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Antigen receptors play a central role in adaptive immune responses. Although the molecu-
lar networks associated with these receptors have been extensively studied, we currently
lack a systems-level understanding of how combinations of non-covalent interactions and
post-translational modifications are regulated during signaling to impact cellular decision-
making. To fill this knowledge gap, it will be necessary to formalize and piece together
information about individual molecular mechanisms to form large-scale computational mod-
els of signaling networks.To this end, we have developed an interaction library for signaling
by the high-affinity IgE receptor, FcεRI.The library consists of executable rules for protein–
protein and protein–lipid interactions.This library extends earlier models for FcεRI signaling
and introduces new interactions that have not previously been considered in a model.
Thus, this interaction library is a toolkit with which existing models can be expanded and
from which new models can be built. As an example, we present models of branching
pathways from the adaptor protein Lat, which influence production of the phospholipid
PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclu-
sion of a positive feedback loop gives rise to a bistable switch, which may ensure robust
responses to stimulation above a threshold level. In addition, the library is visualized to
facilitate understanding of network circuitry and identification of network motifs.

Keywords: immunoreceptor signaling, IgE receptors (FcεRI), mast cells, knowledge engineering, computational
modeling, network motifs, feed-forward loops, visualization

INTRODUCTION
Cell signaling plays a key part in regulation of the immune
system. Adaptive immune responses are controlled by multi-
chain immune recognition receptors, or immunoreceptors, which
include the T cell receptor (TCR) (1), the B cell antigen receptor
(BCR) (2), and the high-affinity receptor for IgE, which is also
known as FcεRI (3). Each of these receptors is the gatekeeper of
complex signaling machineries that translate extracellular stimuli
into cellular responses. Individual interactions in immunorecep-
tor signaling systems have been studied extensively, and there is
now a need to form a cohesive picture of how these interactions
combine to mediate information processing. This need is driven
in part by emerging data that reveal complex dynamical behav-
iors that arise from molecular interactions (4, 5), as well as by a
growing appreciation of network features, such as crosstalk (6),
which may only be apparent when one considers the interplay of
multiple interactions.

Knowledge about signaling can be combined and synthesized
into multiple forms, of which we employ two that are versatile
and extensible: a visual map drawn in accordance with recom-
mended standard conventions, and a rule-based model. The value
of a standardized map, as opposed to an ad hoc cartoon, in
depicting molecular interactions has been well appreciated: such
maps can be used to organize information concisely, can be inter-
preted with minimal ambiguity, and can aid in logical analysis
(7–11). After creation of a map, construction of a computational
model can be viewed as the next level of information formal-
ization (12). Through modeling, assumptions about molecular

interactions (e.g., whether or not two interactions are competi-
tive) are made more concrete and can thus be better assessed. In
addition, modeling can extend our predictive capabilities when
quantitative factors are important, enabling us to develop more
sophisticated hypotheses. Modeling has become an increasingly
important part of studies of immunoreceptor signaling (13).

Of the modeling frameworks that have been used to investigate
biochemical systems, the framework of chemical kinetics is useful
for studying dynamical behaviors that evolve on >1 ms time scales
and that can be characterized using measurable parameters, such
as protein copy numbers and binding rate constants. Among the
modeling techniques of chemical kinetics is rule-based modeling
(14), which provides a means to represent individual biomolecular
sites, which is essential when, for example, different phosphoryla-
tion sites can recruit different binding partners (15). Rule-based
modeling also enables simulation of the behavior of a large num-
ber of distinct chemical species. Myriad multicomponent protein
complexes and protein phosphoforms, for example,can potentially
arise in cell signaling systems and this complexity poses a chal-
lenge for other modeling techniques (16, 17). Rule-based models
are built from executable rules. Rules in a model have a certain
degree of interdependence, but tend to be more modular than
the component parts used in other modeling techniques, such as
ordinary differential equations (17). Thus, it is not only possible
to formulate rules for a specific model, but to construct general
rule libraries from which different models may be built.

To further our systems-level understanding of immunorecep-
tor signaling, we have developed a map and a rule library for
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early signaling mediated by FcεRI, which shares features with other
related immunoreceptors. The FcεRI signaling system has a spe-
cial feature of experimental tractability because the receptor can
be stimulated using structurally defined antigens (18–20), mak-
ing it a valuable model system for understanding how signaling is
initiated. Furthermore, FcεRI has been the subject of several past
modeling studies that have elucidated early events following recep-
tor crosslinking (21, 22), the flow of information during signaling
(23), aggregation of adaptor proteins (24, 25), and the impact of
ligand dose and binding kinetics on kinase activation (26, 27).
Aspects of the models used in these studies form a foundation
for the rule library presented here. The library extends previous
work by adding rules for interactions not previously included in
models for FcεRI signaling. Thus, the library serves as a bridge
between past studies of relatively small scope, and potential future
studies that integrate information about more network elements
to, for example, analyze multiplexed signaling data (28). As a first
example of library use, we present simulations of recruitment of
signaling proteins to the adaptor Lat, which is phosphorylated in
response to FcεRI stimulation (29).

METHODS
We developed a library of rules based on known protein–protein
and protein–lipid interactions, which were identified through a
survey of the FcεRI literature. The rules can be assembled into
different sets to form different models that capture the chemical
kinetics of FcεRI signaling with site-specific resolution (14, 16, 30).
Here, the term “site” is used to refer to a generic functional site in a
biomolecule, which in the case of a protein may be a domain, linear
motif, or amino acid residue subject to post-translational modi-
fication. In a rule-based model, rules capture knowledge about
biomolecular interactions of interest. The rules in a model specify
what interactions can occur in a system and under what conditions
these interactions occur. A rule provides necessary and sufficient
conditions for testing its applicability, a definition of the con-
sequences of an interaction, and a rate law. A detailed example
of a rule is illustrated graphically in Figure S1 in Supplementary
Material. Rules, in combination with parameters and initial con-
ditions, can be processed to simulate the time-dependent behavior
of a signaling system, including the time-dependent formation of
protein complexes and post-translational modifications of pro-
teins at specific sites. A benefit of a rule-based approach is that
it enables concise specification and efficient simulation of models
that include multivalent interactions and multi-site phosphoryla-
tion, which are two inherent characteristics of immunoreceptor
signaling systems that are otherwise difficult or impossible to fully
capture in a physicochemical model. We specified our library using
a domain-specific language for rule-based modeling, the BioNet-
Gen language (BNGL) (30), which is compatible with several
software tools for simulation and analysis.

