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Abstract

A substantial fraction of the human genome displays high sequence similarity with at least 

one other genomic sequence, posing a challenge for the identification of somatic mutations 

from short-read sequencing data. We here annotate genomic variants in 2,658 cancers from the 

Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort with links to similar sites across the 

genome. We train a machine-learning model to use signals distributed over multiple genomic 

sites to call somatic events in non-unique regions and validate it against linked-read sequencing 

in an independent dataset. Using this approach, we uncover previously hidden mutations in 

~1,700 coding sequences and in thousands of regulatory elements, including in known cancer 

genes, immunoglobulins, and highly mutated gene families. Mutations in non-unique regions are 

consistent with mutations in unique regions in terms of mutation burden and substitution profiles. 

The analysis provides a systematic summary of the mutation events in non-unique regions at a 

genome-wide scale across multiple human cancers.
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Introduction

Catalogs of somatic mutations in cancer promise insights into disease-initiating 

pathways, underlying evolutionary processes, and the identification of potential therapeutic 

opportunities. Large-cohort studies, for example The Cancer Genome Atlas (TCGA, https://

www.cancer.gov/tcga) and the International Cancer Genome Consortium (ICGC, https://

dcc.icgc.org/), have shed light on the complexity of the mutational landscapes in gene-

coding regions. The Pan-Cancer Analysis of Whole Genomes (PCAWG) study has further 

undertaken the analysis of 2,658 whole cancer genomes from the ICGC and TCGA to 

characterize regions unobserved via exome sequencing studies1. This resource has led to 

studies of the processes underlying somatic events2, complex structural variation3, driver 

genes4, and timing5. However, these analyses rely on variants that can be positioned 

uniquely in the genome and thus the repertoire of variation in non-unique regions still 

remains unexplored.

Short-read sequencing - the technology used in cancer studies including PCAWG - identifies 

somatic mutations by comparing fragments of DNA from normal and tumor samples to 

a reference genome. However, the human genome contains sequences that are present at 

more than one chromosomal location6,7. At the scale of 100bp, 13% of the genome is 

affected (9% at 150bp, 8% at 200bp). These regions, which are spread throughout the 

chromosomes7,8, range in multiplicity from two to several thousand copies and in identity 

of sequences from vague to perfect matches. This non-uniqueness complicates genetic 

analyses and creates recurrent blind spots to somatic mutation calling. Irrespective of their 

amenability to analysis, non-unique regions include genes and regulatory elements that 

participate in human diseases9, developmental processes10, as well as splicing factors and 

nuclear RNAs that are recurrently mutated in cancers11,12. Blind spots in these regions thus 

hinder a systematic understanding of relevant biological processes.

To alleviate the limitations of variant detection from short-read sequencing due to non-

unique regions, a technique called thesaurus annotation characterizes mutations in terms of 

equivalence classes of genetic positions13,14. This approach does not pinpoint the precise 

location of mutations, but it enables calculation of summary statistics such as mutational 

load. It also provides sufficient information about somatic events to study mutational 

signatures15 and to identify affected functional elements. In the present work, we employed 

this technique to study the PCAWG dataset with the aim to describe the landscape of 

somatic single-base substitutions. This uncovers a vast set of somatic events across cancer 

genomes and cancer types.

Results

Thesaurus annotation uncovers a distinct class of mutations

To perform an analysis of somatic mutations that is inclusive to non-unique regions, we 

set up a pipeline for variant calling on the PCAWG dataset without filtering reads based 

on mapping quality (Methods). This provided a comprehensive set of candidate positions 

in all regions of the genome. We then annotated the sites using a procedure that links 

candidates to possible alternative positions in the genome13. The annotation serves to collect 
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information from reads that may be ambiguously mapped to more than one location in the 

genome, to avoid identifying the same underlying variant more than once, and to suggest 

one representative coordinate for each variant (Figure 1a).

To search for somatic mutations among the candidates, we utilized curated PCAWG data in 

two distinct ways. First, we used a panel of 237 genomes from normal tissues to filter out 

common germline polymorphisms and sequencing artifacts. Second, we trained a machine 

learning model to classify somatic events. Similar to other machine-driven approaches16,17, 

our pipeline provided an algorithm with 18 features about candidate sites collected from 

tumors and matched normal samples. The algorithm then learned a strategy to call mutations 

from the candidates to match the PCAWG consensus calls1. Crucially, training and testing 

were performed using only data from unique regions, where the PCAWG call set is expected 

to be of high quality, and the features provided did not include information about mapping 

quality. The final classifier achieved a root-mean-square error of 8.9%, with false discovery 

and false negative rates of 7.6% and 4.3%, respectively (Figure S1). The most important 

feature for classification was allelic frequency in the matched normal sample (increase in 

classification error to 37% when omitted), but many other features such as allelic frequency 

in the tumor and the frequency in the panel of normals contributed as well (Figure S2).

