

Bio-efficacy of medicinal plants used for the management of diabetes mellitus in Gabon: An ethnopharmacological approach

Olga Pauline Tjeck, Alain Souza, Patrick Mickala, Alexis Nicaise Lepengue, Bertrand M'Batchi

ABSTRACT

Department of Biology, Faculty of Sciences, University of Sciences and Techniques of Masuku, Franceville, Gabon

Address for correspondence:

Alain Souza, Department of Biology, Faculty of Sciences, University of Sciences and Techniques of Masuku, Franceville, Gabon. E-mail: souzapg@yahoo.fr

Received: December 13, 2016 **Accepted:** March 21, 2017 **Published:** April 17, 2017 **Background/Aim:** People suffering of diabetes increased significantly worldwide. Population, in Sub-Saharan Africa and mainly in Gabon, rely on medicinal plants to manage diabetes, as well in rural as in urban areas. This study aimed to survey a wide range of Gabonese plants for their antidiabetic activity. **Materials and Methods:** This study focused on the identification of medicinal plants used in the local treatment of diabetes mellitus. Ethnobotanical investigations were carried out in rural and urban areas of three provinces of Gabon using a semi-structured interview. **Results:** About 50 plant species belonging to 31 families and 50 genera were recorded, a majority of which have been documented previously to have medicinal properties. Most have documented antidiabetic properties with characterized therapeutic chemical compounds. Of the plant parts used for treatment, stem barks were employed most frequently (50%), followed by leaves (26%); the remaining 24% comprised roots, fibers, fruit, bulbs, flowers, rhizom, skin, and stem. Regarding the mode of preparation, decoction was the most widely used (58%), followed by maceration (18%) and infusion (14%). Almost all the plant products were administered orally (98%). **Conclusions:** Taken in concert, this study highlights the possibility of exploiting traditional knowledge of specific medicinal plants for the inexpensive treatment and management of diabetes.

KEY WORDS: Medical plants, Bio-efficacy, diabetes mellitus, ethnopharmacology, Gabon

INTRODUCTION

Diabetes mellitus is a metabolic disorder characterized by disruption of carbohydrate, fat, and protein metabolism. The disorder is associated with severe complications, including retinopathy, microangiopathy, and peripheral neuropathy [1]. Diabetes causes major economic losses worldwide and impedes country development [2,3].

The number of persons affected by diabetes is expected to reach 438.4 million worldwide in 2030 [4]. Only a fraction (49.3%) of the population in Africa has been tested for the disease [5] but, in sub-Saharan Africa alone, an estimated 10.4 million people lived with diabetes in 2007 [6]. In the central African country of Gabon, which has a population of ~1.7 million people [7], 10.71% of the population has been diagnosed with this disease [8]. Since, pharmaceutical products used for the management of diabetes are expensive for rural populations and may induce serious side effects [9], medicinal plants are used predominately to treat this disease. According to George *et al.* [10], medicinal plants contain biologically active compounds with diverse therapeutic applications. For example, saponins and alkaloids in *Alstonia boonei* De Wild. have a diuretic effect and are utilized in the treatment of urinary edema and hypertension [11]. The fungicidal action of saponins in (*Piptadeniastrum africanum* Hoof. f.) Brenan provides another example [12] used in traditional medicine. In Gabon, 78.2% of the species of plants in forests are used medicinally by pygmies [13], which exemplifies this country's botanical medicinal heritage. It is important to improve understanding of plants used by local people in the treatment of diabetes in Gabon and which may have beneficial applications for the world at large. The aim of this study is to survey a wide range of Gabonese plants for their antidiabetic activity. Studies were performed in villages and towns across three provinces in Gabon that represent different types of rainforest.

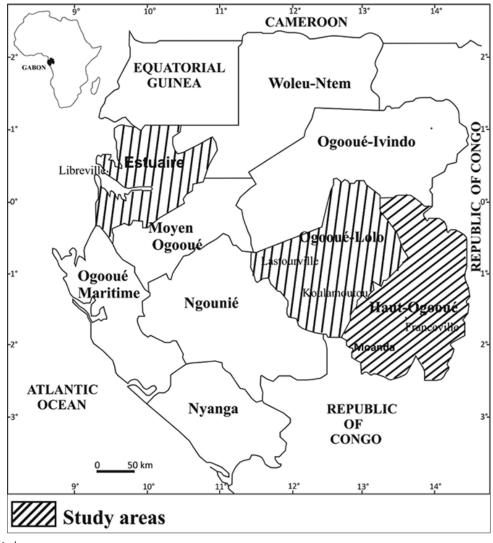
MATERIALS AND METHODS

Study Area

Gabon is a small francophone country located in Central Africa bordering the Atlantic Ocean at the Equator between the Republic of the Congo and Equatorial Guinea. The climate is always hot and humid. Gabon houses some of Africa's most biodiverse rainforests, which comprise approximately 80% of the country and stretch to the coast. Research in the Northwest and South Central/East of Gabon was done in the following three provinces: Estuaire (N.W. coastal region), Ogooué-Lolo (southcentral forest region), and Haut-Ogooué (southeast mosaic of forest-savanna) [Figure 1]. The sampling was conducted in both rural areas and urban regions, including is even towns and six departments of the three provinces [Table 1].

Investigation Method

The ethnobotanical survey was conducted between October 2014 and March 2015, which spans periods of sparse but heavy rainfall (October-November), a short dry season (December-January), and part of the long wet season with heavy rainfall (February-April). The investigation was carried out using a semi-structured questionnaire in French or in the native language of the informant. Interviewees included diabetic patients, traditional health practitioners, herbalists, and other knowledgeable people. The recorded parameters were locality, sociodemographic data (age and gender), vernacular or local


plant names, plant parts used, method of preparation, method of administration, quantity consumed, and type of material, samples collected for botanical identification were dried, preserved and identified by an expert botanist, ISSEMBE Yves, at National Herbarium of Libreville, Gabon. The Latino names of some plant species have been updated using the plant list database [14].

Data Analysis

The frequency of citation (FC) of a plant species was evaluated using the following formula: FC = (Number of times a particular species was mentioned/Total number of times that all species were mentioned) \times 100 [15,16].

Table 1: Demographic data of key informan	Table 1:	Demographic	data of	kev	informant
---	----------	-------------	---------	-----	-----------

Informants group	Number of persons (urban/rural)	Age (years)	Professional experience (years)
Diabetic patients	8/6	50-65	-
Traditional healers	0/29	27-69	10-30
Traditional health practitioners	10/0	40-65	10-30
Herbalists	15/0	25-45	3-10

RESULTS

Demographic Characteristics

A total of 80 people were investigated, of which 68 informants had a rich knowledge of herbal medicine [Table 2]. The balance did not report knowledge of medicinal plants and was excluded from further study. Of those that reported informations; 14 were patients with physician-diagnosed a diabetes mellitus or people were relatives of people suffering from diabetes, 29 were traditional healers, 10 were traditional health practitioners, and 15 were herbalists. More than half (65%) of the interviewees were male, and the average age of both sexes was approximatively 53 years with informants ranging in age until 70 years. More than half of all respondents (51.5%) were from rural areas, traditional healers who were the most numerous informants were mainly represented areas rural while herbalists and traditional health practitioners were only recorded that in urban areas.

Ethnobotanical Characteristics and Associated Knowledge

The species cited by respondents in this study were listed in alphabetical order by scientific name, local or vernacular name, family, genus, plants parts used, mode of preparation, mode of administration, and FC [Table 2]. 50 species belonging to 31 families and 50 genus were used for the treatment of diabetes. The Annonaceae was the most commonly represented of all families [Figure 2], with particular use of soursop Annona muricata L. Nine plant species were most cited by interviewers as a remedy for diabetes, of which Guibourtia tessmannii (Harms) J. Leonard (Caesalpinioideae) was the most frequent (7.14%) followed by A. boonei (Apocyanceae), Carica papaya L. (Caricaceae), Persea americana Mill. (Lauraceae), Allium sativum L. (Amaryllidaceae), A. muricata (Annonaceae), Ceiba pentandra (L.) Gaertn. (Malvaceae), Cocos nucifera L. (Arecaceae), Picralima nitida (Stapf) T. Durand and H. Durand (Apocynaceae) (4.29%). The others species were least cited, it is the case of Annickia chlorantha (Oliv.) Setten and Maas (Annonaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Eurypetalum tessmannii Harms (Caesalpinioideae), Lantana camara L. (Verbenaceae), Musa × paradisiaca L. (Musaceae), Psidium guajava L. (Myrtaceae), Vernonia amygdalina Delile (Asteraceae), Xylopia aethiopica (Dunal) A. Rich. (Annonaceae), and the gymnosperm Gnetum africanum Welw. (Gnetaceae) [Table 2]. Bibliographic research showed that about 94% of plants were well-documented in literature [Table 3]. All 50 plants are used to prepare medicinal drugs individually or in various combinations.

The result shows that the most frequently used plant parts were stem barks (50%) followed by leaves (26%) and other plant parts (24%), including roots (6%), fibers (4%), bulbs, fruit, flower, rhizom, skin, and stem (2% each) [Figure 3]. Most components were prepared by decoction (58%). Maceration (18%) and infusion (14%) were other modes of preparation and use, as was chewing (4%), burning and cooking (2%) [Figure 4]. Three modes of administration were used. Herbal products were primarily administered orally (98% of cases), mostly in liquid form (88%). Administration by mastication was also recorded (10% of cases) as was treatment by vapor bath (2% of cases) [Figure 5].

