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Abstract: The emergence of drug resistance combined with limited success in the discovery of
newer and effective antimicrobial chemotherapeutics poses a significant challenge to human and
animal health. Nanoparticles may be an approach for effective drug development and delivery
against infections caused by multi-drug resistant bacteria. Here we discuss nanoparticles therapeutics
and nano-drug delivery against bacterial infections. The therapeutic efficacy of numerous kinds
of nanoparticles including nanoantibiotics conjugates, small molecules capped nanoparticles,
polymers stabilized nanoparticles, and biomolecules functionalized nanoparticles has been discussed.
Moreover, nanoparticles-based drug delivery systems against bacterial infections have been described.
Furthermore, the fundamental limitation of biocompatibility and biosafety of nanoparticles is also
conferred. Finally, we propose potential future strategies of nanomaterials as antibacterials.
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1. Introduction

Infectious ailments, especially due to bacteria are a significant burden on public health, killing more
than 14 million people annually [1,2]. Molecular components of bacterial pathogens are extensively
dissimilar from human cells such as their genetic material, ribosomes, cell membranes, cell wall
and biosynthetic routes, hence these aspects are usually exploited to derive antimicrobial agents [3].
In recent years, the development of antimicrobial resistance is proving a major setback in our ability
to counter morbidity and mortality associated with bacterial infections [2]. Several strategies have
been employed by bacteria to resist antimicrobials including efflux pumps, enzymatic suppression
by either hydrolytic degradation or chemical alterations such as the addition of a phosphate group
acetylation or hydrolysis, changing target and reprogramming biological synthesis, and accelerated
evolution of acquired resistance in microorganisms [4]. The danger of antibacterial resistance is a
significant threat to human health worldwide [5,6]. In addition, many antibiotics like fluoroquinolone
and aminoglycosides exhibit serious side effects [7]. The majority of multidrug resistance (MDR)
infections need extended antibiotic therapy that are accompanied with significant health-care costs [8,9].
Hence, there is a need for the development of new effective antibacterial strategies.

Recently, the applications of nanotechnology especially the use of nanoparticles has
been highlighted as a promising solution to the challenges posed by existing antimicrobials.
Several nanoparticles have been utilized as delivery vehicles comprising of dendrimers, liposomes,
metallic nanoparticles, and polymeric nanoparticles [10]. Size reduction methods and technologies yield
different types of nanostructures that exhibit unique physicochemical properties such as magnetism,
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physical strength, electrical conductance, chemical reactivity and optical effects [11]. These criteria help
in increasing the surface area, enhancing release of drug, reducing the dose required, and improving
solubility and bioavailability of the compounds [12]. Moreover, these properties are also important for
the diagnosis of microbial diseases with high sensitivity and selectivity and those with fluorescent
properties or labeled with fluorescent dyes have also been employed for bacterial detection and
susceptibility. In addition, inorganic nanoparticle-based diagnostic approaches depend upon the
identification of known bacterial genome sequences by directing probes, and thus may not recognize
altered and/or novel bacterial strains [13]. Furthermore, nanoparticles based specific drug targeting
improve the therapeutic index, increase stability of drug, and decrease drug resistance. For example,
silver nanoparticles affect Escherichia coli by forming complex with electron donor groups on amino
acids and nucleic acids [12]. At present, liposomal drugs and polymer–drug conjugates have been
approved for infectious diseases treatment, and many other antimicrobial nanoparticle formulations
are under preclinical test [14].