Our simulations are based on the law of mass action and an
assumption of well-mixed reaction compartments. In the exam-
ple model, the following compartments are considered implicitly:
the cytosol, the plasma membrane, and the extracellular fluid sur-
rounding a single-cell. Simulations were performed using CVODE
(31), the built-in deterministic simulator of BioNetGen, which
takes as input the ODEs derived from a rule-specified reaction

network. Our illustrations of rules are based on published guide-
lines for model visualization (10) and were drawn with the help
of a template available online (http://bionetgen.org/index.php/
Extended_Contact_Maps).

In our bifurcation analyses, we found stable steady states
through simulations that were started from arbitrary initial con-
ditions or nearby steady states. The bifurcation parameter was an
input signal taken in the model of interest to control the rate of
activation of Syk and Fyn, which were each deactivated through a
first-order process. Thus, as the input signal increases, so too do
the steady-state levels of active Syk and Fyn. In simulations per-
formed to find stable steady states, the bifurcation parameter was
systematically varied from a low to high value, and vice versa.

To characterize signaling dynamics for specific observables (i.e.,
model outputs), we calculated rise time as the time required
for the observable to reach 95% of its final steady-state value.
For comparison between two models, a ratio of rise times was
calculated.

RESULTS AND DISCUSSION
LIBRARY
In this section, we present a collection of rules, which can be viewed
as a single model or as an assemblage of multiple models. Our main
purpose is not to simulate the full set of interactions represented by
these rules, but to formalize available knowledge about the FcεRI
system to facilitate future modeling studies aimed at addressing
specific questions. Rules in the library are provided in File S1 in
Supplementary Material.

Rule-based models are compositional, meaning that rules can
be specified somewhat independently of each other, enabling con-
struction of new models from components of existing models. We
have taken advantage of this feature to build on three previously
reported models: one for ligand–receptor interactions and two for
intracellular signaling. Below, we briefly review these models and
the processes that they capture. A visual overview of the intracel-
lular processes captured in the library is provided in Figure 1.

Initiation of signaling by FcεRI requires aggregation of recep-
tors, which can be induced by reagents such as haptenated proteins
and polymers, as well as by anti-receptor antibodies (32). Several
models have been developed to investigate the interactions that
lead to receptor aggregation. The model that we consider here is
that of Xu et al. (33) for interactions of IgE-FcεRI with DNP–BSA,
a multivalent antigen (haptenated protein). We chose this model
because DNP–BSA is commonly used for stimulation of mast cells
sensitized with anti-DNP IgE, and receptor aggregation induced
by this antigen has been studied in detail (34). In this model, the
effective valence of the ligand was taken to be two. The model
includes transient hapten exposure, initial binding of a ligand to a
receptor, crosslinking of neighboring receptors, and dissociation of
ligand–receptor bonds. In this model, it was assumed that receptor
sites (antigen-combining sites in cell-surface IgE) are equivalent
and that the single-site dissociation rate constant is the same for
both ligand sites, regardless of whether the second site is bound or
free. Cyclic aggregates are not considered. For use in this study, the
model was translated from its original form to rules, which was
also done in another recent study (35). The model of Xu et al. is
illustrated in Figure 2.
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FIGURE 1 | An overview of intracellular signaling interactions included in
the model/library for FcεRI signaling. Rules are included in the library for
the interactions depicted here. Proteins are represented as circles that are
color-coded according to their function, as indicated in the legend. Standard
UniProt names are used, and we note that Grap2 is commonly known as
Gads, Lcp2 is commonly known as Slp76, and Inpp5d is commonly known as
Ship1. The legend also indicates the arrows that are used to represent

different types of interactions and influences. Reactions of lipid species are
illustrated at the bottom. Arrows from proteins that point to lipid reactions
indicate that the reaction is catalyzed by that protein. Arrows from protein to
lipid species indicate that the protein binds that lipid. Not shown are implicit
phosphatase reactions that cause dephosphorylation of all sites that can be
phosphorylated. Ligand–receptor interactions are shown in Figure 2. A
subset of interactions is illustrated with site-specific detail in Figure 3.

FIGURE 2 | Reaction scheme for DNP–BSA interactions with cell-
surface IgE. BSA (bovine serum albumin) is haptenated with multiple DNP
groups, which are assumed to transition between two states: inaccessible
(represented as being inside the molecule) and accessible (represented as
being on the edge of the molecule). Accessible DNP can bind Fab arms of
IgE. Each IgE antibody has two Fab arms, and is thus bivalent.

Receptor aggregation initiates signaling by bringing receptors
into proximity with the Src-family kinase (SFK) Lyn. Lyn’s associ-
ation with receptors may be facilitated by several complementary
mechanisms, including regulation by the membrane lipid environ-
ment (36) and constitutive direct binding to FcεRI via Lyn’s unique
N-terminal domain (37). For simplicity, we explicitly model the
latter mechanism because it allows the plasma membrane to be
treated as well-mixed and has been formalized in past modeling
studies (21, 22). Lyn mediates phosphorylation of other recep-
tors in an aggregate, thereby generating binding sites for the SH2
domain of Lyn. In this model, FcεRI constitutively associates with
the unique N-terminal domain of Lyn. Crosslinking of receptors
enables Lyn to trans phosphorylate a second receptor at sites in
the receptor’s cytoplasmic subunits. These subunits, a β chain
(Ms4a2) and a homodimer of two γ chains (Fcer1g), each con-
tain an immunoreceptor tyrosine-based activation motif (ITAM).
Each ITAM contains two (canonical) tyrosine residues that can
be phosphorylated. The β chain contains an additional, non-
canonical tyrosine in the middle of the ITAM sequence. In the
original model, the tyrosines in the β chain were treated as a
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single-site, as were tyrosines in the γ chains. Here, we consider
the β chain’s N-terminal (canonical) and middle (non-canonical)
tyrosines separately because they are capable of recruiting dis-
tinct binding partners. The phosphorylated N-terminal tyrosine
recruits Lyn to aggregated receptors via SH2 domain binding, and
enhances Lyn’s catalytic activity by disruption of an inhibitory
intramolecular bond, forming a positive feedback loop. The non-
canonical phosphotyrosine binds the lipid phosphatase Inpp5d
(Ship1), which we will discuss below. The dually phosphorylated
γ ITAM binds the tandem SH2 domains of the kinase Syk. Tyrosine
residues in the linker region of Syk are phosphorylated by Lyn. Syk
trans phosphorylates the activation loop in a second Syk molecule
that is co-localized by being bound to cross-linked receptor, which
constitutes positive feedback.