After training the machine-learning model, we processed the entire PCAWG dataset and 

thereby produced new sets of somatic mutation calls. We split mutations in the new call set 

into those placed uniquely in the genome, which we describe further as ‘simple’ or ‘local’, 

and those that can be linked to alternate sites, which we term ‘thesaurus’. Compared to the 

PCAWG calls, our set of simple mutations showed median false discovery and false negative 

rates per sample at 7% and 9%, respectively, albeit with variability across the samples in 

the cohort (Figure 1b). Such discrepancies and variability are not unexpected, as differences 

among computational pipelines are well-documented18,19. Indeed, modeling revealed that 

mutation frequency, coverage, and mutation spectrum can explain the largest discrepancies, 

and that high false discovery and false negative rates are related to internal consistency 

within the consensus itself (Figure S3). Performance was stable across cancer types (Figure 

S4).

The set of thesaurus mutations showed little overlap with the PCAWG calls (Figure 1b). 

This indicates that most of those sites were previously hidden and hence justifies starting 

our pipeline with a de-novo set of candidate sites. To investigate whether these sites are 

reasonable additions to the samples’ landscape, we studied total mutation load across 

samples among the simple and thesaurus calls and found a high correlation (Spearman 

rho 0.96) that was concordant with direct proportionality (Figure 1c). Other properties such 

as allele frequency and mutation coverage were also concordant (Figure S5). Moreover, 

counts of thesaurus mutations correlated only weakly with sequencing coverage (spearman 

rho 0.16), suggesting the calls were not dominated by noise.

We then studied the position of mutations in relation to annotations of non-unique sequence. 

As expected, PCAWG calls showed under-representation in regions with low mapping 

quality (Figure 1d). A simulation of mutation calls that might be obtained using a naive 

pipeline - considering loci in non-unique regions but without using thesaurus annotation 
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- showed severe over-representation (Figure 1d), providing a justification for common 

mutation callers to filter out such regions. In contrast, our pipeline produced an intermediate 

distribution, albeit with a systematic over-representation compared to the proportion of 

non-unique sequence. This can be due to a residual level of false positives, due to gaps in the 

sequence of the human reference genome, or due to a propensity for samples to accumulate 

or tolerate mutations in those regions.

As an orthogonal validation, we performed short-read and linked-read sequencing on one 

additional cancer sample (Methods). The linked-read protocol uses barcodes to help aligners 

position reads at their correct coordinates in the reference genome20,21 and thus expands the 

regions where variation can be assessed by common mutation callers. In the short-read data, 

our pipeline called 3,074 simple and 189 thesaurus somatic mutations, which we sought 

to confirm in the linked-read data. Validation rates for simple variants were proportional 

to the variant allele frequency in the short reads and surpassed 90% at allele frequency 

of 0.5 (Figure 1e, Figure S6). For calls with thesaurus annotation, the validation rate 

surpassed 80%; it was on average just 11% lower than for local mutations across allelic 

frequencies between 0.1 and 1. This suggests that while thesaurus calls may retain more 

false components than local calls, the large majority of hits from our pipeline represent real 

events.

Thesaurus mutations are consistent with known processes

Somatic mutations in cancers appear through several biochemical processes, many of 

which leave distinct patterns in samples’ mutation profiles2,15. To a first approximation, 

these processes can be presumed to act similarly in unique and non-unique regions and 

therefore manifest among simple as well as thesaurus-annotated mutations. To test this 

hypothesis, we stratified mutations by trinucleotide contexts. These profiles, which consist 

of 96-dimensional vectors, were correlated in most samples (Figure 2a). Representative 

samples (Figure 2b) suggested that the strength of correlation was influenced by the 

mutation load. We thus investigated various explanatory variables through linear modeling 

and found that 85% of the variability in the correlations could be accounted for by mutation 

load, the entropy of the trinucleotide profiles, and technical features such as depth of 

coverage (Figure S7).

To summarize the heterogeneity of the mutation profiles across the cohort, we visualized 

the similarities between samples in a low-dimensional embedding (Figure 2c). In contrast 

to analyses that decompose mutation profiles into independent signatures2,15, this technique 

compares samples in a holistic manner. Profiles based on simple mutations clustered into 

distinct groups, reproducing known characteristics of the pan-cancer cohort. For example, 

skin and kidney cancers separated from all others in this visualization, indicating that 

their mutation profiles are formed by distinct combinations of mutational processes. We 

then asked to what extent thesaurus mutations capture the same patterns and projected the 

thesaurus profiles onto the same visualization. Because of the lower overall counts, the 

resulting patterns were noisier, but nonetheless mirrored the original. This global picture 

was confirmed by focusing on sets of samples from distinct areas of the embedding. 