Gold nanoparticles have gained significant attention recently due to their tunable antimicrobial
applications. Gold has been the subject of interest against bacterial infections for its biocompatibility
and ease in conjugation with drugs and biomolecules. Gold conjugated with various drugs have
shown to enhance their efficacy against bacteria. Gold nanoparticles coated with aminoglycosides have
been found to be efficient antibacterial agents against various bacteria such as Staphylococcus aureus,
Micrococcus luteus, E. coli and Pseudomonas aeruginosa [15]. In another study, after assessment of the
surface chemistry of nanoparticles, the synergistic mechanism showed that hydrophobic cationic
conjugated gold nanoparticles reduced the minimum inhibitory concentration (MIC) of fluoroquinolone
against multidrug resistant by 8–16 times [16]. More recently, formulations of carbapenem loaded gold
nanoparticles with different sizes (35 nm, 70 nm and 200 nm) showed potent antibacterial activity
against MDR bacteria including Klebsiella pneumoniae, Proteus mirabilis and Acinetobacter baumanii.
Imipenem coated gold nanoparticles showed four-fold decrease in the MIC whereas meropenem
decreased the MIC by three-fold [17]. In another report, the antibiofilm activity of gold nanoparticles
of around 50 nm and nanoclusters around 2–3 nm stabilized by same ligand, 3-(diphenylphosphino)
propionic acid against Staphylococcus aureus and Streptococcus mutans have shown that smaller
nanoclusters exhibit better antibacterial effects against gram-positive bacteria [18]. The antibacterial
activity of gold nanoparticles depends mainly on their cargo; however, size and shape of gold
nanoparticles are also known alter the antibacterial potency. Gold nanoparticles of different shapes
(sphere, rod, star and flower) can be prepared by utilizing different chemical protocols, while certain
stabilizing and reducing agents can give rise to size selectivity to a very narrow range [19].

Here, we focus on several aspects of nanoparticles for enhancing treatment efficacy of compounds.
The therapeutic potential of nanoparticles, drug delivery, and nanoparticles cytotoxicity will be
discussed. Moreover, we discuss forthcoming promising platforms utilizing nanoparticles against
bacterial infections, as well as their future prospects.

2. Therapeutic Efficacy of Nanoparticles

Several aspects can play a role in the therapeutic efficacy of nanoparticles, and this has led
to the development of more complex nanoparticles. Many factors play a role in the reaction of
nanomaterial with bacteria including hydrophobicity, static electricity attraction, van der Waals forces
and receptor–ligand connection which affects the therapeutic potency [20].

In effective targeting, electrostatic interactions occurring between the negative charge of the
bacteria surface and the cationic charge of nanoparticles can increase the therapeutic efficacy of
nanoparticles [21]. For example, Gold nanorods or nanospheres showed electrostatic interaction with
the negative charge of teichoic acid on Bacillus cereus [22]. Mannose substituted gold metal nanoparticles
have been shown to bind with the lectin pili as a target on the surface of E. coli [23]. Nanomaterials
can interact with intracellular components like respiratory enzymes and DNA to disrupt cellular
mechanisms and electrolyte balance, resulting in bacterial lysis [24]. Moreover, the surface chemical
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composition of nanoparticles is crucial to modify their contact with the bacterial cellular system,
improving their therapeutic index while concurrently dropping their toxicity against host cells [11].
For example, Bayraktar (2007) reported that aspartate amino acid functionalized gold nanoparticles
bind to large surface of cytochrome c whereas phenylalanine conjugation exhibited much smaller
binding surface on cytochrome [25]. In the passive bacterial targeting, the high vascular permeability
and impaired function of lymphatic system are resulted in bacterial infection site, which lead to
nanoparticles accumulations [26]. For instance, Polyethylene glycerol liposomes favorably located in
an intramuscular S. aureus infection site [27].