DISCUSSION

The results of demographic data showed that most knowledgeable interviewees were male (65%) of average age >50 years. A previous study found that women (69%) frequently used more medicinal plants than men (31%) [145]. Uniyal *et al.* [146] also found that men knew comparatively more about plant-based medicines than females because women were occupied by household working pressure. In Gabon, women tender house gardens and are more ready than men to bring out the first health care.

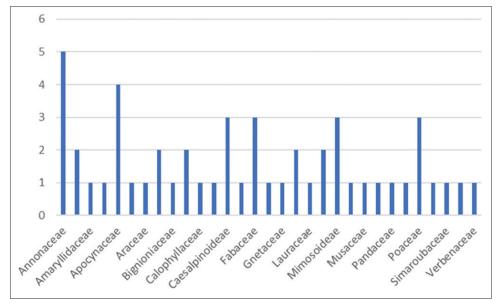


Figure 2: Repartition of plants families

Table 2: Data of medicinal	plants traditionally	y used for the management diabetes mellitus

Botanicals names	Local names/ venacular	Families	Genus	Parts used	Mode of preparation	Mode of administration	Numbers of citations	Frequencies of citations
Acacia auriculiformis Benth.	Akasmani	Fabaceae	Acacia	Leaves	Infusion	Steam bath	1	1,428,571
Allium sativum L.	Garlic	Amaryllidaceae		Bulb	Decoction	Drink	3	4,285,714
<i>Alstonia boonei</i> De Wild.	Emien	Apocynaceae	Alstonia	Stem barks	Maceration	Drink	3	4,285,714
Anchomanes difformis (Blume) Engl.	Nkwe-ndôjgu (Galoa)	Araceae	Anchomanes	Rhizom	Maceration	Drink	1	1,428,571
Annickia chlorantha (Oliv.) Setten & Maas	Mwamba jaune	Annonaceae	Annickia	Stem barks	Decoction	Drink	1	1,428,571
Annona muricata L.	Soursop	Annonaceae	Annona	Stem barks	Decoction	Drink	3	4,285,714
Anonidium mannii (Oliv.) Engl. and Diels		Annonaceae	Anonidium	Stem barks		Drink	1	1,428,571
Antrocaryon klaineanum Pierre	Onzabili	Anacardiaceae	Antrocaryon	Stem barks	Infusion	Drink	1	1,428,571
<i>Aucoumea klaineana</i> Pierre	Okoumé	Burseraceae	Aucoumea	Stem barks	Maceration	Drink	1	1,428,571
Carica papaya L.	Рарауа	Caricaceae	Carica	Root	Decoction	Drink	3	4,285,714
Ceiba pentandra (L.) Gaertn.	Fromage	Malvaceae	Ceiba	Stem barks	Decoction	Drink	3	4,285,714
<i>Celtis tessmannii</i> Rendle	Diania	Cannabaceae	Celtis	Stem barks	Decoction	Drink	1	1,428,571
<i>Cleistopholis glauca</i> Pierre ex Engl. and Diels	Unknown	Annonaceae	Cleistopholis	Stem barks	Decoction	Drink	1	1,428,571
Cocos nucifera L.	Coconut	Aracaceae	Cocos	Fiber	Decoction	Drink	3	4,285,714
<i>Combretum micranthum</i> G. Don	Kinkêliba	Combretaceae	Combretum	Leaves	Infusion	Drink	1	1,428,571
Copaifera mildbraedii Harms	Murei (Punu)	Caesalpinioideae	Copaifera	Stem barks	Decoction	Drink	1	1,428,571
Cylicodiscus gabunensis Harms	Okan	Mimosoideae	Cylicodiscus	Stem barks	Decoction	Drink	1	1,428,571
<i>Cymbopogon citratus</i> (DC.) Stapf	Lemongrass	Poaceae	Cymbopogon	Leaves	Infusion	Drink	1	1,428,571
<i>Duboscia macrocarpa</i> Bocq.	Akak	Malvaceae	Duboscia	Stem barks	Decoction	Drink	1	1,428,571
<i>Entada gigas</i> (L.) Fawcett and Rendle	Cœur de mer	Mimosoideae	Entada	Stem barks	Decoction	Drink	1	1,428,571
<i>Eurypetalum tessmannii</i> Harms	Anzilim	Caesalpinioideae	Eurypetalum	Stem barks	Decoction	Drink	1	1,428,571
<i>Gnetum africanum</i> Welw.	Nkumu	Gnetaceae	Gnetum	Leaves	Cooking	Eat	1	1,428,571
<i>Guibourtia tessmannii</i> (Harms) J. Leonard	kévazigo	Caesalpinioideae	Guibuortia	Stem barks	Decoction	Drink	5	7,142,857
<i>Harungana madagascariensis</i> Lam. ex Poir.	Atsui	Hyperaceae	Harungana	Leaves	Chewing	Eat	1	1,428,571
Lantana camara L.	Lantanier	Verbenaceae	Lantana	Leaves	Infusion	Drink	1	1,428,571
<i>Mammea africana</i> Sabine	Oboto	Calophyllaceae	Mammea	Stem barks	Decoction	Drink	1	1,428,571
<i>Microdesmis puberula</i> Hook.f. ex Planch.	Inko	Pandaceae	Microdesmis	Stem barks	Infusion	Drink	1	1,428,571
<i>Milicia excelsa</i> (Welw.) C. C. Berg	Obiga (Akélé)	Moraceae	Milicia	Stem barks	Decoction	Drink	1	1,428,571
Mimosa pudica L.	Bodji (Punu)	Fabaceae	Mimosa	Leaves	Decoction	Drink	1	1,428,571
Musa $ imes$ paradisiaca L.	Plantain	Musaceae	Musa	Skin	Burning	Eat	1	1,428,571
<i>Musanga cecropioides</i> R.Br. ex Tedlie	Parassolier	Urticaceae	Musanga	Leaves	Decoction	Drink	1	1,428,571
<i>Nauclea diderrichii</i> (De Wild.) Merr.	Bilinga	Rubiaceae	Nauclea	Stem barks	Decoction	Drink	1	1,428,571
<i>Newbouldia laevis</i> (P. Beauv.) Seem.	Ossomedzo (Ndoumu)	Bignioniaceae	Newbouldia	Stem barks	Decoction	Drink	1	1,428,571
<i>Pennisetum purpureum</i> Schumach.	Mikuku (bakota)	Poaceae	Pennisetum	Stem	Maceration	Drink	1	1,428,571
Peperomia pellucida (L.) Kunth	Pepper -elder	Piperaceae	Peperomia	Leaves	Infusion	Drink	1	1,428,571
Persea americana Mill.	Avocado	Lauraceae	Persea	Leaves	Maceration	Drink	3	4,285,714
<i>Petroselinum crispum</i> (Mill.) Fuss	Parsley	Apiaceae	Petroselinum	Leaves	Chewing	Eat	1	1,428,571
<i>Phaseolus vulgaris</i> L. <i>Picralima nitida</i> (Stapf) T. Durand and H. Durand	Bean Ebam	Fabaceae Apocynaceae	Phaseolus Picralima	Fruit Stem barks	Decoction Maceration	Drink Drink	1 3	1,428,571 4,285,714
Piptadeniastrum africanum (Hook.f.) Brenan	Dabéma	Mimosoideae	Piptadeniastrum	Stem barks	Decoction	Drink	1	1,428,571
Pseudospondias longifolia Engl.	Ofoss	Anacardiaceae	Pseudospondias	Stem barks	Decoction	Drink	1	1,428,571
Psidium guajava L.	Guava	Myrtaceae	Psidium	Leaves	Decoction	Drink	1	1,428,571

Table 2: (Continued)

Botanicals names	Local names/ venacular	Families	Genus	Parts used	Mode of preparation	Mode of administration	Numbers of citations	Frequencies of citations
Santiria trimera (Oliv.) Aubrév.	Ebo	Burseraceae	Santiria	Root	Decoction	Drink	1	1,428,571
<i>Tabernanthe iboga</i> Baill.	Iboga	Apocynaceae	Tabernanthe	Stem barks	Maceration	Drink	1	1,428,571
<i>Tithonia diversifolia</i> (Hemsl.) A. Gray	Daisy	Asteraceae	Tithonia	Flowers	Decoction	Drink	1	1,428,571
Vernonia amygdalina Delile	Ndolé	Asteraceae	Vernonia	Leaves	Chewing	Eat	1	1,428,571
<i>Voacanga africana</i> Stapf ex Scott-Elliot	Ondou or Ontueles (Téké)	Apocynaceae	Voacanga	Root	Maceration	Drink	1	1,428,571
<i>Xylopia aethiopica</i> (Dunal) A. Rich.	Mugana (Punu)	Annonaceae	Xylopia	Fruit	Decoction	Drink	1	1,428,571
Zea mays L.	Maize	Poaceae	Zea	Fiber	Decoction	Drink	1	1,428,571

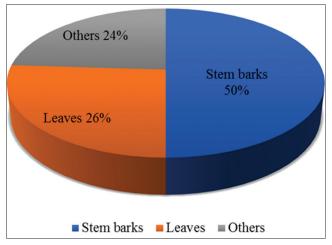


Figure 3: Plant parts cited for treating diabetes in the same areas of Gabon

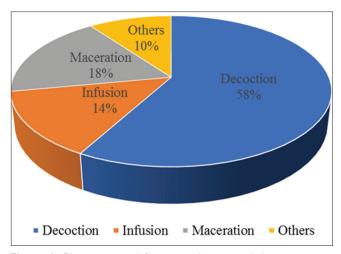


Figure 4: Pharmaceutical forms used to treat diabetes in some Gabonese regions

Respondents were dominated by aged people (>50 years). This experience is consistent with the study of Etuk et al. [147], in which showed the estimated age range of respondents was 40-70 years. Others have documented a profound and growing knowledge gap regarding medicinal plants between old and young people [148]. According to Unival et al. [146], the younger generations are ignorant of the vast medicinal resources

210

available in their surroundings and are occupied in the search for money through market resources. Transmission of traditional medicinal knowledge from one generation to the next is thereby under threat [13,16].