Rules for additional interactions among signaling proteins,
which include mediators of negative regulation, were adapted
from a model for BCR signaling (38). Lyn and a second SFK,
Fyn, bind the transmembrane adaptor protein Pag1. Pag1 can then
be phosphorylated by these kinases, generating additional bind-
ing sites for Lyn and Fyn, as well as for the kinase Csk. When
co-localized on Pag1, Csk can phosphorylate Lyn and Fyn at an
inhibitory C-terminal tyrosine. In this model, it was assumed that

phosphorylation occurs in cis, meaning that Csk mediates phos-
phorylation of an SFK only when both are bound to the same
Pag1 molecule. The C-terminal phosphotyrosine of an SFK forms
an intramolecular bond with the SFK’s SH2 domain, resulting in
autoinhibition of the SFK’s kinase domain.

The new rules of our library join the proximal signaling events
described above to downstream processes that have not previously
been considered in mechanistic models of FcεRI signaling. New
rules are discussed in the sections that follow and are illustrated in
Figure 3. The nomenclature and residue numbers used are con-
sistent with UniProt conventions for rat proteins (39), because rat
cells are commonly used in experimental studies of FcεRI signal-
ing. If we view the rules of our library as constituting a single
model, then the terminal output of the model is production of
IP3, which is a second messenger. Binding of IP3 to its receptor
on the endoplasmic reticulum leads to release of Ca2+ ions from
intracellular stores, which is a key step for several processes in
mast cell function, including degranulation and chemotaxis (40).
Finally, we note that the interactions included in this library are
not all unique to FcεRI signaling and are shared by pathways oper-
ative in TCR and BCR signaling. Thus, to facilitate identification
of rules applicable to multiple pathways/cell types, in Table S1

FIGURE 3 | A detailed illustration of new interactions included in
the model for FcεRI signaling. This diagram shows a subset of the
interactions shown in Figure 1, but with illustration of additional
details, namely the sites responsible for interactions. Conventions for
color-coding and arrow symbols are the same as in Figure 1. Large
circles represent proteins. Small circles, overlapping the edges of large
circles, represent protein sites/components, such as domains, motifs,

and amino acid residues. Standard UniProt names are used, and we
note that Grap2 is commonly known as Gads, Lcp2 is commonly
known as Slp76, and Inpp5d is commonly known as Ship1. Arrows
represent interactions and are numbered to correspond to the
numbering of rules given in the text. Phosphatase activity is considered
implicitly as dephosphorylation reactions that apply to all sites, and is
not illustrated in this figure.
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in Supplementary Material, we list protein–protein interactions
included in the FcεRI library and whether each interaction is part
of TCR and BCR signaling according to the NetPath database (41).

PHOSPHORYLATION OF LAT
Lat is a transmembrane, palmitoylated adaptor protein (42) that
is involved in many signaling processes in both T cells and mast
cells (43, 44). Syk phosphorylates Lat at multiple tyrosine residues
(43), of which we focus on two: Y136 and Y175, which are better
known as Y132 and Y191 in human Lat. Recent imaging stud-
ies suggest that Lat and the receptor become co-clustered after
antigen-mediated receptor aggregation (45, 46). However, it is not
clear if Syk-mediated phosphorylation of Lat takes place within
the context of a signaling complex that co-localizes Syk and Lat,
or if instead, Syk-mediated phosphorylation of Lat takes place
through random collisions between Syk’s kinase domain and tyro-
sine substrates in Lat that generate short-lived enzyme–substrate
complexes, as in a Michaelis–Menten mechanism. It has previously
been assumed that the latter mechanism holds (47) and we follow
this approach, using rules capturing enzyme–substrate binding,
dissociation, and catalysis. For example, the rules listed below,
which are written using the conventions of BNGL (30), represent
Syk-catalyzed phosphorylation of Y136 in Lat. Mass action kinet-
ics are assumed. Bond indices are prefixed with the “!” symbol and
internal state labels are prefixed with the“~”symbol. Here, internal
state labels indicate whether a tyrosine residue is phosphorylated
(“P”) or unphosphorylated (“0”).

(1) Syk(tSH2!+ ,PTK)+ Lat(Y136~0) ->

Syk(tSH2!+ ,PTK!1).Lat(Y136~0!1)
kfSykLat

(2) Syk(PTK!1).Lat(Y136~0!1) -> Syk(PTK)+

Lat(Y136~0) krSykLat
(3) Syk(PTK!1,Y519_Y520~P).Lat(Y136~0!1) ->

Syk(PTK,Y519_Y520~P)+ Lat(Y136~P)
kpSykLat136_1

(4) Syk(PTK!1,Y519_Y520~0).Lat(Y136~0!1) ->

Syk(PTK,Y519_Y520~0)+ Lat(Y136~P)
kpSykLat136_2

The first rule represents binding of Syk to Lat. In general, for
rules in our library, protein components’names are consistent with
terminology used in the biological literature. Here, the PTK com-
ponent of Syk represents the protein tyrosine kinase domain of the
protein. We assume that the interaction represented by Rule 1 only
occurs when Syk is recruited to the plasma membrane, through
binding of its tandem SH2 domains (tSH2) to phosphorylated
FcεRI. Thus, the rule specifies that the tSH2 component must be
bound for the reaction to occur (indicated by “!+”). The second
rule represents the reverse reaction, which occurs independently
of the binding state of Syk. Thus, the tSH2 component of Syk is
not included in this rule. Rules 3 and 4 represent phosphorylation
of Lat Y136 by Syk. These two rules differ in whether Syk is phos-
phorylated at its activation loop tyrosine residues Y519 and Y520,
which are treated as a single site for simplicity. Phosphorylation
of the activation loop enhances the catalytic activity of Syk (48).
Rate constants consistent with this regulatory mechanism are given

after each rule, and are assigned values in the “parameters” block
of the model specification (File S1 in Supplementary Material). A
similar set of rules are used to capture phosphorylation of Y175
in Lat.