2.1. Antibiotics Capped Nanoparticles

Antimicrobials capped nanoparticles have shown improvements in therapeutic index and
pharmacokinetics of the drug compared with the free drug equivalents. These conjugates have
been recently synthesized and have shown enhanced efficacy of antibiotic through the synergistic
action by raising the concentration of drugs at the target site [28]. Moreover, these systems can enhance
stability, bioavailability, targetability, and biological distribution to decrease the toxicity [29]. There are
many ways for drug loading into nanoparticles such as chemical conjugation or physical encapsulation,
adsorption [14]. For instance, in citrate reduction method, the resultant AuNPs (14 nm) is functionalized
by different types of antibacterials (streptomycin, ampicillin and kanamycin). These nanoconjugates
have been tested against (E. coli, S. aureus and M. luteus). The findings demonstrated high efficiency of
antibiotics capped AuNPs compared with free antibiotics against these bacteria [30]. In another study
for gold NPs conjugated with second generation cephalosporine (cefaclor), the researchers illustrated
high efficacy of AuNPs-cefaclor against E. coli and S. aureus due to capping of AuNPs by amine group
of cefaclor, leaving β-lactam ring unmodified for activity [31]. Furthermore, the functionalization of
anionic mesoporous silica nanoparticles with positively charged Polymixn B was achieved through net
result of attractive forces between amine groups of antibiotics and anions on the surface of nanoparticles.
These nanoparticles resulted in improved antibacterial activity compared with unbounded Polymixn
B against various Gram-negative bacteria. Moreover, cytotoxicity was reduced by reducing reactive
oxygen species generation [8]. Lately by using biogenic synthesis method, Sangaonkar and Pawar
(2018) conjugated small sized Ag- nanoparticles (5–30 nm) with tetracycline, and this compound
displayed biocidal action against four of the seven bacteria tested [32]. The mechanism of action
involved deregulation of main efflux pump (tolC) and downregulation of proteins responsible for
assembling of (tolC) in E. coli outer membrane [33].

The stable ciprofloxacin conjugated ZnO nanoparticles showed concentration-dependent
antibacterial efficacy against E. coli and S. aureus. This activity may be attributed to ZnO nanoparticles
through contribution in both the interfering with function of NorA protein in S. aureus as pumping
activity and enhancing the intake of antibiotics into S. aureus [34]. Whereas, the bactericidal ability
of nitrofurantoin, penicillin G, and amoxicillin in combination with ZnO nanoparticles against
S. aureus was reduced because of the possibility of forming weak hydrogen bonds with hydroxylated
nanoparticles [34]. Another study of Ciprofloxacin loaded to the composite of cobalt ferrite, graphene
oxide, and silver nanoparticles showed antibacterial synergistic action against both types of bacteria [35].
The MIC of the composite against E. coli was 2.5 mg/mL, while upon conjugation with ciprofloxacin,
the MIC was lowered to 1.25 mg/mL and the composite have no important influence on cytoplasmic
membrane [35]. Furthermore, Grace & Pandian (2007) showed that chelating amine groups of
aminoglycoside drugs with small size of Au-nanoparticles (15 nm) illustrated high zone of inhibition
compared with pure drugs against bacteria [15]. Recent study showed that cephradine conjugation
with Ag nanoparticles offer a change in sensitivity of the drug and boosted the antibacterial effects
against Gram-negative bacteria [36].
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2.2. Small Molecules Conjugated Nanoparticles

The small molecules conjugated nanoparticles can facilitate development of a wide range of
nanomaterials for biomedical applications. The appropriate combination between nanoparticles and
small molecule chemistry can simplify growth of nanomaterials for biomedical uses, small molecule
alterations could enhance binding attraction and modify biological characteristics of nanomaterials and
thereby allow small molecule-mediated multivalent binding to receptors of the cell [37]. These conjugates
provoke bacterial resistance more heavily compared with usual antibacterials because numerous
mechanisms of nanoparticles may not be simply controlled by approaches used by microbes to grow
resistance instantaneously and appear harmless to human cells [38]. For example, mixtures of distinct
synthetic thiol ligands are fused with p-mercaptobenzoic acid adapted Au- nanoparticles, and this
conjugate showed antibacterial effects against MDR bacteria. Also, this conjugate revealed delayed
development of resistance compared to the antibiotic alone by affecting the transcription process of a
number of genes [39]. Furthermore, Zhao et al. (2010) showed that amino-substituted pyrimidines
presented on Au nanoparticles had antibacterial activities against MDR bacteria via chelating of Mg2+

or Ca2+ and compromising ATPase activities [38]. In another study, Anwar et al. (2018) reported
enhancement of antibacterial effects of gold nanoparticles combined with 4-Dimethyl aminopyridinium
propylthioacetate against E. coli in comparison with unmixed compound [40].