It was also found that plant-based medicinal knowledge was more prevalent among people living in rural rather than urban area as described earlier by Vashistha [149]. Indeed, in a rural area, endogenous knowledges being more preserved [150], people resort, culturally, to the use of traditional medicine and herbal drugs are socioeconomically acceptable [151,152].

50 medicinal plants were exploited by both rural and urban people for the treatment of diabetes. Annonaceae was the most represented family. Members of the Annonaceae contain natural products with varied therapeutic properties, such as the anti flavonol taxifolin [153], which is known to possess antidiabetic, antitumor, and anti-inflammatory properties [154]. In addition, Annonaceae acetogenins are potent mitochondrial toxins with anticancer and anti-HIV activities [154]. However, excessive use of A. muricata has been associated with atypical parkinsonism on the island of Guadeloupe [155].

Among plant components used for medicinal purposes, stem barks were most often used followed by leaves in accord with the findings of other investigators [13,16,147]. Bark is easily collected and contains concentrated bioactive [58,60]. However, leaves which also accumulate pharmacologically active principles reportedly are often used to manage diabetes [15,156]. Whereas the collection of leaves does not induce plant damage, collection of bark, roots or the whole plant is destructive and may lead to species depletion [157]. Some respondents recognized and addressed this problem with a traditional ritual in which a coin was placed at the base of the tree and while the injured part was wiped with dead leaves. This practice reportedly was undertaken to facilitate a rapid regeneration of the excised part of the plant.

Herbal drugs were most commonly used as oral decoctions. This observed was in accordance with the work of Madingou et al., [68] who observed that healing plants are generally boiled in medicinal recipes and then taken orally by many healers in Gabon and also many other reports worldwide [158-160].

Evaluating the bio-efficacy of the medicinal plants recorded, it was observed that each plant was mentioned at least twice by

Table 3: Phytochemical and pharmacological properties of plan	Table 3: Ph	vtochemical	and	pharmaco	logical	properties	of	pla	nt
---	-------------	-------------	-----	----------	---------	------------	----	-----	----

Botanicals names	Biological properties	Phytochemicals compounds	References
Acacia auriculiformis	Antifilarial effect. Antioxidant	Triterpenoid saponins. Proacaciaside and acacia mini.	[17-20]
Benth.	activity	Tetrahydroxyflavanone, teracacidin, and trihydroxyflavanone, phenols, and tannins. Proanthocvanidins.	[17-20]
Allium sativum L.	Antioxidant activity. Antidiabetic and hypolipidaemic properties. Antihypertensive effect	Phenylpropanoids. Saponins, steroids, tannins, carbohydrates and cardiac glycosides. Propenyl cysteine and allyl cysteine	[21-24]
A <i>lstonia boonei</i> De Wild.	Diuretic activity. Hypoglycemic properties. Antioxidant	Saponins and indole alkaloids. Alkaloids, tannins, steroids, glycosides, flavonoids, and terpenoids. Triterpenes	[9,11,25,26]
A <i>nchomanes</i> difformis (Blume) Engl.	Antimicrobial activity. Anti-inflammation and anti-nociception activities	Cardiac glycosides, terpenoids, steroids, phlebotannins, and flavonoids.	[27,28]
A <i>nnickia</i> chlorantha (Oliv.) Setten and Maas	Antibacterial activity. Noteworthy biological activity	Phenolics, flavonoids, alkaloids, glycosides, saponins. Isoquinoline, acetogenins, and sesquiterpenes	[29,30]
Annona muricata L.	Hypoglycemic effects. Antineoplastic potential. Antioxidant and anticancer agent	5-(3-hydroxybutyl) furanone, chloranthalactone E, dimethyl-6-hydroxycoumarin, triazole nucleosides, L-tryptophan, L-phenylalanine. Tannins, cardiac glycosides, terpenoids, and reducing sugars. Alkaloids, saponins, anthraquinones, phenols and phytosterols	[10,31-33]
A <i>nonidium mannii</i> (Oliv.) Engl. and Diels	Antibacterial activities. Cytotoxic agent	Alkaloids, phenols, polyphenols, saponins, tannins, sterols and triterpenes	[34,35]
Antrocaryon klaineanum Pierre	Antioxidant activity. Antiplasmodial	Phenolic, total flavonoids, total tannins total proanthocyanidins, coumarins, anthracenosids, saponosids, and triterpenoids. Antrocarine A-F. Ergostane-type antrocarine E	[36-38]
A <i>ucoumea klaineana</i> Pierre	Antioxidant activity. Antimicrobial activity	Monoterpenoids	[39,40]
Carica papaya L.	Antimicrobial activity, Antihyperglycemic and hypolipidemic activities. Antihrombocytopenic activity. Useful antioxidant. Antifungal agent	Saponins, cardiac glycoside, anthraquinone, flavonoids, steriods, tannins, and triterpenoids. Phenolics, carpaine. Benzylglucosinolate. Benzyl isothiocyanate	[41-45]
<i>Ceiba pentandra</i> L. Gaertn.	Ayent Hypoglycemic and antihyperglycemic effects. Antioxidant activity	Phenolic, flavonoid, alkaloid and tannins	[46,47]
<i>Cleistopholis glauca</i> Pierre ex Engl. and Diels	Antibacterial activity	Cleistriosides-2. Patchoulenone, cyperene and germacrene D	[48,49]
Cocos nucifera L.	Cytoprotective and antihyperglycemic properties. Antimalarial activity	Phenolic compounds, flavonoids, resins, alkaloids, carbohydrate, proteins, and fibers. Tannins, saponins, glycosides, steroids and anthraquinones	[50,51]
<i>Combretum micranthum</i> G. Don	Antihyperglycaemic activities. Antibacterial agent	Gallic acid, rutin trihydrate, (+)-catechin and benzoic acid. Alkaloids, saponins, tannins, anthraquinones, cardiac glycosides, flavonoids, and steroids	[52-54]
<i>Cylicodiscus gabunensis</i> Harms	Antiplasmodial activity. Antimicrobial activity. Antimalarial activity	Alkaloids and terpenes. Leucoanthocyanins, saponins, tannins, polyphenols, coumarins, cardiac glycosides, reducing sugars, steroids, flavonoids, sterols and or triterpenes. Gallic acid, oligosaccharides	[55-57]
Cymbopogon citratus (DC.) Stapf	Anti-inflammatory and sedative. Hypoglycemic and hypolipidemic effects. Antibacterial activity. Anti-inflammatory activity	Citral and terpenes. Alkaloids, saponins, tannins, anthraquinones, steroids, phenols. Carlinoside, isoorientin, cynaroside, luteolin 7-0-neohesperidoside, kurilesin A and cassiaoccidentalin B	[58-61]
Duboscia macrocarpa Bocg.	Anti-initiatinitatory activity	Dubosane. Dubosciasides	[62,63]
	Used for diarrhea. Microbial infection	Alkaloids, phenols, and tannins	[64,65]
<i>Gnetum africanum</i> Welw.	Potential chemopreventive agents. Antimicrobial activity	Phenolic compounds, flavonoids, phytosterols, alkaloids, tannins, saponins, chlorophyll, and glycosides. β-caryophyllene, (E)-phytol and trimethyl-2-pentadecanone	[66,67]
Guibourtia tessmannii (Harms) J. Leonard	Hypotensive activity. Antioxidant activity. Hypoglycemic effect	Triterpenes, sterols, alkaloids, tannins, polyphenols, sugars and saponosides	[68-70]
Harungana madagascariensis Lam. ex Poir.	Anti-inflammatory, antioxidant and antidiabetic activities	Polyphenols, tannins, and triterpenes. Alkaloids, saponins, and flavonoids	[71-73]

Table 3: (Continued)