(5) Syk(tSH2!+ ,PTK)+ Lat(Y175~0) ->

Syk(tSH2!+ ,PTK!1).Lat(Y175~0!1)
kfSykLat

(6) Syk(PTK!1).Lat(Y175~0!1) -> Syk(PTK)+

Lat(Y175~0) krSykLat
(7) Syk(PTK!1,Y519_Y520~P).Lat(Y175~0!1) ->

Syk(PTK,Y519_Y520~P)+ Lat(Y175~P)
kpSykLat175_2

(8) Syk(PTK!1,Y519_Y520~0).Lat(Y175~0!1) ->

Syk(PTK,Y519_Y520~0)+ Lat(Y175~P)
kpSykLat175_1

INTERACTIONS AMONG LAT AND ITS BINDING PARTNERS
Phosphorylated Y136 and Y175 have preferences for distinct bind-
ing partners, although crosstalk occurs between the pathways that
branch from each site. Phosphorylated Y175 binds Grb2 and
Grap2 (commonly known as Gads) (49), which are two related
cytosolic adaptor proteins that each contain an SH2 domain
flanked by two SH3 domains (50). These adaptors are also able to
bind other sites in Lat, with Grb2 being more promiscuous (51),
but for simplicity we focus on Y175. The interactions of Lat pY175
with Grb2 and Grap2, which are taken to be mutually exclusive,
are modeled as follows:

(9) Lat(Y175~P)+ Grb2(SH2)< ->

Lat(Y175~P!1).Grb2(SH2!1) kfLatGrb2,
krLatGrb2

(10) Lat(Y175~P)+ Grap2(SH2)< ->

Lat(Y175~P!1).Grap2(SH2!1) kfLatGrap2,
krLatGrap2

These rules are nearly as general as possible, in that minimal
molecular context is included on the left-hand side of either of
these rules (i.e., the only requirements for a bond to form is avail-
ability of the cognate binding sites in each molecule). For this
reason, a large number of distinct reactions are implicitly defined
by each rule. This feature is a generic aspect of rules and what
allows for concise model specification.

Grap2 binds Lcp2, which is also known as Slp76. This high-
affinity interaction occurs through the SH3 domain of Grap2 and
an unconventional RxxK motif in Lcp2 (52).

(11) Grap2(SH3)+ Lcp2(RxxK)< ->

Grap2(SH3!1).Lcp2(RxxK!1) kfGrap2Lcp,
krGrap2Lcp

Phosphorylated Y136 in Lat binds phospholipase Cγ1 (Plcg1)
with high specificity (49), and the interaction is modeled with the
following rule:

(12) Lat(Y136~P)+ Plcg1(SH2)< ->

Lat(Y136~P!1).Plcg1(SH2!1) kfLatPlcg,
krLatPlcg
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Both of the tandem SH2 domains of Plcg1 contribute to co-
localization of this enzyme with FcεRI upon stimulation (53),
and there is evidence both SH2 domains are capable of binding
Lat (54). However, for simplicity, we only consider a single SH2
domain in this model.

Plcg1 also interacts with Lcp2, via the SH3 domain of
Plcg1 (55).

(13) Lcp2(PRS)+ Plcg1(SH3)< -> Lcp2(PRS!1).
Plcg1(SH3!1) kfLcp2Plcg1,krLcp2Plcg1

The final adaptor protein that we consider is Gab2. A linear
motif in Gab2 can bind to the C-terminal SH3 domain of Grb2.
We designate this motif as a proline-rich sequence (PRS), although
its sequence differs from conventional SH3 binding motifs (56).

(14) Grb2(cSH3)+ Gab2(PRS)< -> Grb2(cSH3!1).
Gab2(PRS!1) kfGrb2Gab2,krGrb2Gab2

In addition, Gab2 can be recruited by binding of its PH domain
to phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3],
also abbreviated as PIP3, in the plasma membrane (57).

(15) PI345P3(headgroup)+ Gab2(PH)< ->

PI345P3(headgroup!1).Gab2(PH!1)
kfGab2Pip3,krGab2Pip3

The“headgroup”component in these rules represents the head-
group of the lipid, which is responsible for interactions with
proteins.

RECRUITMENT OF PI3K TO Gab2
PI3K association with Gab2 is dependent on Gab2 phos-
phorylation. Gab2 is phosphorylated by Fyn (58), which we
assume catalyzes phosphorylation through a Michaelis–Menten
mechanism.

(16) Fyn(U!+ ,SH2,PTK)+ Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0) ->

Fyn(U!+ ,SH2,PTK!3).Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0!3)
kfFynGab2

(17) Rec(b_Y210~P!4).Fyn(U,SH2!4,PTK)+

Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~0) -> Rec(b_Y210~P!4).
Fyn(U,SH2!4,PTK!3).Lat(Y175~P!1).
Grb2(SH2!1,cSH3!2).Gab2(PRS!2,Y441~0!3)
kfFynGab2

(18) Fyn(PTK!1).Gab2(Y441~0!1) ->

Fyn(PTK)+ Gab2(Y441~0) krFynGab2
(19) Fyn(PTK!1).Gab2(Y441~0!1) ->

Fyn(PTK)+ Gab2(Y441~P) kpFynGab2

The first two rules differ with respect to the mechanism by
which Fyn is bound to a receptor. In the first rule, Fyn is taken
to be bound by its unique domain (U). In the second rule, Fyn is
taken to be bound by its SH2 domain.

Phosphorylated Gab2 binds the SH2 domain in the p85 subunit
of PI3K (p85_SH2). Y441 of Gab2 lies in a consensus sequence for
p85 binding (59).

(20) Gab2(Y441~P)+ Pi3k(p85_SH2)< ->

Gab2(Y441~P!1).Pi3k(p85_SH2!1)
kfGab2Pi3k,krGab2Pi3k

PI3K ACTIVITY
Once recruited, PI3K phosphorylates the 3rd position in the inosi-
tol ring of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2],
also abbreviated as PIP2, generating PIP3.

(21) Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~P!3).Pi3k(p85_SH2!3,
PI3Kc)+ PI45P2(headgroup) ->

Lat(Y175~P!1).Grb2(SH2!1,cSH3!2).
Gab2(PRS!2,Y441~P!3).Pi3k(p85_SH2!3,
PI3Kc!4).PI45P2(headgroup!4) kfPi3kPip2

(22) Pi3k(PI3Kc!1).PI45P2(headgroup!1) ->

Pi3k(PI3Kc)+ PI45P2(headgroup)
krPi3kPip2

(23) Pi3k(PI3Kc!1).PI45P2(headgroup!1) ->

Pi3k(PI3Kc)+ PI345P3(headgroup)
kpPi3k DeleteMolecules

In these rules, lipid phosphorylation is treated as consump-
tion and production of different lipid species. For this reason, the
BNGL keyword “DeleteMolecules” is used to indicate removal of
reactant molecules (30).

Btk-MEDIATED ACTIVATION OF Plcg1
PtdIns(3,4,5)P3 is a binding partner for multiple proteins, includ-
ing the Tec-family kinase Btk, which is involved in activating Plcg1.
The PH domain of Btk mediates this interaction.

(24) Btk(PH)+ PI345P3(headgroup)< ->

Btk(PH!1).PI345P3(headgroup!1)
kfBtkPip3,krBtkPip3

Recruited Btk can phosphorylate Plcg1 at sites that are
associated with enhancement of phospholipase activity (60).
In this way, pathways that branch from the two Lat phos-
phosites, Y136 and Y175, converge in contributing to IP3

production.