2.3. Polymer Stabilized Nanomaterials

Polymer stabilized nanoparticles have notable effects against bacterial infections. The dominant
synthetic microbial agents until now are polymers having positively charged groups such as quaternary
phosphonium or ammonium, which trigger fast adsorption into the anionic surfaces of bacteria [41,42].
Covering nanoparticles with artificial polymers have been revealed to notably decrease the attachment
of plasma proteins, contact with opsonins, and clearance by the reticuloendothelial system [43].
However, several of these antimicrobials, though active against selected bacteria, are poisonous for
mammalian cells [3,44]. The polymers have been used in nanoparticles preparation to increase the
appropriate host response of cationic antimicrobial agents through a balanced pattern [45].

Some of the most common natural polymers used in nanomedicine are chitosan, gum acacia,
xanthan gum, etc. For example, the stabilization of Ag- nanoparticles by gum acacia and loaded
with hesperidin exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced
bacterial-mediated host cells cytotoxicity [46]. For different metal, Regiel et al. (2015) used the
biocompatible and decomposable carbohydrate chitosan as stabilizer and reducing agent for gold
nanoparticles synthesis and the resulting nanocomposite with moderate molecular mass [47].
The ultimate degree of deacetylation displayed maximum activity against bacterial biofilm establishing
species of P. aeruginosa and S. aureus by producing a distracting consequence on the bacterial cell
wall while their endocytosis was retarded on the eukaryotic cells [47]. Moreover, natural gallic acid
conjugated with magnetite iron oxide at concentration of 100 mg/mL showed powerful bactericidal
effect when tested on diverse bacterial strains. The high antibacterial potency was attributed to
increased penetration of cells with impairment of cell wall by destroying β-1,4-glyosidic bond leading
to cell wall decomposition [48].

On the other hand, the commonly used synthetic polymers are polyvinyl pyrimidine, polylactic acid
etc. Recently, the MIC of silver nanoclusters functionalized with branched polyethylenimine (bPEI−Ag
NCs) was defined against twelve pathogenic MDR bacteria [49]. The results revealed that a 10 to 15-fold
lower MIC was found for nanoparticles than that of PEI and from two to three times lower than that of
lonely silver nitrate and the noticed wide range antibacterial activity can be assigned to the positive
character of hydrophobic surface ligands that simplify the action of bPEI−Ag NCs with bacterial cells
that initiates membrane injury, besides liberation of silver ions from the nanocluster compound [49].
By using a new seed growth synthesis, the coating of bulk glass materials with silver nanoplates was
achieved. This glass material coated silver nanoplates can exert an antibacterial action based on the
photo-thermal effect through laser-induced hyperthermia, which can be switched on by 808 nm laser
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excitation in 20 min. The laser-induced hyperthermia almost completely eliminated bacteria S. aureus
and E. coli [50]. Moreover, bulk glass surfaces coated with polymer with synthesized citrate silver
nanoplates have ability to strongly absorb laser radiation in the near infrared (NIR) range and this
coating exerts an antibacterial activity against S. aureus and E. coli [51]. The mechanism of action of
these composites are still under debate but they rely on release of silver ions from nano-objects and
the subsequent interaction of Ag with bacteria and the antibacterial action caused by photothermal
effect [50,51].