Botanicals names	Biological properties	Phytochemicals compounds	References
Lantana camara L.	Hypoglycemic and wound healing properties. Antihyperglycaemic agent. Antimicrobial and cytotoxic activities	Carbohydrates, flavonoids, phytosterols, saponins. β -caryophyllene, ar-curcumene/zingiberene, γ -curcumen-15-al/ epi- β -bisabolol, (E)-nerolidol, davanone, eugenol/alloaromadendrene, and carvone	[74-76]
<i>Mammea africana</i> Sabine	Cytotoxic and antimicrobial activities. Hypoglycemic effect. Hepatoprotective activity	4-phenylcoumarins, 4-n-propylcoumarins, one 4-n-pentylcoumarin, 1,5-dihydroxyxanthone and 1-methoxy-5-hydroxyxanthone	[77-79]
<i>Microdesmis puberula</i> Hook.f. ex Planch.	Analgesic and anti-stress agent	keayanidines A, B, C and keayanine A. Saponins, cardiac glycosides, deoxysugars, alkaloids and terpenes	[80-82]
	Wound healing and antibacterial effects. Used for the management of Type 2 diabetes	Tannins, alkaloids, flavonoids and saponins. Melicilamide A. 3,4-dimethoxybenzyl beta-D-xylopyranosyl -beta-D-glucopyranoside, lupeol acetate, ursolic acid, triacontyl (E)-ferulate, and 2-(3,5-dihydroxyphenyl) benzofuran-5,6-diol. Polyphenol, phenol, triterpenes and glycosides	[83-86]
Mimosa pudica L.	Antimicrobial activity. Hypolipidemic activity	C-glycosylflavones. Terpenoids, flavonoids, glycosides, alkaloids, quinines, phenols, tannins, saponins, and coumarins	[87-89]
Musa $ imes$ paradisiaca L.	Anthyperglycemic activity. Anthelmintic activity. Antioxidant activity. Hypoglycemic activity	Tannins, eugenol, tyramine. Serotonin, levarterenol, norepinephrine and dopamine. Alkaloids, glycosides, steroids, saponins, flavanoids and terpenoids/steroids	[90-93]
<i>Musanga cecropioides</i> R.Br. ex Tedlie	Antihypertensive. Antioxidant activity	Cecropic acid methyl ester	[94-96]
<i>Nauclea diderrichii</i> (De Wild.) Merr.	Antitrypanosomal effects, Genotoxic activity	Alkaloids, flavonoids, terpenes and glycosides. Quinovic acid glycosides	[97,98]
<i>Newbouldia laevis</i> (P. Beauv.) Seem.	Antimicrobial activity. Hepatoprotective action. Antihyperglycemic activity	Chrysoeriol, newbouldiaquinone; 2-acetylfuro-1,4-naphthoquinone, 2-hydroxy-3-methoxy-9,10-dioxo-9,10-dihydroanthracene-1-carbaldehyde, lapachol, beta-sitosterol-3-0-beta-D-glucopyranoside, oleanolic acid,	[99-101]
<i>Pennisetum purpureum</i> Schumach.	Antioxidant enzyme. Nutritional and antinutritional. Herbicidal	canthic acid, newbouldiamide and 2-(4-hydroxyphenyl)-ethyltrioctanoate Ascorbic acid, rutin, epicatechin, anthocyanins, p-coumaric acid, quercetin, and catechin. Alkaloids, cyanogenic glycosides, flavonoids,	[102-105]
<i>Peperomia pellucida</i> (L.) Kunth	activity Anticancer, antimicrobial, antioxidant properties. Antidiabetic, analgesic and anti-inflammatory activities	oxalates, phytales, saponins, and tannins Phytol, 2-Naphthalenol, decahydro, hexadecanoic acid, methyl ester and 9,12-octadecadienoic acid (Z, Z)-, methyl ester. Alkaloids, tannins, resins, steroids, phenols and carbohydrate. Flavonoids, glycosides, saponins	[106-108]
Persea americana Mill.	Hypoglycemic and hypocholesterolemic activities	Tannins, saponins, steroids/triterpenoids and flavonoids. Estragole, α -farnesene, β -caryophyllene, germacrene D, α -cubebene, and eugenol	[109-111]
Petroselinum crispum (Mill.) Fuss	Antioxidant and antibacterial activities. Anti-vibrio activity. Antidiabetic effect	Phenolics compounds. 1,3,8-p-menthatriene, β -phellandrene, apiol, myristicin, and terpinolene	[112-114]
Phaseolus vulgaris L.	Antihyperglycemic activity.	Alkaloids, flavonoids, proteins, tannins, terpenoids, saponins, quercetin, anthocyanin and catechin. Gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol	[115,116]
<i>Picralima nitida</i> (Stapf) T. Durand and H. Durand	Hypoglycemic activity. Antioxidant and antidiabetic activities	Flavonoids, terpenes, sterols, saponins, alkaloids and polyphenols	[117,118]
<i>Piptadeniastrum africanum</i> (Hook.f.) Brenan	Antifungal activity. Gastroprotective and ulcer healing effects	Alkaloids, saponins, coumarins, flavonoids, carbohydrates, phenolic compounds, and tannins. Piptadenine and piptadenamide	[12,119,120]
<i>Pseudospondias longifolia</i> Engl.	Antioxidant and antimicrobial properties	Total phenols, gallic acid, flavonoids, quercetin, tannins, tannic acid and proanthocyanidins procyanidin	[121]
Psidium guajava L.	Hypoglycemic and hypotensive properties. Antioxidant activity	Tannins, pentacyclic triterpenoids, guiajaverin, quercetin. Gallic acid, catechin, chlorogenic acid, caffeic acid, epicatechin, rutin, isoquercitrin, quercetin, kaempferol and luteolin, glycosylated campeferol, tocopherol, β-carotene and lycopene	[122,123]
<i>Quassia africana</i> (Baill.) Baill.	Antiamoebic activity. Antiviral activity. Larvicidal property	Tannins, alkaloids, saponins, steroids/terpens. Quassin and simalikalactone D	[124-126]
<i>Santiria trimera</i> (Oliv.) Aubrév.	Antimicrobial activity	Triterpenes. Alpha-pinene, beta-pinene. Alpha-humulene and beta-caryophyllene	[127-129]
Tabernanthe iboga Baill. Tithonia diversifolia (Hemsl.)	Insulinotropic effect Antiamoebic activity. Antidiabetic effect.	Ibogaine, tabernanthine, and voacangine Flavonoids, tannins, saponins, steroids and terpens. Tannins and saponins. Sugars, sesquiterpenes lactones and phenolics	[130,131] [124,132-134]
A. Gray <i>Vernonia amygdalina</i> Delile	Antimicrobial activity Antioxidant activity. Hypoglycemic and hypolipidemic agent	Flavonoids, terpenoids, saponins, tannins and reducing sugars, alkaloids, cardiac glycosides. Carbohydrates, sterols and balsams. Sesquiterpene lactone vernolide and vernodalol	[135-137]

Table 3: (Continued)

Botanicals names	Biological properties	Phytochemicals compounds	References
<i>Voacanga africana</i> Stapf ex Scott-Elliot	Antioxidant activity. Antimicrobial activity	Anthranoids, anthraquinone, cardiac glycosides, phenols, phlobatanins, starch and tannins. Ibogamine, voacamine, vobasine, voacangine, voacristine, 19-epi-voacristine and 19-epi-heyneanine	[124,138,139]
<i>Xylopia aethiopica</i> (Dunal) A. Rich.	Hypoglycemic effects. Antihyperglycemic and antioxidant potentials	Alkaloids and polyphenols	[140,141]
Zea mays L.	Preventive effect of the diabetic nephropathy. Antioxidant activity. Therapeutic and antioxidative agents	Anthocyanins and phenolics compounds. Flavonoids, saponins, tannins, phlobatannins, alkaloids, cardiac glycosides, and terpenoids	[142-144]

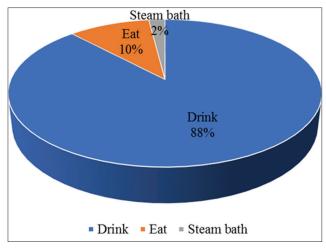


Figure 5: Mode of administration of recipes in the treatment of diabetes in some Gabonese regions

people from different regions for the management of diabetes. The literature also reports the use of some of these plants for diabetes treatment in others countries such as A. *boonei* has been studied in Nigeria [9]; *P. americana*, studied in Nigeria and Brazil [109,110]; *P. nitida* in Nigeria and Cameroon [117,118].

Moreover, the literature reports antidiabetic properties of many of these plants. 15 of them would have hypoglycemic, hypolipemia the case of *P. americana*, *P. guajava*, *C. citratus*, *C. pentandra*, *C. papaya*, *L. camara*, *A. muricata*, and *A. sativum* [22,109,110]. *C. pentandra* would have both antihyperglycemic and hypoglycemic effects [46]. *Guibourtia* would have antioxidant and hypoglycemic [69,70]. Since, the frequency of plant use citations by both traditional healers and literature is an indication of the pharmacological relevance of the plant and thus, of curative properties [156], one may argue the therapeutic properties of some of the investigated medicinal plants which were evidenced by their studied pharmacological properties.

CONCLUSION

The study highlights the drug discovery great potential of the Congo Basin Forest. Nowadays, the management of diabetes is not the only fact of modern medicine, many medicinal based plants recipes are proposed by healers worldwide and deserve to be valued and rationalize.

ACKNOWLEDGMENTS

The authors wish to thank all local population for their collaboration during the field investigations, who shared their knowledge on the use of medicinal plants with us. Without their contribution, this study would have been impossible. Authors also thank Mr. Oscar Metandou and Rolland Mitola who accompanied them in the field surveys. Special thanks to the botanists of the National Herbarium of Gabon (NHG), Mr. Thomas Nzabi, Mr. Yves Issembe, Mr. Raoul Niangadouma and Mr. Davy Ikabanga for their expertise in botanical identification of plants. We are grateful to Dr. Stephan Padzys, Jake Lowenstein, Professor Nicola Mary Anthony (University of New Orleans) and Professor and Senior Scientist Peter Spencer (Oregon Health and Science University) for their kind help and suggestions regarding the English translation.