(25) Btk(PH!+ ,PTK)+ Plcg1(SH2!+ ,Y783~0) ->

Btk(PH!+ ,PTK!1).Plcg1(SH2!+ ,Y783~0!1)
kfBtkPlcg

(26) Btk(PTK!1).Plcg1(Y783~0!1) -> Btk(PTK)+

Plcg1(Y783~0) krBtkPlcg
(27) Btk(PTK!1).Plcg1(Y783~0!1) -> Btk(PTK)+

Plcg1(Y783~P) kpBtkPlcg

Plcg1 ACTIVITY
Plcg1 cleaves PtdIns(4,5)P2 to generate the second messengers dia-
cyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (61). The
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cleavage reaction is taken to occur through a Michaelis–Menten
mechanism:

(28) Plcg1(SH2!+ ,PLC)+ PI45P2(headgroup) ->

Plcg1(SH2!+ ,PLC!1).PI45P2(headgroup!1)
kfPlcgPip2

(29) Plcg1(PLC!1).PI45P2(headgroup!1) ->

Plcg1(PLC)+ PI45P2(headgroup) krPlcgPip2
(30) Plcg1(PLC!1,Y783~P).PI45P2(headgroup!1)

-> Plcg1(PLC,Y783~P)+ IP3()+ DAG()
kcPlcg DeleteMolecules

RECRUITMENT AND ACTIVITY OF Plcg2
In addition to Plcg1, we also include Plcg2 in the library because
isoform-specific differences between these two proteins have been
found in FcεRI signaling. It has been observed that phosphory-
lation and activation of Plcg2 is less sensitive to PI3K inhibi-
tion than Plcg1 (62). Thus, we include a mechanism by which
Plcg2 is activated by Syk rather than by Btk. However, we note
that other studies have found phosphorylation of Plcg2 to be
reduced in the absence of Btk (63), suggesting that Btk may act
on Plcg2.

(31) Lat(Y136~P)+ Plcg2(SH2)< ->

Lat(Y136~P!1).Plcg2(SH2!1) kfLatPlcg,
krLatPlcg

(32) Syk(tSH2!+ ,PTK)+ Plcg2(SH2!+ ,Y753~0)
-> Syk(tSH2!+ ,PTK!1).Plcg2(SH2!+ ,
Y753~0!1) kfSykPlcg

(33) Syk(PTK!1).Plcg2(Y753~0!1) -> Syk(PTK)+

Plcg2(Y753~0) krSykPlcg
(34) Syk(PTK!1).Plcg2(Y753~0!1) -> Syk(PTK)+

Plcg2(Y753~P) kpSykPlcg
(35) Plcg2(SH2!+ ,PLC)+ PI45P2(headgroup) ->

Plcg2(SH2!+ ,PLC!1).PI45P2(headgroup!1)
kfPlcgPip2

(36) Plcg2(PLC!1).PI45P2(headgroup!1) ->

Plcg2(PLC)+ PI45P2(headgroup) krPlcgPip2
(37) Plcg2(PLC!1,Y753~P).PI45P2(headgroup!1)

-> Plcg2(PLC,Y753~P)+ IP3()+ DAG()
kcPlcg DeleteMolecules

Rule 31 represents binding to Lat. Rules 32–34 represent phos-
phorylation of Plcg2 through a Michaelis–Menten mechanism.
Rule 35–37 represent catalyzed hydrolysis of PIP2.

ACTIVATION OF Inpp5d
The final regulator of lipid signaling explicitly considered in our
model is Inpp5d, also known as Ship1, a phosphatase that can
be recruited to FcεRI by binding a non-canonical ITAM tyro-
sine in the β subunit of the receptor (64, 65). Although Inpp5d
and Lyn both bind the β subunit, they have preferences for dif-
ferent phosphotyrosines and thus we treat these interactions as
non-competitive. Inpp5d dephosphorylates the 5th position of the
inositol ring of PtdIns(3,4,5)P3 to form PtdIns(3,4)P2. This prod-
uct of Inpp5d activity can in turn bind the Inpp5d C2 domain
(66), forming a positive feedback loop that has an overall negative

impact on FcεRI-mediated degranulation. The following rules are
used to model binding of Inpp5d to the receptor:

(38) Inpp5d(SH2,C2)+ Rec(b_Y224~P) ->

Inpp5d(SH2!1,C2).Rec(b_Y224~P!1)
kfShipRec

(39) Inpp5d(IPP,C2!+)+ Rec(b_Y224~P) ->

Inpp5d(IPP!1,C2!+).Rec(b_Y224~P!1)
100*kfShipRec

(40) Inpp5d(SH2!1).Rec(b_Y224~P!1) ->

Inpp5d(SH2)+ Rec(b_Y224~P) krShipRec

In the first rule, Inpp5d is cytosolic, because its SH2 and C2
domains are both free and, in the model, these are the only
domains that mediate membrane recruitment. In the second rule,
Inpp5d is already membrane associated through binding of its C2
domain to PtdIns(3,4)P2. For this reason, receptor binding occurs
more quickly (we assume a 100-fold enhancement). The third rule
represents dissociation of Inpp5d from the receptor.

Binding of Inpp5d to PtdIns(3,4)P2 is modeled similarly, with
different rules for membrane-recruited and cytosolic Inpp5d:

(41) Inpp5d(SH2,C2)+ PI34P2(headgroup) ->

Inpp5d(SH2,C2!1).PI34P2(headgroup!1)
kfShipPip2

(42) Inpp5d(SH2!+ ,C2)+ PI34P2(headgroup) ->

Inpp5d(SH2!+ ,C2!1).PI34P2(headgroup!1)
100*kfShipPip2

(43) Inpp5d(C2!1).PI34P2(headgroup!1) ->

Inpp5d(C2)+ PI34P2(headgroup) krShipPip2

In the first rule, Inpp5d is cytosolic, whereas in the second rule,
it is localized to the membrane through binding of its SH2 domain
to the receptor. As above, a 100-fold enhancement is assumed. The
third rule represents dissociation.