2.4. Biomolecules Functionalized Nanoparticles

Biomolecules show particular and potent corresponding interactions that can communicate
biological specificity to nanoparticles. Nanoparticles can be easily conjugated with biomolecules
including peptides, proteins, nucleotides, vaccines and drugs. The traditional antimicrobial peptides
(AMPs) derived from endogenous peptides suffer essential obstacles in the form of low stability,
poor activity, high cytotoxicity, and hemolytic activity as well as high dosage for significant
protection [52]. Biological molecules such as antibodies, proteins and DNA have flexibility and
properties to make nanoparticles- biomolecule conjugates for application in biomedical science even
AMPs have gained extensive abilities to combat plant and animal diseases [53]. For illustration,
the peptide, VG16KRKP has not shown activity against intracellular Salmonella typhi, but after
incorporation of the peptide specific residues with gold nanoparticle, the non-toxic Au- nanoparticles
-conjugated VG16KRKP overcome low eukaryotic cell permeability of natural AMPs and efficiently
internalize into cell, showing strong anti-Salmonella activity, through interaction of the peptide residues
with LPS which then lyse the bacteria [54]. In another study, monoclonal antibody modified popcorn
shaped gold nanoparticle selectively destroyed multidrug resistant Salmonella typhimurium DT104.
The bacterial sample was exposed to 670 nm laser radiation for 25 min, and as a result almost 100% of
Salmonella were killed in food samples due to high absorption of light and completely conversion to
heat via the nonradiative properties resulting in photothermal lysis and caused irreparable bacterial cell
damage [55]. Copper sulfide a cheaper alternative when conjugated with bovine serum albumin showed
no killing activity in antibacterial tests for Staphylococcus aureus and Escherichia coli. However, after NIR
exposure, the nanocomposite at low concentration exhibited strong NIR irradiation absorbance and
can be used as an efficient photothermal conversion agent for bacteria ablation (80%) with a 980 nm
laser within 10 min [56].

Tong et al. (2018) reported that the nanocomposite of DNA with Ag- nanoparticles and Graphene
(ssDNA-AgNPs@GO) presented larger activity against Gram-positive and Gram-negative bacteria
with low MIC compared to ssDNA-Ag-nanoparticles and GO alone [57]. The single strand DNA raised
the cohesion strength between ssDNA-AgNPs@GO and bacterial cell membrane, temporarily, the even
spreading of Ag- nanoparticles on graphene oxide is cooperative for connecting and covering bacteria
too [57]. In another report, the oligonucleotides sequence Seq 3 coated on silver nanoclusters was
shown to have bactericidal effects against bacteria in sub-micromolar range. This activity was mainly
attributed to Seq 3 that have more cytosine which can bind with more silver than the other nucleobases
but the activity is not only due to the amount of silver, but the DNA sequence, final structure and Ag
arrangement are key players in the antibacterial effect [58]. The interaction of silver nanoparticles
conjugated with egg-white protein with bacterial cells leading to reactive oxygen species creation,
which prompt oxidative imbalance in the cell, result in the cell membrane deterioration and cell end,
showing high antibacterial activity whereas the MIC for E. coli was 46 µg/mL while 6 µg/mL for
S. typhimurium [59].

3. Nanoparticles as Drug Delivery Systems

One of the important uses of nanomedicine is drugs delivery to specific cells and receptors using
nanomaterials [60]. Nanoparticles have potential to move through the blood stream, cross the biological
barriers effectively and deliver drugs [61]. The transport of drugs to the site of infection is primarily
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based upon efficient loading of the drugs with the enhanced ability to penetrate cells and overcoming
common barriers, as well as response triggered release of the drug [32]. Besides drug loading on
nanoparticles, their release also needs to be controlled. A wide diversity of stimuli- reactive polymers
have been used to advance nanosystems for drug delivery. These systems show drastic variations in
response to various inducements because of creation or disturbing of secondary forces (electrostatic
interactions, hydrophobic effects, hydrogen bonding, etc.), solubility, conformation, degradation,
bond cleavage and reversibility [62].

There are two main modes for drug release in nano-drug delivery systems, locally chemical
stimulated; or externally stimulated. The earlier can occur by simple diffusion and/or through
diverse endocytic processes needing chemical and biochemical motivations (i.e., enzymatic activities,
hydrolysis, pH, etc.). Otherwise, externally physical activated targeting is centered on external
issues, for instance magnet, electrical, ultrasound, temperature and light [62,63]. For example,
Gupta et al. (2004) showed that the surface coating of superparamagnetic iron oxide nanoparticles with
hydrophilic-hydrophobic polymeric compounds (PEG, poloxamines, poloxamers) was significantly
useful for relevant drug delivery by minimizing plasma protein adsorption to the nanoparticles and
eliminating reticuloendothelial system uptake [64]. Food and Drug Administration accepted Visudyne,
stimuli-responsive nanomedicine, which is consumed for photodynamic therapy [62,65].

