the pattern P ¼ 1100101 at (5,

2):

S1 : G C T G T A T A C G T C

S2 : A T A C A C T T A T

P : 1 1 0 0 1 0 1

as the same spaced word ‘TA � �C � T’ occurs at positions 5 in S1

and at position 2 in S2.

In a previous article, we used spaced-word matches to estimate

phylogenetic distances between genomic sequences, by considering

at the nucleotides aligned to each other at the don’t care positions of

selected spaced-word matches (Leimeister et al., 2017). To remove

spurious random spaced-word matches, we applied a simple filtering

procedure. Based on the following substitution matrix

(Chiaromonte et al., 2002)

A C G T

A 91 �114 �31 �123

C 100 �125 �31

G 100 �114

T 91

we calculated for each spaced-word match the sum of substitution

scores of the nucleotide pairs aligned at the don’t-care positions, and

we removed all spaced-word matches with a score below zero; com-

pare also Brejova et al. (2005).

A graphical representation of the spaced-word matches between

two sequences shows that this procedure can clearly separate ran-

dom spaced-word matches from true homologies. If we plot for each

possible score value s the number of spaced-word matches with

score equal to s, we obtain a bimodal distribution with one peak for

random matches and a second peak for true homologies. We call

such a plot a spaced-words histogram, see Figure 1 for an example.

For simulated sequence pairs under a simple model of evolution,

and with a sufficient number of don’t-care positions in the underly-

ing pattern, both peaks are approximately normally distributed. For

real-world sequences, the random peak is still normally distributed,

but the ‘homologous’ peak is more complex. Even so, using a suit-

able cut-off value, one can easily distinguish between random

matches and true homologies; for the above matrix, a cut-off of zero

works well. More examples for spaced-words histograms are given

in Leimeister et al. (2017).

Herein, we propose to use spaced-word matches to calculate an-

chor points for pairwise alignment of genomic sequences. To distin-

guish between spaced-word matches representing true homologies

and random background matches, we use the above filtering criter-

ion. More precisely, our approach to find anchor points for genomic

alignment is as follows. For given parameters ‘ and w, we first calcu-

late a pattern P with length ‘ and weight w—i.e. with w match posi-

tions—using our recently developed software rasbhari (Hahn et al.,

2016). We then identify all spaced-word matches with respect to P.

Based on the above substitution matrix, we calculate the score of

each spaced-word match, and we discard all spaced-word matches

with a score below zero, as we did in our previous article

(Leimeister et al., 2017). By default, our program uses only unique

spaced-word matches. That is, if a spaced word w occurs n times in

one sequence and m times in a second sequence, we only use the

best-scoring of the n�m resulting spaced-word matches. But as an

alternative, it is also possible to use all spaced-word matches with a

score above zero.

To find homologies even for distantly related sequences, we use

patterns with a low weight; by default, we use a weight of w ¼ 10.

On the other hand, we use a large number of don’t-care positions,

since this makes it easier to distinguish true homologies from ran-

dom spaced-word matches. By default, we use a pattern length of

‘ ¼ 110, so our patterns contain 10 match positions and 100 don’t-

care positions.

Next, we do gap-free extensions of the identified local similar-

ities in both directions using a standard X-drop approach. As start-

ing points for these extensions, we do not use the full spaced-word

matches, but their midpoints. The reason for this is that, with our

long patterns, even high-scoring spaced-word matches may not rep-

resent true homologies over their entire length. It often happens that

parts of a spaced-word aligns homologous nucleotides, but one or

both ends of the aligned segments extend into non-homologous

regions. There is a high probability, however, that the midpoint of a

long, high-scoring spaced-word match is located within a region of

true homology. As a result, it is possible that an ‘extended’ match in

our approach is shorter than the initial spaced-word match that was

used to define the starting point for the X-drop extension. Also, it

can happen that a spaced-word match is located within the ‘exten-

sion’ of a previously processed match. Such matches are redundant

and are therefore discarded by our algorithm. Finally, we use the

extended gap-free alignments as anchor points for alignment.