For example, one group of samples exhibited profiles driven by APOBEC activity in 
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both local and thesaurus mutations (Figure 2d). Other sample groups from other parts of 

the embedding also showed consistent profiles (Figure S7). Correlations of trinucleotide 

counts in the whole cohort as well as group-level examples together indicate that thesaurus 

mutations have similar characteristics as simple mutations, both across cancer types and in 

terms of molecular mutagenic processes.

Thesaurus mutations affect thousands of functional elements

While most mutations in cancer genomes are passengers, some inflict functional effects, 

for example, by modifying protein structure or altering gene regulation. To create a 

comprehensive summary of the impact of thesaurus mutations in tumors, we partitioned 

the genome into non-overlapping regions described by a gene identifier and a functional 

label (coding sequence, intron, promoter, untranslated, intergenic). These regions are defined 

through gene annotations, not sequence uniqueness, and thus we found that some carried 

only simple mutations, others contained only thesaurus mutations, and others harbored both 

types. In aggregate, thesaurus mutations were associated with thousands of genes, including 

1,744 coding sequences (Figure 3a).

Several strategies are used to assess the importance of mutations and identify driver 

genes22–25. Recurrence in a cohort is a key indicator, but this signal can be confounded 

by factors such as region size, chromosomal location, proximity between adjacent mutations, 

sequence composition, and, in the case of coding sequences, effects on protein structure23,26. 

However, these covariates can themselves be confounded by non-uniqueness in the genome. 

Here, in order to study mutation patterns across all region types in a way compatible 

with thesaurus candidates, we performed modeling using only region length as a covariate 

(Methods). Starting with coding sequences, we fit quantile regression models to describe 

cohort frequency in genes with unique sequence (Figure 3b). The resultant model captured 

the expected upward trend, with established driver genes such as TP53 and KRAS as strong 

outliers. Applying the same model on genes that include non-unique sequences revealed 

the same trends. Interestingly, the cohort frequencies of many genes shifted across quantile 

boundaries depending on whether thesaurus mutations were excluded or included.

As the same modeling strategy is also suitable to study mutations outside of coding 

regions, we carried out a genome-wide analysis and summarized the deviation of individual 

regions from model trends using z-scores (Figure 3c, Table S1). Distributions of z-scores 

for elements affected only by local mutations centered around zero by construction. For 

regions affected by thesaurus mutations, distributions were also centered near zero despite 

this property not being built into the models. There was a consistent shift toward positive z-

scores, but distributions for genes harboring thesaurus mutations exclusively included heavy 

tails of negative scores, indicating the mutation set may still suffer from false negatives. 

Indeed, the proportions of thesaurus mutations relative to all mutations in individual genes 

were consistent, or lower, than the fraction of non-unique sequence in those genes (Figure 

S8). Scores were consistent when the same modeling was repeated on sub-cohorts and, for 

coding regions, were correlated with a ranking produced by a specialized scheme accounting 

for additional covariates (Methods, Figure S9). Overall, the z-scores provide a reasonable, 

albeit rudimentary, prioritization of hits.
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To further refine the prioritization, we computed an entropy-based measure of specificity 

across cancer types (Methods). We then used the pan-cancer z-scores and specificity 

measures together to visualize hits in coding sequence (Figure 3d), promoters (defined as 

regions of at most 2000bp upstream of genes, Figure 3e), and other regions (Figure S10, 

S11, Table S1). This approach captured expected characteristics, in particular that most 

genes are neither recurrently mutated nor specific to a cancer-type, and that both dimensions 

carry outliers. Coding regions in TP53 and KRAS were the top hits for pan-cancer 

recurrence and specificity, respectively. Genes with thesaurus mutations were found in 

intermediate regions of the distributions interspersed among other cancer genes. Strikingly, 

top-ranked thesaurus genes included well-known cancer genes such as PIK3CA, which 

harbored thesaurus mutations in breast cancers. Another pattern, visible in the analysis of 

coding sequences, but more pronounced among promoter sequences (Figure 3e), was high 

recurrence and specificity among immunoglobulin elements of the IGLC, IGHG, IGHJ, and 
IGHM families. These instances offer leads for more in-depth investigation of thesaurus hits 

in selected gene families.

Recurrent mutations affect gene families

As some genes with thesaurus mutations already have established links to cancer, we began 

an exploration of hits by considering the overlap of all thesaurus genes with the cancer gene 

census27. Our pipeline detected thesaurus mutations in the coding sequences of 35 census 

genes (Figure 4a) and the untranslated or promoter regions of 29 more (Figure S12). In 

four of these genes (NUTM2A, NUTM2B, SSX2, SSX4), thesaurus mutations comprised 

their entire mutational load. This is consistent with these genes being recorded in the census 

because of translocations and fusions, which are detected by algorithms other than somatic 

substitution calling. Thesaurus substitutions in these cases provide a complementary set of 

mutation events. For other genes, the proportion of thesaurus mutations relative to simple 

mutations was in concordance with the fraction of non-unique sequence within those genes 

(Figure S12). The proportion of samples affected exclusively by thesaurus mutations ranged 

from a few percent (e.g. 5% for PIK3CA, 2% for ROBO2) up to a large majority (e.g. 88% 

for RGPD3).