Inpp5d ACTIVITY
The following rules capture the catalytic activity of Inpp5d:

(44) Inpp5d(SH2!+ ,C2,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2!+ ,C2,IPP!1).
PI345P3(headgroup!1) kfShipPip3

(45) Inpp5d(SH2,C2!+ ,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2,C2!+ ,IPP!1).
PI345P3(headgroup!1) kfShipPip3

(46) Inpp5d(SH2!+ ,C2!+ ,IPP)+ PI345P3
(headgroup) -> Inpp5d(SH2!+ ,C2!+ ,
IPP!1).PI345P3(headgroup!1) kfShipPip3

(47) Inpp5d(IPP!1).PI345P3(headgroup!1) ->

Inpp5d(IPP)+ PI345P3(headgroup)
krShipPip3

(48) Inpp5d(IPP!1).PI345P3(headgroup!1) ->

Inpp5d(IPP)+ PI34P2(headgroup)
kdpShipPip3 DeleteMolecules

In the rules above, “IPP” represents the catalytic domain of
Inpp5d.
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ADDITIONAL LIPID REACTIONS
Conversion of PtdIns(3,4,5)P3 to PtdIns(4,5)P2 by Pten is con-
sidered implicitly as a first-order reaction. Conversions between
PtdIns(4,5)P2 and PtdIns(4)P are modeled similarly.

(49) PI345P3(headgroup) -> PI45P2(headgroup)
kPten DeleteMolecules

(50) PI4P(headgroup) -> PI45P2(headgroup)
kfP5 DeleteMolecules

(51) PI45P2(headgroup) -> PI4P(headgroup)
krP5 DeleteMolecules

IDENTIFICATION OF NETWORK MOTIFS
It has been hypothesized that relatively simple network motifs
with specialized functions play important roles in cellular regula-
tory systems and that understanding the design principles of these
motifs can help us better understand the complex systems in which
they are embedded (67, 68). Network motifs, such as feedback
loops, have the potential to generate and/or regulate non-linear
dynamical behavior (69), which may, for example, enable precise
encoding of information about a stimulus (70). We assessed the
FcεRI signaling network for the presence of network motifs, and
identified motifs from four classes: positive feedback loops, nega-
tive feedback loops, incoherent feed-forward loops, and coherent
feed-forward loops. Several of the positive and negative feedbacks
contribute to regulation of the SFKs Lyn and Fyn, as well as Syk.
One positive feedback loop arises because SFKs phosphorylate
tyrosine residues in FcεRI, which serve as binding sites that recruit
additional Lyn and Fyn molecules. Furthermore, Lyn and Fyn
can each trans phosphorylate their own activation loop, which
enhances catalytic activity. A similar mechanism also activates
the kinase Syk. Negative feedback arises because Lyn and Fyn can
phosphorylate the adaptor Pag1, which recruits Csk to negatively
regulate SFK activity. This set of interactions has been predicted
to lead to oscillations in BCR signaling (38).

Other positive feedback loops are involved in regulating lipid
metabolism. PI3K generates PIP3, which recruits Gab2. Gab2
can in turn recruit additional PI3K. An additional positive feed-
back loop regulates Inpp5d, because it is capable of binding its
own product. Inpp5d is also involved in an incoherent feed-
forward loop, meaning a process in which two parallel mechanisms
have opposite influences on an output. Here, the output is PIP3.
Inpp5d is recruited to FcεRI and dephosphorylates PIP3. Inco-
herence arises because FcεRI contributes to activation of PI3K,
which generates PIP3. In this way, opposing influences are exerted
on the abundance of PIP3 upon stimulation of FcεRI signaling.
Such circuitry has been hypothesized to be involved in adapta-
tion, the capacity of a system to respond to an input and then
reset itself to a pre-stimulated state (71). Thus, PIP3 level may
be raised and then lowered after a period of FcεRI stimula-
tion, with Inpp5d-mediated positive feedback reinforcing negative
regulation over time.

Finally, we identified a pair of coherent feed-forward loops
stemming from the adaptor Lat. In a coherent feed-forward loop,
two processes exert the same influence (either positive or nega-
tive) on an output. In each of the feed-forward loops of interest
here, both processes in the network motif have a positive influence

on Plcg1 activity. In the first feed-forward loop, Lat recruits Plcg1
via one of its phosphotyrosines. Other Lat phosphotyrosines are
involved in assembly of a signaling complex that ultimately recruits
PI3K. The product of PI3K,PIP3, binds the kinase Btk,which phos-
phorylates Plcg1 at an activating site. In the second feed-forward
loop, Lat contributes to Plcg1 recruitment through direct binding
as well as through recruitment of another adaptor, Lcp2. What
function could be achieved by these (overlapping) feed-forward
loops? In transcriptional regulatory networks, it has been found
that feed-forward loops can act as sign-sensitive delay elements,
meaning that they enable rapid responses to changes in an input
in one direction, and slow responses to changes in the input in the
opposite direction (72, 73). Thus, the feed-forward loops initiated
by Lat may influence the timing of Plcg1 activation and deactiva-
tion after increases or decreases in, for example, upstream receptor
phosphorylation.

It is worth noting that Plcg1 and PI3K act on the same substrate,
PIP2. Thus, although PI3K can positively influence Plcg1, these
two enzymes also compete with one another and could together
deplete available PIP2, assuming both access the same lipid pool. In
this way, the feed-forward loop may be self-limiting. For example,
if Plcg1 causes rapid conversion of PIP2 to IP3, less PIP2 would
be available to PI3K and as a result, less PIP3 would be gener-
ated and the impact of the feed-forward loop would be reduced.
The strength of the feed-forward loop would also be influenced
by the rate of production of PIP2 by specific lipid kinases and
phosphatases. A caveat is that Plcg1 and PI3K may act on spa-
tially distinct lipid pools, which PIP2 has been found to exist in
(74). These factors are not immediately evident from examination
of isolated circuitry. This example highlights the importance of
considering broader context and physical parameters (e.g., con-
centrations and binding affinities) in assessment of network motif
functionality.

SENSITIVITY OF PHOSPHOLIPID METABOLISM TO PROTEIN TYROSINE
KINASE ACTIVATION
We next used our rule library to develop models for investiga-
tion of signaling dynamics. We focused on the adaptor protein
Lat, which is known for its role as a signaling hub in both T
cells and mast cells (44). This role arises in large part from its
capacity to recruit multiple adaptors and enzymes that regulate
lipid metabolism and production of second messengers. Most of
Lat’s interactions depend on prior Lat phosphorylation, which is
catalyzed primarily by Syk. However, studies of FcεRI signaling
induced by structurally defined antigens have revealed that not all
“downstream” events are equally dependent on Lat phosphoryla-
tion. Specifically,a panel of rigid antigens,composed of haptenated
DNA sequences and differing in the distance between DNP hapten
groups, was evaluated for the ability to induce phosphorylation of
signaling proteins, Ca2+ mobilization, and degranulation. It was
found that phosphorylation of FcεRI and Lat, as well as store-
operated Ca2+ entry and degranulation, were strongly dependent
on hapten spacing, with the shortest spacing examined associated
with the strongest responses. In contrast, it was also found that
release of Ca2+ from intracellular stores did not show as strong a
dependence on the distance between hapten sites (19). Given that
Ca2+ release is thought to occur as a result of activities of proteins
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FIGURE 4 | Motifs in the FcεRI signaling network. Positive feedbacks
include interactions between FcεRI and Lyn and Fyn, because Lyn and Fyn
catalyze phosphorylation of additional binding sites for these kinases. Lyn,
Fyn, and Syk are subject to trans autophosphorylation at activating sites.
Inpp5d binds its own product. Gab2 recruits PI3K, which generates PIP3,

which can recruit additional Gab2. Negative feedback includes inhibition of
Lyn and Fyn by Csk. Incoherent feed-forward includes FcεRI stimulation
leading to activation of both PI3K and Inpp5d, which exert opposing
influences on PIP3 level. Coherent feed-forwards include recruitment and
activation of Plcg1, and recruitment of Plcg1 through two pathways.