REFERENCES

- Akhtar MS, Ali MR. Study of anti diabetic effect of a compound medicinal plant prescription in normal and diabetic rabbits. J Pak Med Assoc 1984;34:239-44.
- Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: A review. Pharm Lett 2010;2:369-87.
- Patel DK, Kumar R, Laloo D, Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac J Trop Dis 2012;2:239-50.
- Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet 2010;375:2254-66.
- Peer N, Kengne AP, Motala AA, Mbanya JC. Diabetes in the Africa Region: An update. Diabetes Res Clin Pract 2014;103:197-205.
- Diabetes Atlas. 3rd ed. IDF. Available from: https://www.idf.org/sites/ default/files/attachments/article_495_en.pdf. [Last accessed on 2016 Jun 25].
- Countrymeters, Gabon Population; 2017. Available from: http://www. countrymeters.info/fr/Gabon. [Last accessed on 2017 Mar 02].
- Atlas du Diabète de la FID. 6e édition; 2014. Available from: http:// www.idf.org/sites/default/files/Atlas-poster-2014_FR.pdf. [Last accessed on 2015 Feb 12].
- Akinloye OA, Oshilaja RT, Okelanfa OA, Akinloye DI, Idowu OM. Hypoglyceamic activity of *Alstonia boonei* stem bark extract in mice. Agric Biol J N Am 2013;4:1-5.
- George VC, Kumar DR, Rajkumar V, Suresh PK, Kumar RA. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of *Annona muricata* Linn. in normal and immortalized human cell lines. Asian Pac J Cancer Prev 2012;13:699-704.
- Adebayo MA, Adeboye JO, Ajaiyeoba EO. Preliminary phytochemical investigation and diuretic studies of *Alstonia boonei* stem bark in male wistar rats. J Nat Remedies 2004;4:179-82.
- Brusotti G, Tosi S, Tava A, Picco AM, Grisoli P, Cesari I, et al. Antimicrobial and phytochemical properties of stem bark extracts from *Piptadeniastrum africanum* (Hook.f.) brenan. Ind Crops Prod

Tjeck, et al.: Medicinal plants used for diabetes management

2013;43:612-6.

- Betti JL, Yongo OD, Mbomio DO, Iponga DM, Ngoye A. An ethnobotanical and floristical study of medicinal plants among the Baka Pygmies in the periphery of the Ipassa- biosphere reserve, Gabon. Eur J Med Plants 2013;3:174-205.
- 14. The Plant List. Version 1. 2013. Available from: http://www. theplantlist.org. [Last accessed on 2017 Feb 11].
- Ocvirk S, Kistler M, Khan S, Talukder SH, Hauner H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh - An ethnobotanical survey. J Ethnobiol Ethnomed 2013;9:43.
- Dey AK, Rashid MM, Millat MS, Rashid MM. Ethnobotanicals survey of medicinal plants used traditional health practitioners and indigenous people in different districts of Chittagongs division, Bangladesh. Int J Pharm Sci Invent 2014;3:1-7.
- Ghosh M, Babu SP, Sukul NC, Mahato SB. Antifilarial effect of two triterpenoid saponins isolated from *Acacia auriculiformis*. Indian J Exp Biol 1993;31:604-6.
- Garai S, Mahato SB. Isolation and structure elucidation of three triterpenoid saponins from *Acacia auriculiformis*. Phytochemistry 1997;44:137-40.
- Barry KM, Mihara R, Davies NW, Mitsunaga T, Mohammed CL. Polyphenols in *Acacia mangium* and *Acacia auriculiformis* heartwood with reference to heart rot susceptibility. J Wood Sci 2005;51:615-21.
- Sathya A, Siddhuraju P. Role of phenolics as antioxidants, biomolecule protectors and as anti-diabetic factors – Evaluation on bark and empty pods of *Acacia auriculiformis*. Asian Pac J Trop Med 2012;5:757-65.
- Ichikawa M, Ryu K, Yoshida J, Ide N, Kodera Y, Sasaoka T, et al. Identification of six phenylpropanoids from garlic skin as major antioxidants. J Agric Food Chem 2003;51:7313-7.
- Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M. Anti-diabetic and hypolipidaemic properties of garlic (*Allium sativum*) in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007;15:108-15.
- Mikail HG. Phytochemical screening, elemental analysis and acute toxicity of aqueous extract of *Allium sativum* L. bulbs in experimental rabbit. J Med Plants Res 2010;4:322-6.
- Matsutomo T, Ushijima M, Kodera Y, Nakamoto M, Takashima M, Morihara N, et al. Metabolomic study on the antihypertensive effect of S-1-propenylcysteine in spontaneously hypertensive rats using liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. J Chromatogr B 2017;1046:147-55.
- Chime SA, Ugwuoke EC, Onyishi IV, Brown SA, Onunkwo GC. Formulation and evaluation of *Alstonia boonei* stem bark powder tablets. Indian J Pharm Sci 2013;75:226-30.
- Obiagwu MO, Ihekwereme CP, Ajaghaku DL, Okoye FB. The useful medicinal properties of the root-bark extract of *Alstonia boonei* (*Apocynaceae*) may be connected to antioxidant activity. ISRN Pharmacol 2014;2014:741478.
- Eneojo AS, Egwari LO, Mosaku TO. *In vitro* antimicrobial screening on *Anchomanes difformis* (Blume) engl. leaves and rhizomes against selected pathogens of public health importance. Adv Biol Res 2011;5:221-5.
- Adebayo AH, John-Africa LB, Agbafor AG, Omotosho OE, Mosaku TO. Anti-nociceptive and anti-inflammatory activities of extract of *Anchomanes difformis* in rats. Pak J Pharm Sci 2014;27:265-70.
- Adesokan AA, Akanji MA, Yakubu MT. Antibacterial potentials of aqueous extract of *Enantia chlorantha* stem bark. Afr J Biotechnol 2007;6:2502-5.
- Talontsi FM, Lamshöft M, Douanla-Meli C, Kouam SF, Spiteller M. Antiplasmodial and cytotoxic dibenzofurans from *Preussia* sp. harboured in *Enantia chlorantha* Oliv. Fitoterapia 2014;93:233-8.
- Adewole SO, Caxton-Martins EA. Morphological changes and hypoglycemic effects of *Annona muricata* Linn. (*Annonaceae*) leaf aqueous extract on pancreatic β-cells of streptozotocin-treated diabetic rats. Afr J Biomed Res 2006;9:173-87.
- 32. Ge H, Dai J. Chemical constituents of an endophytic fungus from *Annona muricata*. Zhongguo Zhong Yao Za Zhi 2010;35:3151-5.
- Gavamukulya Y, Abou-Elella F, Wamunyokoli F, AEI-Shemy H. Phytochemical screening, anti-oxidant activity and *in vitro* anticancer potential of ethanolic and water leaves extracts of *Annona muricata* (Graviola). Asian Pac J Trop Med 2014;7S1:S355-63.
- Djeussi DE, Noumedem JA, Seukep JA, Fankam AG, Voukeng IK, Tankeo SB, et al. Antibacterial activities of selected edible plants

extracts against multidrug-resistant Gram-negative bacteria. BMC Complement Altern Med 2013;13:164.