To gain more insight into where the mutations lay along the gene structure, we visualized 

variant-level results along the gene sequences, splitting the results by mutation type and 

comparing with the PCAWG mutation calls (Figure S13, S14, S15). For PIK3CA and 

KMT2C, two of the genes with the highest mutation load, our pipeline detected 13% and 

15% additional simple substitution events compared to the PCAWG set (Figure 4b). This 

is broadly consistent with our previous comparisons with the consensus and can in part be 

attributed to technical differences in the pipelines18. Thesaurus mutations were located in 

630bp and 2.63kb segments of their coding regions, respectively. There was a significant 

enrichment compared to the PCAWG calls (two-sided Fisher tests, PIK3CA, p=4x10-4, 

KMT2C, p=8x10-23), and, especially for KMT2C, the new mutations filled a noticeable gap 

in the distribution of simple variants.

Outside of established cancer genes, most genes that harbor thesaurus mutations also 

contain at least some simple substitutions. Examples with heavy mutation burden include 
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ANKRD30A, an ankyrin-repeat containing gene linked with breast cancer28, and TPTE, 

a phosphatase linked to the PTEN pathway29 (Figure 4c). Given their high mutation load 

and interactions with cancer pathways relevant to patient stratification schemes30, thesaurus 

mutations that fill gaps in their mutation profiles offer direct opportunities to test their 

translational relevance.

While thesaurus mutations constitute a minority of hits for most genes, they represent the 

dominant class for others (Figure 4d). Among genes highlighted by our z-score analysis 

and also by alternative prioritization methods, TRIM49 and TRIM64B, two members of the 

tripartite motif family of proteins, were prominent with mutations along their entire gene 

body. This family is involved in innate immunity, autophagy and carcinogenesis31. AMY1B 
encodes an amylase isoenzyme typically expressed in the salivary gland and the pancreas 

and is embedded in a region of variable copy-number. It may influence metabolism, but its 

high mutation burden may also be a corollary of the genomic fragility of its surrounding 

genomic region32. POTEM is another gene with an ankyrin domain with heavy mutation 

burden. The gene family has been discussed in studies of expression-based biomarkers33.

Each of the thesaurus mutations in our dataset is annotated by a link to at least 

one alternative genomic site with a similar surrounding sequence. These links describe 

ambiguities in assigning the location of the individual somatic events. True to the ubiquity 

of non-uniqueness across the genome, we found mutations in coding sequences linked to a 

variety of targets, including untranslated, intronic, promoter, or untranslated regions of other 

genes. Mutations in PIK3CA, for example, linked to an untranslated region of a pseudogene. 

Links in other genes often interconnected members from the same family (Figure 4e). 

These cliques prompted us to consider mutation load across several related genes. Using the 

amylase gene family as an example, the detected mutations across five genes affected 3.1% 

of non-hypermutated samples in the cohort. Samples affected by the individual genes were 

to a large extent non-overlapping (Figure 4f), ruling out the possibility that the mutation set 

is dominated by double-counting. When we modeled the entire gene family as a single entity 

in our quantile regression model, the z-score for the family rose from 2.21 for AMY1A 
alone to 4.04 for the gene group. Analogous patterns, with variability on the degree of effect 

on the joint scores, occurred in other families (Figure S16-S24).

Among genes highlighted due to mutations in promoter regions were several members 

of the immunoglobulin (IG) family (Figure 4g, Figure S25, S26). The immunoglobulin 

locus undergoes hypermutation during B-cell maturation through cytidine deamination34 and 

genomic rearrangements. Consistent with the role of this process in antibody diversification 

and immunity, mutations associated to IG gene fragments were enriched in leukemias and 

lymphomas. Among sequences upstream of all IG gene segments, thesaurus mutations 

represented 19.7% of all variants in those cancers. Furthermore, the trinucleotide mutation 

profiles were dominated by C>T substitutions and were consistent with reported sequence 

hotspot patterns34 (Figure 4h, S15). This suggests that thesaurus annotation reliably detects 

these non-germline events and can thus inform translational approaches that use immune 

signatures.
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Discussion

The structure of the human genome has been shaped by its evolution, including by 

duplications and rearrangements. This history leaves a substantial portion of the genome 

to appear non-unique at the scale of short reads used by high-throughput sequencing 

studies. As long- and linked-read sequencing protocols become established and widespread, 

these regions will become accessible for direct analysis20,35,36. However, existing datasets, 

including efforts to sequence whole genomes of pan-cancer primary tumors1 and 

metastases37, already offer opportunities to evaluate somatic events in these non-unique 

regions.