FIGURE 5 | Simulation of a model of the feed-forward loop connecting Lat to IP3 production. Different color lines indicate different relative levels of Syk
activity. In these simulations, Syk activity was set at the indicated level and held constant.
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FIGURE 6 | Steady-state dose–response curves, which were found by
simulation of the feed-forward loop connecting Lat to IP3 production. The
differences in phosphorylation level between the two phosphorylation sites in

Lat (top panels) results from different affinities of the binding partners that
interact with each site. Active Plcg1 is taken to be Plcg1 that is both recruited
to Lat and phosphorylated, and active Btk is taken to be Btk recruited to PIP3.

that depend on Lat, how can this apparent uncoupling between
Lat phosphorylation and Ca2+ mobilization be explained?

We hypothesize that compensatory mechanisms mediated by
Fyn and Gab2 (58) are involved in this phenomenon. Gab2 can be
phosphorylated by Fyn, and can then recruit PI3K. As discussed
above, production of PIP3 by PI3K contributes to activation of
Plcg1. A product of Plcg1 is IP3, which induces release of Ca2+

from intracellular stores. Thus, if Gab2 recruitment and activa-
tion is robust to differences in Lat phosphorylation level, then
Gab2 may open an avenue by which Ca2+ mobilization could
escape control of Lat. We used our rule library to build models
to determine if Gab2 could potentially enable Ca2+ mobilization
when Lat phosphorylation is diminished.

We first considered a model in which Syk and Fyn were indepen-
dent inputs. Our initial model (File S2 in Supplementary Material)

essentially consists of the first coherent feed-forward loop shown
in Figure 4: lat recruits Plcg1, as well as PI3K through Gab2 and
Grb2. Btk is recruited to PIP3 and activates Plcg1 through phos-
phorylation. Fyn participates by phosphorylating Gab2. To model
the differences between antigens observed to induce the most and
least Lat phosphorylation, we considered different levels of active
Syk consistent with the approximately fourfold difference in Lat
phosphorylation observed experimentally (19). The level of active
Fyn was kept constant. Simulations of this model revealed that dif-
ferences in Lat phosphorylation level were maintained or amplified
in downstream events. According to the model, a decrease in Lat
phosphorylation (arising from lowered Syk activity) causes at least
proportionate decreases in the levels of activated Plcg1, activated
Btk, Lat-associated PI3K, PIP3, and IP3 (Figure 5). We also consid-
ered a scenario in which activity of Syk and Fyn are both controlled
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by the magnitude of an input signal, which may be a more realis-
tic scenario because both kinases are recruited to phosphorylated
receptors. We varied the strength of this signal and evaluated the
resulting steady-state levels of outputs (Figure 6). Consistent with
results from the first scenario, decreased signal strength led to
decreased Lat phosphorylation, and was accompanied by even
steeper decreases in activation of other signaling molecules. Thus,
the interactions included in this model are insufficient to explain
the experimental observation of Ca2+ mobilization in the absence
of strong Lat phosphorylation.

In an extension of the initial model (File S3 in Supplementary
Material), we incorporated additional interactions from the rule
library, those responsible for the positive feedback involving Gab2
interaction with PIP3 (see Figure 4). We reasoned that, with the
addition of these interactions, once PIP3 production is initiated,
PIP3 production may become self-sustaining, because PIP3 is able
to recruit Gab2 to the plasma membrane, which in turn is able to
recruit PI3K. Simulated time courses with the same level of active
Fyn and different levels of active Syk, as in Figure 5, are shown
in Figure 7. These results indicate that certain signaling readouts
downstream of Lat are buffered against reduced Lat phosphoryla-
tion. For example, there is less than a fourfold difference in peak
IP3 levels between the conditions of high (black line) and interme-
diate (magenta line) Lat phosphorylation. In contrast, the model
without Gab2-mediated positive feedback predicted a greater than
100-fold difference.

To further investigate the role of positive feedback, we mod-
ulated an input signal controlling both Fyn and Syk activity, as
in Figure 6. Steady-state simulation results from this model are
shown in Figure 8, which differ from those obtained with the first
model. First, the total numbers of signaling molecules in activated
forms are greater than for the case without feedback, as long as
the signal strength is above a certain level. Second, within certain
input ranges, the model shows bistability, i.e., existence of two
stable steady states, as indicated by signal strength values that cor-
respond to more than one steady-state output value. Bistability

has also been characterized in TCR signaling (75, 76) and BCR
signaling (38, 77). Third, we found that certain signaling readouts
downstream of Lat are now buffered against reduced Lat phospho-
rylation (Figure 7), decreasing less sharply when signal is reduced.
Together, these results suggest that Gab2-mediated positive feed-
back may enable committed, all-or-none decisions that lead to
high levels of IP3 as long as Lat phosphorylation is above a thresh-
old. When input level falls below this threshold, positive feedback is
unable to enhance IP3 production (Figure 7). Thus, some amount
of PIP3 must be generated through Lat-dependent mechanisms
before the Fyn/Gab2 pathway can contribute to production of IP3.

We also considered how positive feedback affects the dynam-
ics of signaling. We calculated the rise time for IP3 at different
input levels as predicted by the models with and without posi-
tive feedback. We found that positive feedback caused IP3 level to
reach its steady state more slowly (Figure 9A). Rise time for the
model with positive feedback peaked in the bistable region, where
the system transitions from a low steady state to a higher steady
state (Figure 9B). The slower rise in IP3 level qualitatively mimics
the experimentally observed dynamics of Ca2+ release from stores
caused by antigens that induce low levels of Lat phosphorylation
(19). These same antigens induce minimal store-operated calcium
entry (SOCE) and minimal degranulation, which suggests that
SOCE may be sensitive to the kinetics of IP3 production.