As the initial illustration of pH triggered-receptive antibiotic secrete and to release in the specific
site, the designation of the nanoparticles relies on acidity gradient of tissues such as skin, digestive tract,
and environment inside cells [66]. Chitosan altered gold nanoparticles was connected to the liposomal
surface to stop the undisciplined union of spherical vesicles. At low acidic PH rates, the attached gold
nanoparticles separate from liposomes and the existence of microbial toxins damaged the liposome
bilayer membranes to liberate antibiotics [67]. Ji et al. (2016) demonstrated the bacterial toxin triggered
drug delivery [68]. Furthermore, in small molecule conjugated nanoparticles, the charges of both
liposome and nanoparticles affect PH stimuli responsive connecting and disconnecting of nanoparticles.
For example, liposome- and gold-nanoparticles bind with bacteria at bodily and acidic PH depending
on charge distribution [67,69]. For enzyme responsive polymeric nanoparticles, Xiong et al. (2012)
used lipase polymeric compound as a drug delivery carrier, once the layers of complex discerned
the lipase liberating S. aureus, the layers are degraded to release vancomycin. Graphene-mesoporous
silica surrounded by hyaluronic acid with overloaded ferromagnetic nanoparticles and ascorbic acid.
When the conjugated compound accesses the infection location, bacteria release the hyaluronidase
which in turn destroy hyaluronic acid. This disruption lead to ascorbic acid changing to hydroxyl
radicals, followed by membrane devastation of bacteria [70].

4. Nanoparticles Cytotoxicity

The toxicity of nanoparticles has remained a significant concern, which has limited their clinical
applications. Creation of reactive oxygen species is one of chief mechanisms of nanotoxicity influenced
by nanoparticle surface chemistry and surface charges [71]. There is no clear distinction among
nanomaterials for their cytotoxicity, and there are several contradictory reports based on the design of
experiments, types of nanomaterials, choice of cells etc. The capture of nanoparticles by endocytosis
and enhancing intracellular death due to faint cell-nanoparticles adhesive interactions are considered
acceptable explanation for increasing the cytotoxicity in case of uncoated nanoparticles. The high
cytotoxicity in relation to increasing nanoparticles concentration, the surface chemical aspects
of nanoparticles determine nanoparticle–cell interaction, adsorption way, and cell behaviour on
contact [66]. Isabel et al. (2017) reported different types of metal nanoparticles against viability and
morphology of cerebral cells [72]. However, it is important to note that these materials have been
tested as drug vectors in other cell lines without affecting viability [73]. In a recent report, the effect of
biogenic silver nanoparticles on breast cancer cell line (MCF-7) cells at specific IC50 doses resulted in
apoptosis through increased ROS and decrease in membrane potency of mitochondria in addition to
cell cycle arrest and DNA shattering causing oxidative burst and mitochondrial function failure in the
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way of MCF-7 death [74]. Jeong et al. (2018) showed the differential comparing in the cytotoxic effects
and mechanism of toxicity of rapid dissolving metallic oxide nanoparticles (CuO, CoO, and ZnO) and
their metal ions constituent using related epithelial cells for inhalation environment. The potential
cytotoxicity of CoO NPs and CuO NPs showed similarities while as ZnO NPs showed a much less
cytotoxicity, because of Zn-metallothionein that can behave as antioxidant, compared to their respective
metal chloride [75]. This difference in toxicities may be caused by various intracellular absorption of
these materials and their interactions as shown in Figure 1.
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Figure 1. Schematic illustration for the different cytotoxic influence of rapid dissolving metal oxide
nanoparticles and their specific metal chlorides. Nanoparticles cross the cell by phagocytosis forming
phagosomes which fuse with spherical lysosomal organelle to arise phagolysosomes. In the low PH
fluid of lysosome, analysis of nanoparticles and its metal ions can break lysosomal layer followed by the
resulted free metal ions attach with metallothionein, while the membrane transporters are responsible
for entering metal ions, then bind to metallothionein.