- Kuete V, Fankam AG, Wiench B, Efferth T. Cytotoxicity and modes of action of the methanol extracts of six Cameroonian medicinal plants against multidrug-resistant tumor cells. Evid Based Complement Alternat Med 2013;2013:285903.
- Sima OC, Obame EL, Ondo JP, Zong C, Nsi EE, Traore A. Ethnotherapy study, phytochemical screening and antioxidant activity of *Antrocaryon klaineanum* Pierre and *Anthocleista nobilis* G. Don. medicinal plants from Gabon. Inter J Advan Res 2015;3:812-9.
- Douanla PD, Tabopda TK, Tchinda AT, Cieckiewicz E, Frédérich M, Boyom FF, et al. Antrocarines A-F, antiplasmodial ergostane steroids from the stem bark of Antrocaryon klaineanum. Phytochem 2015;117:521-6.
- Fouokeng Y, Akak CM, Tala MF, Azebaze AG, Dittrich B, Vardamides JC, et al. The structure of antrocarine E, an ergostane isolated from Antrocaryon klaineanum Pierre (Anacardiaceae). Fitoterapia 2017;117:61-4.
- Koudou J, Obame LC, Kumulungui BS, Edou P, Figueredo G, Chalchat JC, *et al.* Volatile constituents and antioxidant activity of *Aucoumea klaineana* Pierre essential oil. Afr J Pharm Pharmacol 2009;3:323-6.
- Obame LC, Bongui JB, Andzi BT, Ondo JP, Edou EP, Koudou J. Antifungal and antibacterial activities of *Aucoumea klaineana* Pierre essential oil from Gabon. VRI Phytomed 2014;2:17-21.
- Suresh K, Deepa P, Harisaranraj R, Vaira AV. Antimicrobial and phytochemical investigation of the leaves of *Carica papaya* L., *Cynodon dactylon* (L.) Pers., *Euphorbia hirta* L., *Melia azedarach* L. and *Psidium guajava* L. Ethnobot Lealf 2008;12:1184-91.
- Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of *Carica papaya* Linn. leaves in alloxaninduced diabetic rats. J Ayurveda Integr Med 2012;3:70-4.
- Zunjar V, Dash RP, Jivrajani M, Trivedi B, Nivsarkar M. Antithrombocytopenic activity of carpaine and alkaloidal extract of *Carica papaya* Linn. leaves in busulfan induced thrombocytopenic wistar rats. J Ethnopharmacol 2016;18:20-5.
- Castro-Vargas HI, Baumann W, Parada-Alfonso F. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (*Carica papaya* L.) seeds, a protective agent against lipid oxidation in edible oils. Electrophoresis 2016;37:1930-7.
- He X, Ma Y, Yi G, Wu J, Zhou L, Guo H, et al. Chemical composition and antifungal activity of *Carica papaya* Linn. seed essential oil against *Candida* spp. Lett Appl Microbiol 2017.
- 46. Satyaprakash RJ, Rajesh MS, Bhanumathy M, Harish MS, Shivananda TN, Shivaprasad HN, et al. Hypoglycemic and antihyperglycemic effect of *Ceiba pentandra* L. gaertn in normal and streptozotocin-induced diabetic rats. Ghana Med J 2013;47:121-7.
- Ravi Kiran C, Rao DB, Sirisha N, Rao TR. Assessment of phytochemicals and antioxidant activities of raw and germinating *Ceiba pentandra* (Kapok) seeds. J Biomed Res 2015;29:414-9.
- Zhang Z, Wang P, Ding N, Song G, Li Y. Total synthesis of cleistetroside-2, partially acetylated dodecanyl tetrarhamnoside derivative isolated from *Cleistopholis patens* and *Cleistopholis glauca*. Carbohydr Res 2007;342:1159-68.
- Ouattar ZA, Boti JB, Ahibo CA, Tomi F, Casanova J, Bighelli A. Combined analysis of the root bark oil of *Cleistopholis glauca* by chromatographic and spectroscopic techniques. Nat Prod Commun 2013;8:1773-6.
- Renjith RS, Chikku AM, Rajamohan T. Cytoprotective, antihyperglycemic and phytochemical properties of *Cocos nucifera* (L.) inflorescence. Asian Pac J Trop Med 2013;6:804-10.
- Balogun EA, Malomo SO, Adebayo JO, Ishola AA, Soladoye AO, Olatunji LA, et al. In vivo antimalarial activity and toxicological effects of methanolic extract of *Cocos nucifera* (Dwarf red variety) husk fibre. J Integr Med 2014;12:504-11.
- 52. Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of *Combretum micranthum* (*Combretaceae*) in normal and alloxan-induced diabetic rats. J Ethnopharmacol 2010;129:34-7.
- Touré A, Xu X, Michel T, Bangoura M. *In vitro* antioxidant and radical scavenging of Guinean kinkeliba leaf (*Combretum micranthum* G. Don) extracts. Nat Prod Res 2011;25:1025-36.
- 54. Osonwa UE, Umeyor CE, Okon UV, Uronnachi EM, Nwakile CD. Stability studies on the aqueous extract of the fresh leaves of

Combretum micranthum G. don used as antibacterial agent. J Chem Chem Eng 2012;6:417-24.

- 55. Okokon JE, Ita BN, Udokpoh AE. Antiplasmodial activity of *Cylicodiscus gabunensis*. J Ethnopharmacol 2006;107:175-8.
- Kouitcheu ML, Kouam J, Penlap BV, Ngadjui BT, Fomum ZT, Etoa FX. Evaluation of antimicrobial activity of the stem bark of *Cylicodiscus* gabunensis (*Mimosaceae*). Afr J Tradit Complement Altern Med 2007;4:87-93.
- Aldulaimi O, Uche FI, Hameed H, Mbye H, Ullah I, Drijfhout F, et al. A characterization of the antimalarial activity of the bark of *Cylicodiscus gabunensis* Harms. J Ethnopharmacol 2017;198:221-5.
- Negrelle RR, Gomes EC. Cymbopogon citratus (DC.) Stapf: Chemical composition and biological activities. Rev Bras Planta Med 2007;9:80-92.
- Adeneye AA, Agbaje EO. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of *Cymbopogon citratus* Stapf. in rats. J Ethnopharmacol 2007;112:440-4.
- Asaolu MF, Oyeyemi OA, Olanlokun JO. Chemical compositions, phytochemical constituents and in vitro biological activity of various extracts of Cymbopogon citratus. Pak J Nutr 2009;8:1920-2.
- Costa G, Ferreira JP, Vitorino C, Pina ME, Sousa JJ, Figueiredo IV, et al. Polyphenols from Cymbopogon citratus leaves as topical antiinflammatory agents. J Ethnopharmacol 2016;178:222-8.
- Wafo P, Kamdem RS, Ali Z, Anjum S, Khan SN, Begum A, et al. Duboscic acid: A potent a-glucosidase inhibitor with an unprecedented triterpenoidal carbon skeleton from *Duboscia* macrocarpa. Org Lett 2010;12:5760-3.
- Tchuendem MH, Douanla PD, Tabopda TK, Tchinda AT, Tamze V, Nkengfack AE, et al. Two new glycosides from *Duboscia macrocarpa* Bocq. Phytochem Lett 2014;10:1-4.
- Ariwaodo JO, Adeniji KA, Onadeji OM, Shasanya OS. Survey of wild plant seeds and their value in traditional herbal medicine in Osun State, Nigeria. J Res Forest Wildl Environ 2013;4:38-51.
- 65. Fankam AG, Kuiate JR, Kuete V. Antibacterial activities of *Beilschmiedia* obscura and six other Cameroonian medicinal plants against multidrug resistant Gram-negative phenotypes. BMC Complement Altern Med 2014;14:241.
- Iweala EE. Preliminary qualitative screening for cancer chemopreventive agents in *Telfairia occidentalis* Hook.f., *Gnetum africanum* Welw., *Gongronema latifolium* Benth. and *Ocimum gratissimum* L. from Nigeria. J Med Food 2009;1:58-63.
- Edet UU, Ehiabhi OS, Ogunwande IA, Ekundayo O. Analyses of the volatile constituents and antimicrobial activities of *Gongronema latifolium* (Benth.) and *Gnetum africanum* L. J Essent Oil Bear Plants 2013;8:324-9.
- Madingou NO, Souza A, Lamidi M, Mengome LE, Mba EM, Bayissi B, et al. Study of medidcinal plants used in the management of cardiovascular disease at Libreville (Gabon): An ethnopharmacological approach. Int J Pharm Sci Res 2012;3:111-9.
- Nyangono BC, Tsague M, Ngondi JL, Oben JE. In vitro antioxidant activity of *Guibourtia tessmannii* Harms, J. Leonard (*Caesalpinoidae*). J Med Plants Res 2013;7:3081-8.
- Madingou NO, Traore A, Souza A, Mounanga MM, Samseny RR, Ouedraogo S *et al.* Preliminary studies of acute and sub-chronic toxicity of the aqueous extract of *Guibourtia tessmannii* (Harms) J Leonard stem barks (Caesalpiniaceae) in mice and rats. Asian Pac J Trop Biomed 2016;6:506-10.
- Iwalewa EO, Adewale IO, Taiwo BJ, Arogundade T, Osinowo A, Daniyan OM, et al. Effects of Harungana madagascariensis stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. J Complement Integr Med 2008. DOI: 10.2202/1553-3840.1088.
- 72. Momo CE, Ngwa AF, Dongmo GI, Oben JE. Antioxidant properties and α - amylase inhibition of *Terminalia superba*, *Albizia* Sp., *Cola nitida*, *Cola odorata* and *Harungana madagascarensis* used in the management of diabetes in Cameroon. J Health Sci 2009;55:732-8.
- Antia BS, Ita BN, Udo UE. Nutrient composition and *in vitro* antioxidant Properties of *Harungana madagascariensis* stembark extracts. J Med Food 2015;18:609-14.
- Dash GK, Suresh P, Ganapaty S. Studies on hypoglycaemic and wound healing activities of *Lantana camara* Linn. J Nat Remed 2001;1:105-10.
- Venkatachalam T, Kumar VK, Selvi PK, Maske AO, Anbarasan V, Kumar PS. Antidiabetic activity of *Lantana camara* Linn fruits in normal

and streptozotocin-induced diabetic rats. J Pharm Res 2011;4:1550-2.