2.2 Evaluation
To evaluate FSWM and to compare it to a state-of-the-art approach

to alignment anchoring, we used the Mugsy software system. Here,

we used the default version of FSWM with unique matches, i.e. for

each distinct spaced word, only the highest-scoring spaced-word

match is used. As mentioned above, the original Mugsy uses

MUMmer to find pairwise anchor points. We replaced MUMmer in
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the Mugsy pipeline by our FSWM-based anchor points and eval-

uated the resulting multiple alignments. In addition, we compared

these alignments to alignments produced by the multiple genome

aligner Cactus (Paten et al., 2011). Cactus is known to be one of the

best existing tools for multiple genome alignment; it performed ex-

cellently in the Alignathon study (Earl et al., 2014). To measure the

performance of the compared methods, we used simulated genomic

sequences as well as three sets of real genomes. To make MUMmer

directly comparable to FSWM, we used a minimum length of 10 nt

for maximum unique matches, corresponding to the default weight

(sum of match positions) used in Spaced Words. Note that, by de-

fault, MUMmer uses a minimum length of 15 nt. With this default

value, however, we obtained alignments of much lower quality.

Cactus was run with default values.

2.2.1 Simulated genomic sequences

To simulate genomic sequences, we used the artificial life frame-

work (ALF) developed by Dalquen et al. (2012). ALF generates arti-

ficial gene families along a randomly generated tree, according to a

probabilistic model of evolution. During this process, evolutionary

events are logged so the true MSA is known for each simulated gene

family and can be used as reference to assess the quality of automat-

ically generated alignments.

We generated a series of 14 datasets, each one based on a ran-

domly generated tree with 30 leaves, representing different species.

Each dataset consists of 750 simulated gene families, evolved along

the respective tree, such that exactly one gene from each family is

present in each of the 30 ‘species’. Within each dataset, we used a

fixed mutation rate for all gene families, but we used different muta-

tion rates for different datasets. For all other parameters in ALF, we

used the default settings. We varied the mutation rates between an

average of 0.1013 substitutions per position for the first dataset to

an average of 0.8349 substitutions per position for the 14th dataset.

Here, the average is taken over all pairs of ‘species’ within the re-

spective dataset. The maximal pairwise distance between all pairs of

sequences within a dataset ranges from 0.1640 for the first to

1.0923 for the 14th dataset. The simulated genes have an average

length of about 1500 bp, summing up to a total size of about 32 MB

per dataset.

For simplicity, we did not concatenate the 750 genes in one ‘spe-

cies’. Instead, we applied the alignment programs that we evaluated

to compare all genes from one ‘species’ to all genes from all other

‘species’ within the same dataset. Concatenating the sequences

would have led to the same results. To assess the quality of the pro-

duced alignments, we calculated recall and precision values in the

usual way. If, for one given dataset, S is the set of all positions of the

30�750 simulated gene sequences, we denote by A � S
2

� �
the set

of all pairs of positions aligned to each other by the alignment that

is to be evaluated, while R � S
2

� �
denotes the set of all pairs of posi-

tions aligned to each other in the reference alignment. Recall and

precision are then defined as

Recall ¼ jA \ Rj
jRj ; Precision ¼ jA \ Rj

jAj (1)

The harmonic mean of recall and precision is called the balanced

F-score and is often used as an overall measure of accuracy; it is thus

defined as

Fscore ¼ 2� Precision�Recall

PrecisionþRecall

To estimate these three values, we used the tool mafComparator

which was also used in the Alignathon study (Earl et al., 2014).

Since it is prohibitive to consider all pairs of positions of the test

sequences, we sampled 10 million pairs of positions for each dataset.

This corresponds to the evaluation procedure used in Alignathon.