When specific sequences are of interest a priori, targeted approaches can perform re-analysis 

of subsets of sequencing data. This analytic strategy is effective when there are complex 

rearrangements as in the case of the HLA locus38, or sequences are present in a large 

number of copies as in the case of transposons39. However, the human genome also 

carries areas that are almost exactly duplicated due to recent evolutionary events and are 

present in fewer than ten copies. Such regions can be studied in a systematic manner 

through a technique that links specific genomic positions and provides information about 

clusters based on multi-locus alignments13. Our pipeline collects multi-locus annotations 

and leverages high-quality mutation calls from PCAWG to train a machine learning model. 

The resulting calls for somatic substitutions provide a first systematic summary of the 

mutation events in non-unique regions at a genome-wide scale and across several cancer 

types.

The landscape of thesaurus-annotated mutations covers over 1700 coding genes, 4500 

promoters, and thousands of other functional elements. The mutation burden in these regions 

is consistent with known properties of cancer types. Trinucleotide substitution patterns that 

characterize underlying molecular mechanisms are concordant as well. Mutation rates are in 

line with those in genes with unique sequences. Interestingly, outlier genes with thesaurus 

mutations are affected to an extent comparable to established cancer genes. These hits 

provide tantalizing leads toward a more complete picture of mutational processes in cancers.

Our analyses of cohort mutation rates, regional recurrence and hotspots, cancer-type 

specificity, and co-occurrence are only a first-pass summary of the patterns in these data. 

Indeed, mutational processes are modulated, directly or indirectly, by a myriad of factors 

that include nucleotide content, chromatin accessibility, and gene expression23. While 

methods developed in these areas provide guidance for more refined analyses, they rely 

on auxiliary data as model covariates. In the context of non-unique regions, these covariates, 

as they are often acquired through short-read sequencing, are likely to suffer biases related to 

sequence uniqueness40. A careful examination of those covariates in the non-unique genome 

is a critical step toward better understanding of the statistical importance of the uncovered 

mutational landscape. Analyses will also be required to understand the functional impact 

of these mutations, although preliminary results show that the mutant alleles are expressed 

in RNA (Figure S27). In an orthogonal direction, our analyses can be extended to other 

genome assemblies. New assemblies and genome models contain an even higher proportion 

of sequence that is non-unique (in GRCh38, 19% at the scale of 100bp, 14% at 200bp) 
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and thus more variants require thesaurus annotation (Figure S28). Our approach is directly 

applicable and can help characterize the mutation landscape in samples aligned with these 

genome assemblies.

Beyond somatic substitution events, cancer genomes also suffer other types of mutations, 

including small insertions and deletions and regional copy-number changes4. Such events 

are fewer in number than SNVs but can have profound functional consequences. Our dataset 

carries evidence that such events occur in genes with non-unique sequences. Our analysis, 

however, does not include them because of current limitations in thesaurus annotation. It is 

thus clear that, despite uncovering thousands of additional somatic events, more still remain 

hidden. Similar considerations are also relevant for comparative genomics of germline 

variants and their relation to rare diseases41. The challenges in detecting these events are 

technical, but can be overcome with careful strategies for variant comparison42, and would 

help refine views on the genomics of disease.

Online methods

Cancer cohort

Data for cancer samples and matching normal tissue were obtained through the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) consortium1. The dataset consisted of 2,658 

samples from 38 distinct cancer types (22 organ systems) and 47 consortium projects. All 

alignments were used in their original formats as provided by the consortium, aligned to the 

hs37d5 reference build of the human genome using bwa-mem43.

A random set of 237 normal-tissue samples reported not to be contaminated by tumor cells 

were selected to form a panel of normals. These samples originated from all 38 cancer types. 

The panel thus captures heterogeneity of human populations, although it cannot be treated as 

a true representative of all genetic variation.

Annotations

All calculations were performed against the hs37d5 genome reference build, including decoy 

chromosomes. Gene annotations were obtained from GENCODE, release 1944.

Variant calling, thesaurus annotation, and candidate prioritization

An initial set of variants were called from bwa-aligned sequencing data using Bamformatics 

(v0.2.5) (https://github.com/tkonopka/Bamformatics). Settings were left at their defaults, 

except for argument --minmapqual 0, which instructs the software to use all primary read 

alignments irrespective of mapping quality. The software used in this stage is not critical and 

could be replaced by one of many other tools, as long as capable of processing all reads 

irrespective of mapping quality.

Variants detected in samples included in the panel of normals were aggregated into a single 

table. The frequency of each variant in this panel was kept as a proxy for population 

frequency.
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Variants from tumor samples were annotated using GeneticThesaurus (v0.2.1) (https://

github.com/tkonopka/GeneticThesaurus). Customized settings included --minmapqual 0, 

which instructs the software to use all primary aligned reads irrespective of mapping quality, 

and settings --many 20 --toomany 100, which limit thesaurus links to a smaller number than 

set by default. The thesaurus annotation process was provided access to alignment data for 

matched normal samples. Output from this stage included tables linking variants to related 

sites in the genome, as well as tables associating each variant in the tumor with features 

such as allelic frequency, coverage, and analogous features from the matched normal. These 

tables included data based only on the called variant position as well as data pooling 

information from all thesaurus-linked sites. Variants were automatically assigned filter codes 

by the software - PASS, which we described as local in this work, ‘thesaurus’ when linked 

to alternative sites, ‘thesaurusmany’ when potentially linked to more than 100 sites, and 

‘thesaurushard’ when in a thesaurus region that could not be processed due to nearby indels. 