- Satyal P, Crouch RA, Monzote L, Cos P, Awadh Ali NA, *et al.* The chemical diversity of *Lantana camara*: Analyses of essential oil samples from Cuba, Nepal, and Yemen. Chem Biodivers 2016;13:336-42.
- Ouahouo BM, Azebaze AG, Meyer M, Bodo B, Fomum ZT, Nkengfack AE. Cytotoxic and antimicrobial coumarins from *Mammea africana*. Ann Trop Med Parasitol 2004;98:733-9.
- Tchamadeu MC, Dzeufiet PD, Nouga CC, Azebaze AG, Allard J, Girolami JP, *et al.* Hypoglycaemic effects of *Mammea africana* (Guttiferae) in diabetic rats. J Ethnopharmacol 2010;127:368-72.
- Okokon JE, Bawo MB, Mbagwu HO. Hepatoprotective activity of Mammea africana ethanol stem bark extract. Avicenna J Phytomed 2016;6:248-59.
- Roumy V, Hennebelle T, Zamblé A, Zamblé Yao J, Sahpaz S, Bailleul F. Letter: Characterisation and identification of spermine and spermidine derivatives in *Microdesmis keayana* and *Microdesmis puberula* roots by electrospray ionisation tandem mass spectrometry and high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry. Eur J Mass Spectrom (Chichester) 2008;14:111-5.
- Okany CC, Ishola IO, Ashorobi RB. Evaluation of analgesic and antistress potential of methanolic stem wood extract of *Microdesmis puberula* Hook.f. ex planch (*Pandaceae*) in mice. Int J Appl Res Nat Prod 2012;5:30-6.
- Okon AE, Otu IS, Adaeze OK, Godwin DK, Ndem JI, Fidelis UA. Phytochemical screening and effect of ethanol root extract of *Microdesmis puberula* on some haematological and biochemical parameters in normal male albino Wistar rats. J Med Plant Res 2013;7:2338-42.
- Udegbunam SO, Nnaji TO, Udegbunam RI, Okafor JC, Agbo I. Evaluation of herbal ointment formulation of *Milicia excelsa* (Welw) C.C berg for wound healing. Afr J Biotechnol 2013;12:3351-9.
- Hussain H, Nyongha AT, Dongo E, Ahmed I, Zhang W. Melicilamide A: A new ceramide from *Milicia excelsa*. Nat Prod Res 2013;27:1246-9.
- Ouete JL, Sandjo LP, Kapche DW, Yeboah SO, Mapitse R, Abegaz BM, et al. Excelsoside: A new benzylic diglycoside from the leaves of *Milicia excelsa*. Z Naturforsch C 2014;69(7-8):271-5.
- Dzeufiet PD, Tchamadeu MC, Bilanda DC, NgadenaYS, Poumeni MK, Nana D, et al. Preventive effect of *Milicia excelsa* (*Moraceae*) aqueous extract on dexamethasone induced insulin resistance in rat. J Pharm Pharm Sci 2014;5:1232-41.
- Yuan K, Lü JL, Yin MW. Chemical constituents of C-glycosylflavones from *Mimosa pudica*. Yao Xue Xue Bao 2006;41:435-8.
- Gandhiraja N, Sriram S, Meenaa V, Srilakshmi JK, Sasikumar C, Rajeswari R. Phytochemical screening and antimicrobial activity of the plant extracts of *Mimosa pudica* L. against selected microbes. Ethnobot Lealf 2009;13:618-24.
- Rajendran R, Krishnakumar E. Hypolipidemic activity of chloroform extract of *Mimosa pudica* leaves. Avicenna J Med Biotechnol 2010;2:215-21.
- Mallick C, Chatterjee K, Guhabiswas M, Ghosh D. Antihyperglycemic effects of separate and composite extract of root of *Musa paradisiaca* and leaf of *Coccinia indica* in streptozotocin-induced diabetic male albino rat. Afr J Tradit Complement Altern Med 2007;4:362-71.
- Hussain A, Khan MN, Sajid MS, Iqbal Z, Khan MK, Abbas RZ, et al. In vitro screening of the leaves of Musa paradisiaca for anthelmintic activity. J Anim Plant Sci 2010;20:5-8.
- Mahmood A, Ngah N, Omar MN. Phytochemicals constituent and antioxidant activities in *Musa x paradisiaca* flower. Eur J Sci Res 2011;66:311-8.
- Sundaram SC, Subramanian S. Biochemical evaluation of hypoglycemic activity of *Musa paradisiaca* (Plantain) flowers in STZ induced experimental diabetes in rats. Asian J Res Chem 2011;4:827-33.
- Lontsi D, Sondengam BL, Ayafor JF, Tsoupras MG, Tabacchi R. Further triterpenoids of *Musanga cecropioides*: The structure of cecropic acid. Planta Med 1990;56:287-9.
- Adeneye AA, Ajagbonna OP, Adeleke TI, Bello SO. Preliminary toxicity and phytochemical studies of the stem bark aqueous extract of *Musanga cecropioides* in rats. J Ethnopharmacol 2006;105:374-9.
- Tchouya GR, Nantia EA. Phytochemical analysis, antioxidant evaluation and total phenolic content of the leaves and stem bark of *Musanga cecropioides* R.Br. ex tedlie (*Cecropiaceae*), growing in

Tjeck, et al.: Medicinal plants used for diabetes management

Gabon. J Pharmacogn Phytochem 2015;3:192-5.

- Nwodo NJ, Agbo MO. Antitrypanosomal effects of methanolic extracts of *Nuclea diderrichii* (Merr.) and *Spathodea campanulata* stem bark. J Pharm Allied Sci 2010. DOI: 10.4314/JOPHAS. V7I5.63466.
- Liu W, Di Giorgio C, Lamidi M, Elias R, Ollivier E, De Méo MP. Genotoxic and clastogenic activity of saponins extracted from Nauclea bark as assessed by the micronucleus and the comet assays in Chinese hamster ovary cells. J Ethnopharmacol 2011;137:176-83.
- Kuete V, Eyong KO, Folefoc GN, Beng VP, Hussain H, Krohn K, et al. Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from *Newbouldia laevis*. Pharmazie 2007;62:552-6.
- Hassan SW, Tillo MK, Lawal M, Umar RA, Ndakotsu MA, Farouk UZ, et al. Hepatoprotective action of stem extracts of *Newbouldia laevis* in rats treated with carbon tetrachloride (CCL4). J Global Biosci 2015;4:1627-46.
- Osigwe CC, Akah PA, Nworu CS, Okoye TC, Tchimene MK. Antihyperglycemic studies on the leaf extract and active fractions of Newbouldia laevis (Bignoniaceae). Pharmacol Pharm 2015;6:518-32.
- 102. YuHM, Wang BS, Chu HL, Chang LW, Yen WJ, Lin CJ, Duh PD. Napiergrass (*Pennisetum purpureum* S.) protects oxidative damage of biomolecules and modulates antioxidant enzyme activity. Food Chem 2007;105:1364-74.
- Akaraonye CC, Ikewuchi JC. Nutritional and antinutritional components of (*Pennisetum purpureum* Schumach). Pak J Nutr 2009;8:32-8.
- 104. Prinsen P, Gutierrez A, del Río JC. Lipophilic extractives from the cortex and pith of elephant grass (*Pennisetum purpureum* Schumach.) stems. J Agric Food Chem 2012;60:6408-17.
- 105. Norhafizah MZ, Ismail BS, Chuah TS. Herbicidal activity of *Pennisetum purpureum* (Napier grass). Afr J Biotechnol 2012;11:6269-73.
- 106. Wei LS, Wee W, Siong JY, Syamsumir DF. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of *Peperomia pellucida* leaf extract. Acta Med Iran 2011;49:670-4.
- 107. Oloyede GK, Onocha PA, Olaniran BB. Phytochemical, toxicity, antimicrobial and antioxidant screening of leaf extracts of *Peperomia pellucida* from Nigeria. Adv Environ Biol 2011;5:3700-9.
- de Fátima Arrigoni-Blank M, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M. Anti-inflammatory and analgesic activity of *Peperomia pellucida* (L.) HBK (*Piperaceae*). J Ethnopharmacol 2004;91:215-8.
- 109. Brai BI, Odetola AA, Agomo PU. Hypoglycemic and hypocholesterolemic potential of *Persea americana* leaf extracts. J Med Food 2007;10:356-60.
- 110. Lima CR, Vasconcelos CF, Costa-Silva JH, Maranhão CA, Costa J, Batista TM, *et al.* Anti-diabetic activity of extract from *Persea americana* Mill. leaf via the activation of protein kinase B (PKB/ Akt) in streptozotocin-induced diabetic rats. J Ethnopharmacol 2012;141:517-25.
- García-Rodríguez YM, Torres-Gurrola G, Meléndez-González C, Espinosa-García FJ. Phenotypic variations in the foliar chemical profile of *Persea americana* Mill. cv. Hass. Chem Biodivers 2016;13:1767-75.
- 112. Wong PY, Kitts DD. Studies on the dual antioxidant and antibacterial properties of parsley (*Petroselinum crispum*) and cilantro (*Coriandrum sativum*) extracts. Food Chem 2006;97:505-15.
- 113. Snoussi M, Dehmani A, Noumi E, Flamini G, Papetti A. Chemical composition and antibiofilm activity of *Petroselinum crispum* and *Ocimum basilicum* essential oils against *Vibrio* spp. strains. Microb Pathog 2016;90:13-21.
- 114. Abou Khalil NS, Abou-Elhamd AS, Wasfy SI, El Mileegy IM, Hamed MY, Ageely HM. Antidiabetic and antioxidant impacts of desert date (*Balanites aegyptiaca*) and parsley (*Petroselinum sativum*) aqueous extracts: Lessons from experimental rats. J Diabetes Res 2016;2016:8408326.
- 115. Atchibri AL, Brou KD, Kouakou TH, Kouadio YJ, Gnakri D. Screening for antidiabetic activity and phytochemical constituents of common bean (*Phaseolus vulgaris* L.) seeds. J Med Plant Res 2010;4:1757-61.
- 116. Ombra MN, d'Acierno A, Nazzaro F, Riccardi R, Spigno P, Zaccardelli M, et al. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (*Phaseolus vulgaris* L.) endemic ecotypes of Southern Italy before and after cooking. Oxid Med Cell Longev 2016;2016:1398298.