For the simulated sequence sets, their recall and precision values

are shown in Figures 2 and 3. For datasets with smaller mutation

rates, the quality of alignments obtained with FSWM and MUMmer

is comparable (Fig. 4). However, if the mutation rate increases, our

spaced-words approach clearly outperforms the original version of

Mugsy where exact word matches are used to find anchor points.

With FSWM, not only more homologies are detected, compared to

Mummer, but also the precision of Mugsy is slightly improved.

2.2.2 Real-world genome sequences

For real-world genome families, it is usually not possible to calculate

the precision of MSA programs because it is, in general, not known

which sequence positions exactly are homologous to each other and

which ones are not. If there are core blocks of the sequences for

which biologically correct alignments are known, at least recall val-

ues can be calculated for these core blocks. For most genome

Fig. 1. Spaced-words histogram for a comparison of two bacterial genomes, Phaeobacter gallaeciensis 2.10 and Rhodobacterales bacterium Y4I. All possible

spaced-word matches with respect to a given binary pattern P are identified, and their scores are calculated as explained in the main text. The number of spaced-

word matches with a score s is plotted against s. Two peaks are visible, an approximately normally distributed peak for background spaced-word matches, and a

more complex peak for spaced-word matches representing homologies. With a cut-off value of zero, background and homologous spaced-word matches can be

reliably separated
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sequences, however, not even such core blocks are available. To

evaluate Mugsy, the authors of the program therefore used the num-

ber of core columns of the produced alignments as a criterion for

alignment quality (Angiuoli and Salzberg, 2011). Here, a core col-

umn is defined as a column that does not contain gaps, i.e. a column

in which nucleotides from all of the input sequences are aligned. In

addition, the authors of Mugsy used the number of pairs of aligned

positions of the aligned sequences as an indicator of alignment qual-

ity. In this article, we use the same criteria to evaluate multiple align-

ments of real-world genomes.

As a first real-word example, we used a set of 29 E. coli/Shigella

genomes that has been used in the original Mugsy paper, see

Supplementary Material for details; these sequences have also been

used to evaluate alignment-free methods (Haubold et al., 2015;

Morgenstern et al., 2015; Yi and Jin, 2013). The total size of this

dataset is about 141 MB. As a second test set, we used another pro-

karyotic dataset, namely a set of 32 complete Roseobacter genomes

(details in the Supplementary Material); these genomes are more dis-

tantly related than the E. coli/Shigella strains. The total size of this

dataset is about 135 MB. To test our approach on eukaryotic

genomes, we used as a third test case a set of nine fungal genomes,

namely Coprinopsis cinerea, Neurospora crassa, Aspergillus terreus,

Aspergillus nidulans, Histoplasma capsulatum, Paracoccidioides

brasiliensis, Saccharomyces cerevisiae, Schizosaccharomyces pombe

and Ustilago maydis (genbank accession numbers are given in the

Supplementary Material). The total size of this third dataset is about

253 MB.

The results of Mugsy with MUMmer and FSWM, respectively,

for the three real-world datasets are shown in Table 1, together with

the results obtained with Cactus. In addition to the number of core

columns and the number of aligned pairs of positions, the table con-

tains the number of core Locally Collinear Blocks, i.e. the number

of Locally Collinear Blocks involving all of the input sequences, and

the total number of Locally Collinear Blocks returned by the align-

ment programs. For the E. coli/Shigella sequences, the two anchor-

ing methods, MUMmer and FSWM, led to alignments of

comparable quality when used with Mugsy; the genome sequences

in this dataset are very similar to each other. For the Roseobacter

and fungal genomes, however, the FSWM anchor points led to much

better alignments than the default anchor points generated with

MUMmer. The sequences in these sets are far more apart from each

other than the sequences in the E. coli/Shigella set, so the results on

these three datasets confirm our above results on simulated

sequences.