5. Potential Future Strategies against Bacterial Infections

There is a plethora of research regarding antibacterial efficacy of a wide variety of nanomaterials [76].
In spite of the appealing accomplishments of nanoparticles, the complete potential of nanotechnology
in antimicrobial remedy is distant from getting drug administrative agencies approval [13]. However,
until now no nanomaterials have been approved by Food and Drug Administration against systemic
bacterial diseases as compared to other diseases such as cancer and this is mainly due to limited
knowledge about the mechanism action of nanomaterials especially in humans [77].

In this regard, using the nanoparticles in inhibition of expression of target genes by nucleic
acid-based molecules (microRNA, antisense oligonucleotide, and small interfering RNA) have shown
effective increase in bacterial penetration and/or target delivery to infection sites [13]. Genomic analysis
could be a valuable tool to study the whole or partial gene differentiation to give more insight
about the associated mechanism of particular nanomaterials [20]. An important strategy to develop
highly effective antibacterial agent can be based on the conjugation of multiple antibiotics in various
mechanistic methods at one platform to interrupt the bacterial defense system and simultaneous
delivery of more than one drug in the carrier against the same pathogen. Moreover, decrease of excessive
excipients and medications ease drug-associated side influences and drug resistance [78]. For example,
using multiple drugs in one composition for enhancing efficacy of the mixture by synergistic effects of
combination (gentamicin and chloramphenicol) loaded on silver nanoparticles demonstrated better
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antibacterial effect compared to Ag- nanoparticles alone when tested against MDR Enterococcus faecalis
associated with hospital-acquired infections [79,80]. In addition, the enhancing vascular permeability
and retention at infection sites could be significant in the management of systemic nanoparticle drug
delivery [13]. Another interesting avenue of research in drug discovery against bacterial infections
could be repurposing of orphan drugs or drugs known to effect multiple targets in humans against MDR
bacteria. For instance, the conjugation of auranofin, which is used for remedy of rheumatoid arthritis,
with Poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed potent bactericidal effect against
MDR Streptococcus species at 0.25 µM while the auranofin-nanoparticles was proficient of declining the
bacterial cells around 4 times more than the free drug [81]. Biogenic nanoparticles, or nanomaterials
coated with natural compounds of plants and animal origin has produced tremendous antibacterial
effects which could be of potential future value. Moreover, newer classes of antibiotics, which have
not yet been tested against bacteria in conjugation with nanomaterials could also result in increased
efficacy and slow down the chances of development of resistance [82]. Premature drug delivery and
use of nanostructured carriers functionalized with antigen-specific ligands exhibited improvement in
the treatment of infectious diseases and in systemic delivery [78]. Recently, theranostics have gained
significant importance in biomedical application and hold the promise of enabling pre-screening and
therapeutics that may also be beneficial for antibacterial management [13]. However, the development
of a practical and commercial application of nanotheranostic has not been yielded yet [82]. We anticipate
that developing multiple functional modalities such as identification, isolation, and therapy at one
platform will decrease the disease burden and will cause an overall improvement in the healthcare
setting against bacterial infections.

6. Conclusions

In summary, here we emphasize multiple approaches that develop nanomaterials as therapeutic
agents and drug cargo system. The adjustment of chemical functional group on the nanomaterials
surface establish a wide range program for new antibacterial formation. The opportunity for fabrication
of materials to realize great attraction between nanoparticles and bacteria, providing synergistic action
with antibiotic, and decreases intensity of antibiotic resistance pathway. Finally, increasing the
antibacterial efficacy, lowering of cytotoxicity, and avoiding immune cells recognition are basic
requirement for fabrication a novel nanomaterial. The variety of nanomaterials presented in this review
including antibiotics coated nanoparticles, small molecules conjugated nanoparticles, polymers and
biomolecules stabilized nanoparticles, and nanocomposites have shown tremendous potential for
biomedical applications and development of nanomedicine against bacterial infections.
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