Downstream analyses and modeling were carried out using ‘local’ and ‘thesaurus’ sites only, 

although sites marked ‘thesaurushard’ were also included in certain visualizations.

Following the variant annotation by the GeneticThesaurus software, variants from each 

tumor were compared to the panel of normals. Items present at a frequency greater than 

1% in normal samples were deemed to consist of common germline variants or sequencing 

artefacts and were excluded from downstream analysis. Prioritized candidates were further 

annotated with features from the CIGAR strings of aligned reads using custom scripts.

Machine learning to detect somatic mutations

A set of 300 tumor samples and their matching normal controls were selected at random for 

machine-learning. The set contained representatives from all the major PCAWG histologies. 

The set was split into training, testing, and validation sets with 150, 50, and 100 samples, 

respectively. Separately, PCAWG mutation calls for the same samples were assembled 

into a truth set. Importantly, the PCAWG mutation calls were filtered using the same 

panel-of-normals frequency filter used on the candidate sites and then trimmed further to 

remove items that were not present in the variant candidates. These steps ensured that 

the candidates and the truth set are consistent, and that all items in the truth set could in 

principle be obtained from non-missing features in the candidate data. Both the candidate 

and the truth dataset were restricted to sites with a PASS filter code in the candidate data, i.e. 

to those sites not linked to any additional locations via thesaurus links. This ensured that the 

identification of somatic mutations among the candidates could be determined by technical 

features of the sequencing data and biological aspects of the tumor, and was not confounded 

by aspects related to mappability.

Machine learning models were trained using xgboost45 - an algorithm based on random 

forests - with default settings except when stated. To explore the effect of data quantity on 

classification performance, a series of models were trained based on an increasing number of 

tumor samples. The samples used in each model were selected with a stochastic procedure 

that attempted to use distinct samples in replicates. Once the tumor samples were selected, 

models were trained using all the data from those tumors. After training, all models were 

evaluated against the entire test set using false-discovery (ratio of false calls among all 

Tarabichi et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2022 January 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/tkonopka/GeneticThesaurus
https://github.com/tkonopka/GeneticThesaurus


positive calls) and false-negative rates (ratio of missed calls among all calls in the truth set). 

After obtaining a satisfactory set of hyperparameters, a final model was trained using the 

entire set of 150 training samples and re-evaluated on an independent validation set.

Feature importance in the final classifier was assessed using a bootstrapped dropout-

loss procedure. This procedure subsamples the testing dataset, permutes values within 

individual features or certain groups of features, and assesses how the predictions on the 

adulterated data compare with predictions based on the original data. The downsampling and 

permutation procedure was repeated 100 times and average dropout-loss values reported.

This model was then applied to call somatic single nucleotide variants on the entire set 

of candidate sites irrespective of filter code, i.e. on unique and non-uniquely mappable 

sites. Importantly, for features that can be affected by mappability, the values provided 

to the classifier were those estimated by the GeneticThesaurus annotation procedure, i.e. 

averages over all sites linked by the thesaurus. By construction, this procedure ensured that 

in well-mappable areas, the classifier functioned in the same way as during training. In 

non-unique regions, the classifier made predictions from data informed by multiple locations 

in the genome.

Modelling mutation load

Called mutations were classified into two groups - local and thesaurus - based on whether 

a site was associated with an alternative location via a thesaurus link. The mutation load 

in each sample was defined as the total number of positions for each type. Cases where 

mutations were called at more than one site and linked together via a thesaurus annotation 

were treated as single events; the site with the higher allelic frequency was marked as 

primary and taken forward for subsequent analysis. The relation between the mutation loads 

associated with local and thesaurus filter codes was modeled using a power-law equation

thesaurus load scaling simple load)exponent,

where scaling and exponent are free parameters. Under an assumption that thesaurus 

mutations appear via the same mechanisms as simple mutations, the exponent would be 

equal to unity and the scaling constant would indicate the relative size of non-unique and 

unique genomic regions. The model can be reformulated as, log(thesaurus load) ~ scaling + 

exponent log(simple load). The free parameters were solved using simple regression.

Linked-read sequencing

A sample from a patient with a malignant peripheral nerve sheath tumor was selected for 

sequencing. The patient provided their written and informed consent to provide samples for 

this study, which was approved by the National Research Ethics Service (NRES) Committee 

Yorkshire and The Humber – Leeds East (15/YH/0311).