There are several experimental tests that could be pursued to
evaluate the role of Gab2-mediated positive feedback. One pre-
dicted effect of the feedback loop is bistability of several signaling
readouts (Figure 8), including PIP3. Testing for bistability usually
benefits from single-cell measurements, because cell-to-cell vari-
ability may result in different cells having different bifurcation
points. At the single-cell level, PIP3 production can be moni-
tored using PH domain constructs (78). When the strength of an
input signal, such as ligand-induced receptor aggregation, crosses
a threshold level, the quantity of PIP3 is expected to increase
dramatically in a switch-like manner. Another characteristic aris-
ing from bistability is hysteresis, meaning history dependence. As

FIGURE 7 | Simulation of a model of the feed-forward loop connecting Lat to IP3 production with consideration of a Gab2-mediated positive feedback
loop. Different color lines indicate different relative levels of Syk activity.
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FIGURE 8 | Steady-state dose–response curves, which were found by simulation of the feed-forward loop connecting Lat to IP3 production when
Gab2-mediated positive feedback is considered. Each plot is a bifurcation diagram; the bifurcation parameter is signal strength, which governs the rate of
production of active Syk and Fyn. Only stable steady states are shown. As can be seen, the model predicts the possibility of bistability.

signal strength is reduced from a high level [e.g., by breaking up
receptor aggregates with a monovalent hapten (34)], PIP3 level is
expected to switch back to a low state. However, this switch is pre-
dicted to occur at a lower input level than that required to induce a
transition from low signaling to high signaling. Controlling input
level would require an understanding of how ligand dose relates
to receptor aggregation, which can be obtained with a model for
ligand–receptor interactions (79).

A second approach would involve disruption of the Gab2 feed-
back loop, which would be expected to increase sensitivity to Lat
phosphorylation. Mutation of the Gab2 PH domain, which binds
PIP3 and is therefore a key component of the feedback, would
be expected to inhibit Ca2+ mobilization. However, such manip-
ulation of endogenous Gab2 would be technically challenging,

making this strategy potentially difficult to implement. An alter-
native approach would be to knock down either Gab2 or Fyn,
which would be predicted to similarly inhibit Ca2+ mobilization.

CONCLUSION
As a step toward systems-level understanding of FcεRI signal-
ing, we have synthesized information about a relatively large
number of interactions and proteins into a formalized interac-
tion library. This library consists of executable rules that can
be used to extend existing models and to build new models.
The rules are annotated with information from the primary lit-
erature, thereby facilitating reuse of information. The rules are
also visualized to illustrate the scope and detail of the library’s
contents. Analysis of the library reveals multiple feedback and
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FIGURE 9 | Effect of positive feedback on signaling dynamics. (A) Rise
time for IP3 synthesis was calculated as the time needed to reach 95% of
the final steady-state level. Rise times were calculated for different levels of
input, or signal strength. Rise times for the model with positive feedback
were divided by rise times for the model without positive feedback and
plotted against corresponding input level. All indicated rise time ratios are
greater than one, meaning that the model with positive feedback takes
more time to reach its final steady state. (B) Time courses for IP3

production in a narrow range of input levels surrounding the peak shown in
(A). The input level corresponding to each curve is indicated with the color
bar at the right.

feed-forward loops in FcεRI signaling, the behavior of which can
be investigated quantitatively through simulation and comple-
mentary quantitative experiments. We used the library to model
events involved in phosphoinositide metabolism at different levels
of Syk activity, and found that a Gab2-mediated positive feedback
can compensate for reduced Lat phosphorylation, which provides
a potential explanation for how antigens that induce dramatically
different levels of Lat phosphorylation can induce similar Ca2+

fluxes (19).
We anticipate that the approach presented here will have several

potential applications in linking computational and experimental

investigations of cellular information processing. First, a library
of rules could be used to build a model of broad scope and site-
specific detail for use in analysis of multiplexed, high-resolution
data, such as proteomic measurements of site-specific post-
translational modifications (80). Currently, such data are often
analyzed using clustering, enrichment analysis, and other tech-
niques that reveal trends in dynamics and functions of detected
proteins (81), but that do not necessarily provide a concrete
picture of the mechanisms at work. Modeling will enable us
to better leverage information about mechanisms and physical
parameters, complementing current analysis techniques. A com-
bination of modeling and quantitative high-throughput experi-
mentation could, for example, be used to characterize the dis-
tribution of signaling complexes that can be nucleated by Lat.
Binding partners of Lat have shared binding sites and a range
of affinities (49). To understand how binding of these proteins
is balanced, it would be necessary to measure binding affinities
of SH2 domains to each phosphosite (82) and to quantify pro-
tein copy numbers (83). A model could then be used to integrate
such data and determine the expected distribution of signaling
complexes.

Second, rule libraries could facilitate the extension of models
by increments. The benefit of such an approach is that a model
of an idealized network motif (71, 84) could be extended piece by
piece to form a more complete representation of the motif ’s con-
text. Studies of such models could reveal how well the predicted
behavior of an isolated motif is maintained when additional inter-
actions are considered, and what complicating factors may need to
be taken into account in experimental assessments of motif func-
tion or in synthetic biology efforts aimed at engineering regulatory
systems on the basis of network motif design principles.

Finally, rule libraries may help address problems in knowledge
engineering, i.e., the task of gathering, organizing, and interpreting
large quantities of information. Rule-based models have already
been annotated using interactive wikis (85, 86), which could open
the door to community-based model development and curation,
making it easier to assemble and assess data for model building.
Furthermore, a widely used approach in knowledge engineering
is natural language processing (NLP), the automated derivation
of information from text. A major bioinformatics goal of NLP is
to extract networks and quantitative models from the primary
biomedical literature (87). A limiting factor in this task is the
availability of “gold standard” networks against which to compare
an automatically constructed network or model, which is nec-
essary to assess the performance of network/model construction
algorithms. For many biological systems, reliable network repre-
sentations and models are non-existent. Furthermore, even when
a reliable network is available, it may be in a format (e.g., ordinary
differential equations) that does not map to underlying interac-
tions in a clear manner. This problem is addressed by a rule library,
because rules not only serve as the basis for simulations but also
provide precise, human- and machine-readable representations
of biomolecular interactions. NLP could aid in library construc-
tion through automatic extraction of rules from the literature.
As information about cell signaling systems continues to expand,
we anticipate that formalization and synthesis of knowledge will
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become increasingly important for informing hypotheses, making
quantitative predictions, and elucidating systems-level properties
of cellular regulatory systems.
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