2.2.3 Program run time

Table 2 reports the program run times of Mugsy with FSWM,

Mugsy with MUMmer and Cactus on the above three real-world se-

quence sets. In addition, the table contains the run times for FSWM

and MUMmer alone. A program run of Mugsy with FSWM on a set
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spectively, and for Cactus. Test data and parameter values as in Figure 2

Table 1. Evaluation of multiple alignments of 29 E. coli/Shigella

genomes, 32 Roseobacter genomes and 9 fungal genomes,

obtained with Mugsy, using anchor points calculated with FSWM

and with MUMmer, respectively

Core

LCBs

Aligned

pairs

Core

col.

LCBs

29 E. coli/Shigella genomes

Mugsy þMUMmer 539 1,61Eþ09 2,827,115 4138

Mugsy þ FSWM 664 1,63Eþ09 2,867,432 5906

Cactus 20,163 1,48Eþ09 2,663,750 56,592

32 Roseobacter genomes

Mugsy þMUMmer 39 3,63Eþ08 13,654 13,501

Mugsy þ FSWM 859 7,15Eþ08 824,054 30,836

Cactus 5984 4,95Eþ08 280,085 337,320

9 fungal genomes

Mugsy þMUMmer 9 5,88Eþ06 2097 4252

Mugsy þ FSWM 2590 1,18Eþ08 718,176 89,555

Cactus 31,589 1,33Eþ08 828,680 848,242

Note: As a comparison, the table contains the results obtained with Cactus.

The first column contains the number of core columns, i.e. the number of col-

umns in the multiple alignments that do not contain gaps; the second column

contains the total number of aligned pairs of positions in the alignment. The

third column contains the number of core Locally Collinear Blocks (LCBs)

i.e. the number of LCBs that involve all of the aligned genomes (‘core LCBs’),

while the last column contains the total number of LCBs.
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of five mammalian sequences of length 200 mb each from Earl et al.

(2014) took around 7 days, and 5 h with k ¼ 10 and two days with

k ¼ 12.

3 Discussion

In this article, we proposed a novel approach to calculate anchor

points for genome alignment. Finding suitable anchor points is a

critical step in all methods for genome alignment, since the selected

anchor points determine which regions of the sequences can be

aligned to each other in the final alignment. A sufficient number of

anchor points is necessary to keep the search space and run time of

the main alignment procedure manageable, so sensitive methods are

needed to find anchor points. Wrongly selected anchor points, on

the other hand, can seriously deteriorate the quality of the final

alignments, so anchoring procedures must also be highly specific.

Earlier approaches to genomic alignment used exact word

matches as anchor points (Delcher et al., 1999; Höhl et al., 2002),

since such matches can be easily found using suffix trees and related

indexing structures. These approaches are limited, however, to sit-

uations where closely related genomes are to be aligned, for example

different strains of a bacterium. In modern approaches to database

searching, spaced seeds are used to find potential sequence homolo-

gies (Buchfink et al., 2015; Hauswedell et al., 2014; Li et al., 2003).

Here, binary patterns of match and don’t care positions are used,

and two sequence segments of the corresponding length are consid-

ered to match if identical residues are aligned at the match positions,

while mismatches are allowed at the don’t care positions. Such

pattern-based approaches are more sensitive than previous methods

that relied on exact word matches.

We previously proposed to apply the ‘spaced-seeds’ idea to

alignment-free sequence comparison, by replacing contiguous words

by so-called spaced words, i.e. by words that contain wildcard char-

acters at certain pre-defined positions (Leimeister et al., 2014).

More recently, we introduced FSWM (Leimeister et al., 2017) to es-

timate the average number of substitutions per sequence position be-

tween two genomes. In the latter approach, we first identify spaced-

word matches using relatively long patterns with only few match

positions. For the identified matching segments, we look at the

nucleotides that are aligned to each other at the don’t-care positions,

and we discard spaced-word matches for which the similarity at the

don’t-care positions is below a threshold. Substitution frequencies

are then estimated based on the aligned nucleotides at the don’t-care

positions of the remaining spaced-word matches. We showed that

this procedure is fast and highly sensitive, and it can reliably distin-

guish between true homologies and spurious sequence similarities.