High molecular weight DNA was extracted from frozen tissue according to the 10x 

genomics protocol (CG000072). In short, 500 μl of cold nuclei isolation buffer was added 

(sigma pure prep lysis buffer (NUC201-1KT), 1mM DTT, 10% Triton X-100) to a small 
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piece of frozen tissue in a 1.5 ml tube (and homogenized by moving a pestle up and down 

10-20x). After settling, the supernatant was transferred to a new tube and centrifuged for 

5 min at 500xg (4˚C). The supernatant was removed without disturbing the pellet and the 

following was added: 70 μl of cold PBS, 10 μl of proteinase K and 70 μl of Digestion buffer 

(20mM EDTA, 2nM Tris-HCl, 10mM N-laurylsarcosine sodium salt and water). The pellet 

was dislodged by tapping the tubes lightly and then left to rotate for 2h at 20˚C. Tween-20 

was added to a final concentration of 0.1% and pipette mixed 5 times. An equal amount 

of 1x SPRIselect reagent (Beckman Coulter B23317) was added followed by rotation for 

20 min. The beads were then washed twice with 70% ethanol and resuspended in 50 μl 

sample elution buffer (Qiagen AE buffer with 0.1% Tween 20). After incubation at 20˚C for 

5 min, the beads were put on a shaker at 1400rpm for 3 min (25˚C) to elute the DNA. The 

samples were quantified using the Qubit. Linked reads libraries were generated using the 

10x Chromium, following the manufacturer’s instructions. The library was sequenced using 

paired-end 150bp reads with an 8bp index on a single lane of an Illumina HiSeq X.

Validation through linked-read sequencing

BCL files were processed and demultiplexed to FASTQ files using bcl2fastq v2.20.0. Reads 

were mapped to the hs37d5 reference build, de-duplicated and filtered using the LongRanger 

(v2.2.2) WGS pipeline with the --somatic flag. This pipeline leverages the Chromium 

molecular barcodes and GATK v4.0.8.1 to call and phase single nucleotide variants, indels, 

and structural variants. Overall, a total of 1,538,338 GEMs were generated, containing on 

average 589kb of DNA with an average size of 86kb, each producing a median of 47 linked 

reads for a final 38x depth of coverage and 32x median depth at mutated sites.

The reported variants were compared to the calls from the machine learning approach on a 

standard short-read WGS dataset of the same tumor sample. Simple variants called from the 

short reads were declared validated if they were part of the PASS mutations in the linked 

reads. Thesaurus calls were declared validated if they were part of PASS mutations in the 

linked reads, or if their thesaurus-linked sites were part of the linked-read dataset. This 

approach allows for ambiguity in placing the mutation location based on short-read data, but 

does not inflate detection rates13.

Mutation trinucleotide profiles

Trinucleotide contexts were extracted for all called mutations in the cohort. These 

neighborhoods were used to assign each substitution mutation to one of 96 categories 

as previously described15. Counting the number of mutations of each type produced two 

profiles - one based on simple mutations in unique genomic regions and one based on 

mutations with thesaurus links.

For correlation analysis, the simple and thesaurus profiles were treated as 96-dimensional 

vectors and correlation was evaluated using the Spearman method. Because mutation 

profiles are degenerate when the overall number of mutations is small and constrained to 

non-negative counts, statistical significance was estimated by simulation. For a given profile 

of thesaurus mutations, 10,000 random profiles were generated with an equivalent number 

of mutations. The Spearman correlation value between the local and thesaurus profiles were 
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compared to the distribution of correlations between the local and simulated profiles. The 

procedure provided approximations to p-values that were sufficiently precise to determine 

significance at nominal and multiple-testing adjusted levels.

For visualization of similarities of the mutation profiles, count-based mutation profiles 

were adjusted using allele-frequency data. This adjustment provided weighting toward 

well-measured mutation instances and avoided degenerate comparisons based on integer 

counts. Mutation profiles based on simple mutations were sum-normalized and embedded 

into a two-dimensional space using UMAP46,47, a dimensional reduction technique, using 

a euclidean distance metric. Following generation of the embedding based on simple 

mutations, the resultant model was used to predict the position of allele-frequency-adjusted 

profiles based on thesaurus mutations.

Modeling of mutation frequency

Mutation frequencies were computed by counting the number of samples (patients) with at 

least one somatic mutation in regions of interest. In order to avoid counts being inflated by 

likely passenger mutations, hyper-mutator samples were identified and removed from this 

calculation and subsequent modeling. Hyper-mutator status was set if a sample contained 

more than 300 mutations in coding regions, a procedure previously described in other 

studies of driver mutations23,40. In practice, this criterion omitted 198 samples (7.5% of the 

cohort) from the mutation frequency analysis.