- 117. Nwakile CD, Okore VC. *Picralima nitida* seed oil I: Hypoglycemic activity. J Adv Pharm Educ Res 2011;2:147-50.
- 118. Teugwa CM, Mejiato PC, Zofou D, Tchinda BT, Boyom FF. Antioxidant and antidiabetic profiles of two African medicinal plants: *Picralima nitida (Apocynaceae)* and *Sonchus oleraceus (Asteraceae)*. BMC Complement Altern Med 2013;13:175.
- 119. Ateufack G, Domgnim Mokam EC, Mbiantcha M, Dongmo Feudjio RB, David N, Kamanyi A, et al. Gastroprotective and ulcer healing effects of *Piptadeniastrum Africanum* on experimentally induced gastric ulcers in rats. BMC Complement Altern Med 2015;15:214.
- 120. Dawé A, Mbiantcha M, Fongang Y, Nana WY, Yakai F, Ateufack G, et al. Piptadenin, a novel 3,4-secooleanane triterpene and piptadenamide, a New ceramide from the stem bark of *Piptadeniastrum africanum* (Hook.f.) brenan. Chem Biodivers 2017;14.
- 121. Obiang CS, Ondo JP, Atome GR, Engonga LC, Siawaya JF, Emvo EN. Phytochemical screening, antioxidant and antimicrobial potential of stem barks of *Coula edulis* Baill. *Pseudospondias longifolia* Engl. and *Carapa klaineana* Pierre. from Gabon. Asian Pac J Trop Med 2016;6:557-63.
- Ojewole JA. Hypoglycemic and hypotensive effects of *Psidium guajava* Linn. (*Myrtaceae*) leaf aqueous extract. Methods Find Exp Clin Pharmacol 2005;27:689-95.
- 123. Araújo HM, Rodrigues FF, Costa WD, Nonato Cde F, Rodrigues FF, Boligon AA, et al. Chemical profile and antioxidant capacity verification of *Psidium guajava* (*Myrtaceae*) fruits at different stages of maturation. EXCLI J 2015;14:1020-30.
- Tona L, Kambu K, Ngimbi N, Cimanga K, Vlietinck AJ. Antiamoebic and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol 1998;61:57-65.
- 125. Apers S, Cimanga K, Vanden Berghe D, Van Meenen E, Longanga AO, Foriers A, et al. Antiviral activity of simalikalactone D, a quassinoid from *Quassia africana*. Planta Med 2002;68:20-4.
- 126. Sama W, Ajaiyeoba EO, Choudhary MI. Larvicidal properties of simalikalactone D from *Quassia africana* (*Simaroubaceae*) baill and baill, on the malaria vector *Anopheles gambiae*. Afr J Tradit Complement Altern Med 2014;11:84-8.
- Da Silva MF, Francisco RH, Gray AI, Lechat JR, Waterman PG. Lanost-7-en triterpenes from stem bark of Santiria trimera. Phytochem 1990;29:1629-32.
- Martins AP, Salgueiro LR, Gonçalves MJ, Proença da Cunha A, Vila R, Cañigueral S. Essential oil composition and antimicrobial activity of *Santiria trimera* bark. Planta Med 2003;69:77-9.
- 129. Bikanga R, Makani T, Agnaniet H, Obame LC, Abdoul-Latif FM, Lebibi J, et al. Chemical composition and biological activities of Santiria trimera (Burseraceae) essential oils from Gabon. Nat Prod Commun 2010;5:961-4.
- Akendengue B, Lemamy GJ, Bourobou HB, Laurens A. Bioactive natural compounds from medico-magic plants of Bantu area. Stud Nat Prod Chem 2005;32:803-20.
- Souza A, Mbatchi B, Herchuelz A. Induction of insulin secretion by an aqueous extract of *Tabernanhte iboga* Baill. (*Apocynaceae*) in rat pancreatic islets of Langerhans. J Ethnopharmacol 2011;133:1015-20.
- Miura T, Nosaka K, Ishii H, Ishida T. Antidiabetic effect of Nitobegiku, the herb Tithonia diversifolia, in KK-Ay diabetic mice. Biol Pharm Bull 2005;28:2152-4.
- Ogundare AO. Antimicrobial effect of Tithonia diversifolia and Jatropha gossypifolia leaf extracts. Trends Appl Sci Res 2007;2:145-50.
- 134. Sampaio BL, Edrada-Ebel RA, Da Costa FB. Effect of the environment on the secondary metabolic profile of *Tithonia diversifolia*: A model for environmental metabolomics of plants. Sci Rep 2016. DOI: 10.1038/srep29265.
- 135. Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, *et al.* Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in southwestern Nigeria. Trop J Pharm Res 2008;7:1019-24.
- 136. Akah PA, Alemji JA, Salawu OA, Okoye TC, Offiah NV. Effects of Vernonia amygdalina on biochemical and hematological parameters in diabetic rats. Asian J Med Sci 2009;1:108-13.
- 137. Abay SM, Lucantoni L, Dahiya N, Dori G, Dembo EG, Esposito F, et al. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar J 2015;14:288.
- Duru CM, Onyedineke NE. *In vitro* antimicrobial assay and phytochemical analysis of ethanolic extracts of *Voacanga africana* seeds. J A Sci 2010;6:119-22.

- Chen HM, Yang YT, Li HX, Cao ZX, Dan XM, Mei L. Cytotoxic monoterpenoid indole alkaloids isolated from the barks of *Voacanga africana* Staph. Nat Prod Res 2016;30:1144-9.
- 140. Ogbonnia S, Adekunle AA, Bosa MK, Enwuru VN. Evaluation of acute and subacute toxicity of *Alstonia congensis* Engler (*Apocynaceae*) bark and *Xylopia aethiopica* (Dunal) A. Rich (*Annonaceae*) fruits mixtures used in the treatment of diabetes. Afr J Biotechnol 2008;7:701-5.
- Ezeja MI, Nwaehujor CO, Anaga AO. Antihyperglycaemic and *in vitro* antioxidant activities of *Xylopia aethiopica* fruit methanol extract. J Ethnopharmacol 2016;35:1070-7.
- Suzuki R, Okada Y, Okuyama T. The favorable effect of style of *Zea* mays L. on streptozotocin induced diabetic nephropathy. Biol Pharm Bull 2005;28:919-20.
- 143. Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Sci Technol 2009;42:1187-92.
- Solihah MA, Wan Rosli WI, Nurhanan AR. Phytochemicals screening and total phenolic content of Malaysian Zea mays hair extracts. Int Food Res J 2012;19:1533-8.
- 145. Eddouks M, Maghrani M, Lemhadri A, Ouahidi M-L, Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the South-East region of Morocco (Tafilalet). J Ethnopharmacol 2002;82:97-103.
- 146. Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2006;2:14.
- 147. Etuk EU, Bello SO, Isezuo SA, Mohammed BJ. Ethnobotanical survey of medicinal plants used for the treatment of diabetes mellitus in the North-Western region of Nigeria. Asian J Exp Biol Sci 2010;1:55-9.
- Caniago I, Siebert SF. Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia. Econ Bot 1998;52:229-50.
- Vashistha PB. An ethnobotanical study of plains of Yamuna Nagar district, Haryana, India. Int J Innov Res Sci Eng Technol 2015;4:18600-7.
- 150. Vihotogbe-Sossa CN, Akissoe NH, Anihouvi VB, Ahohuendo BC, Ahanchede A, Sanni A, *et al.* Endogenous knowledge of four leafy vegetables used by rural populations in Benin. Ecol Food Nutr 2012;51:22-39.
- 151. Kolling M, Winkley K, von Deden M. "For someone who's rich, it's not a problem". Insights from Tanzania on diabetes health-seeking and medical pluralism among Dar es Salaam's urban poor. Global Health 2010;6:8.

- 152. Mangambu MJ, Mushagalusa KF, Kadima NJ. Contribution à l'étude phytochimique de quelques plantes médicinales antidiabétiques de la ville de Bukavu et ses environs (sud-Kivu, R.D. Congo). J Appl Biosci 2014:75:6211-20.
- 153. Coria-Téllez AV, Montalvo-Gònzalez E, Yahia E M, Obledo-Vazquez E N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem 2016. DOI: 10.1016/j. arabjc.2016.01.004.
- Aminimoghadamfarouj N, Nematollahi A, Wiart C. Annonaceae: Bio-resource for tomorrow's drug discovery. J Asian Nat Prod Res 2011;13:465-76.
- 155. Lannuzel A, Höglinger GU, Verhaeghe S, Gire L, Belson S, Escobar-Khondiker M, *et al.* Atypical parkinsonism in Guadeloupe: A common risk factor for two closely related phenotypes? Brain 2007;130:816-27.
- 156. Megersa M, Asfaw Z, Kelbessa E, Beyene A, Woldeab B. An ethnobotanical study of medicinal plants in Wayu Tuka district, East Welega zone of Oromia regional state, West Ethiopia. J Ethnobiol Ethnomed 2013;9:68.
- Schippmann U, Leaman JD, Cunningham AB. Impact of Cultivation and Gathering of Medicinal Plants on Biodiversity: Global Trends and Issues. Rome, Italy: FAO; 2002. p. 1-21.
- 158. Erasto P, Adebola PO, Grierson DS, Afolayan AJ. An ethnobotanical study of plants used for the treatment of diabetes in the Eastern Cape province, South Africa. Afr J Biotechnol 2005;4:1458-60.
- 159. Semenya S, Potgieter M, Erasmus L. Ethnobotanical survey of medicinal plants used by Bapedi healers to treat diabetes mellitus in the Limpopo province, South Africa. J Ethnopharmacol 2012;141:440-5.
- 160. Tsabang N, Fokou PV, Tchokouaha LR, Noguem B, Bakarnga-Via I, Nguepi MS, *et al.* Ethnopharmacological survey of *Annonaceae* medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol 2012;139:171-80.

© EJManager. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.