In the present study, we used FSWM to calculate anchor points

for genomic sequence alignment. Instead of using the selected

spaced-word matches directly as anchor points, we extend the iden-

tified hits into both directions, similar to the hit-and-extend

approach to database searching. In view of speed and accuracy, this

approach is somewhere between exact word matching and gapped

local alignment. As in our previous paper on filtered spaced words

(Leimeister et al., 2017), we use binary patterns with a large number

of don’t-care positions. This way, the ‘homologous’ and ’back-

ground’ peaks in the spaced-word histograms (Fig. 1) are far enough

apart, since the distance between them is proportional to the number

of don’t-care positions in the underlying patterns. With a large num-

ber of don’t-care positions, it is therefore easier to distinguish be-

tween homologous and background spaced-word matches.

One might think that, with our long patterns, we might miss too

many shorter local homologies. We do not see this as a problem,

though. Our goal is not to find all local homologies between two

sequences, but to output a sufficient number of anchor points to

make the final alignment procedure feasible. Moreover, our algo-

rithm is well able to find gap-free homologies that are shorter than

the specified pattern length, as long as the sequence similarity be-

tween these homologies is strong enough. As explained above, we

do not start the X-drop extension at the end positions of the identi-

fied hits, but in the middle; this way we can find spaced-word

matches that cover short homologies, but reach into gapped or non-

homologous sequence regions to the left and to the right. In such

cases, it can happen that the ‘extended’ hits are shorter than the re-

spective initial spaced-word matches.

To evaluate these anchor points, we integrated them into the

popular genome-alignment pipeline Mugsy. Test runs on simulated

genome sequences show that, for closely related sequences, Mugsy

produces alignments of high quality with both types of anchor

points. For more distantly related sequences, however, the recall val-

ues of the program drop dramatically if anchor points are calculated

with MUMmer while, with our spaced-word matches, one observes

recall values close to 100% for distances up to around 0.7 substitu-

tions per position.

For real-world genomes, it is more difficult to evaluate the per-

formance of genome aligners since there is only limited information

available on which positions are homologous to each other and

which ones are not. Angiuoli and Salzberg (2011) therefore used the

number of aligned pairs of positions as an indicator of alignment

quality, together with the size of the ‘core alignment’, i.e. the num-

ber of alignments columns that do not contain gaps. At first glance,

these criteria might seem questionable; it would be trivial to maxi-

mize these values, simply by aligning sequences without internal

gaps, by adding gaps only at the ends of the shorter sequences.

However, as shown in Figure 3, all MSA programs in our study

have high precision values, i.e. positions aligned by these programs

are likely to be true homologs. In this situation, the number of

aligned position pairs and size of the ‘core alignment’ can be consid-

ered as a proxy for the recall of the applied methods i.e. the propor-

tion of homologies that are correctly aligned.

As shown in Table 2, the program run time to generate anchor

points is comparable for FSWM and MUMmer. For distantly related

sequence sets, however, the total run time of Mugsy is much higher

with our FSWM anchoring approach than with anchor points from

MUMmer. A possible explanation for the difference in run time is

that FSWM is more sensitive, so a larger number of anchor points

are produced. Table 1 shows that, with our FSWM, more Locally

Collinear Blocks are found than with the exact word matches that

are found with MUMmer—especially for distantly related sequences

where exact word matching is not very sensitive. One way of reduc-

ing the program run time would be to apply a cut-off value to reduce

the number Locally Collinear Blocks that are to be aligned in the

main alignment procedure. Further research efforts are necessary to

Table 2. Run time in minutes for three different multiple genome-

alignment methods applied to the three test datasets that we used

in our program evaluation

E. coli/Shigella Roseobacter fungal genomes

FSWM 59 83 110

FSWM þMugsy 638 6428 1488

MUMmer 73 63 43

MUMmer þMugsy 286 1099 63

Cactus 714 1775 775
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balance speed and accuracy of multiple genome alignment

algorithms.
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