Mutation frequencies were assessed on non-overlapping genomic regions labeled as coding 

(cds), intronic (intron), untranslated (UTR), promoter, or intergenic. Each region was 

associated with a genomic length, a frequency based on simple mutations alone, a frequency 

based on thesaurus mutations alone, and a frequency based on both simple and thesaurus 

mutations.

Modeling of the relation between region size and mutation frequency was performed using 

quantile regression. The model used logarithmically transformed frequency and region size,

log frequency a0 + a1log(size) + a2(log(size))∧2,

With a0, a1, and a2 as free parameters. The quadratic term allows some nonlinearity in the 

relationship between size and frequency, which is required to allow the growth in frequency 

to taper for very large regions. Quantile regression with this model was performed at the 

50% percentile to describe the primary trend, and at 5%, 25%, 75%, 95% levels to obtain 

intervals of variability. After fitting the parameters, each genomic region was associated with 

an expected mutation frequency and an interquartile interval.

Quantile regression based on a linear equation is guaranteed to produce fitted models that 

preserve ordering of percentiles, e.g. with a model at the 75% quantile always yielding 

larger values than at 50%. This property is not guaranteed for models with higher-order 

terms. Predictions from the fitted models were thus adjusted post-hoc. Furthermore, the 

interquartile interval was forced to correspond to at least 1/N, with N being the number of 
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samples in the modeled cohort. All model predictions were restricted to the unit interval, [0, 

1].

Identifying driver genes with dndscv

The dN/dS ratio was computed through maximum likelihood estimates across trinucleotide 

contexts using dndscv23. After removing hypermutator samples with more than 300 coding 

mutations, dndscv was ran on the pan-cancer cohort to identify candidate cancer genes. 

The calculation used the pooled set of thesaurus and simple mutations, but did not correct 

for epigenetic covariates as these covariates are not annotated for non-uniquely mapping 

regions.

Cancer type specificity

Specificity of mutations was quantified using information entropy, defined via Shannon’s 

formula,

S = − ∑
1

P1lnp1

with the sum running over cancer types. Probabilities pi for each cancer type were defined 

as pi = (ci + ɛ)/ ∑j(cj + ɛ) with ci being the count of patients (samples) carrying a mutation 

in the region and the constant є being a pseudocount regularization. The regularization was 

set f at 1 for coding sequences and values were adjusted for promoters, UTRs, introns, and 

intergenic regions proportionally to the median region length. Because entropy is high for 

quasi-random configurations and low for configurations peaked on one bin, visualizations of 

specificity were performed using changes in entropy, ΔS. These were defined by subtracting 

S from the entropy of a hypothetical region with null counts,

□ S = − Σ(ε/N)ln(ε/N) − S = − εln(ε/N) − S .

The quantity gives mutation patterns with a high number of patients from a single cancer 

type higher values than cancer-type-agnostic patterns. It also assigns values near zero to all 

infrequently mutated regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Calling mutations in non-unique regions of the genome.
(a) Schematic of short-read sequencing data with one single-nucleotide substitution in a 

unique region and one in a non-unique region. Thesaurus annotation links related sites 

together. (b) Comparison of mutation calls from a mappability agnostic pipeline with the 

PCAWG mutation set. FDR: false discovery rate; FNR: false negative rate; thes. PR: positive 

rate among thesaurus mutations; thes. DR: new discovery rate among thesaurus mutations. 

Box bounds, center line, and whiskers represent 25%-75%, 50%, and 5%-95% quantiles, 

respectively. (c) Mutation load among simple and thesaurus mutations. A model is fit on 

a subset of samples with at least 1000 simple mutations. (d) Proportions of mutations that 

fall in non-unique regions of the genome. Vertical bar shows the fraction of the genome 

that is non-unique at a resolution of 100bp. The cohort was filtered to exclude samples with 

fewer than 1000 simple mutations. consensus: PCAWG mutation calls; naive: a mutation 

set called considering non-unique regions, but without thesaurus annotations. Box bounds, 

center line, and whiskers represent 25%-75%, 50%, and 5%-95% quantiles, respectively. (e) 

Tarabichi et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2022 January 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Validation rate of mutations in an independent cancer sample sequenced with short-read and 

linked-read technologies.
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Figure 2. Concordance of simple and thesaurus mutational profiles.
(a) Distribution of spearman correlations, computed for each sample, between 96-

dimensional mutational profiles from simple and thesaurus mutations. Color stratification 

by two-sided p-value. (b) Correlations diagrams between thesaurus and simple mutations 

for two representative samples. (c) Stereo UMAP embedding of cohort samples based on 

trinucleotide mutation profiles. The first map is based on simple mutations and a cosine 

distance. The second view shows a projection of thesaurus profiles onto the same embedding 

space. Colors indicate histology types and subtypes. (d) Mutation profiles for local and 

thesaurus mutations for a group of samples selected from the dashed area in (c). Mutation 

profiles display average profiles for the group. Bars represent 95% quantiles for each 

substitution type.
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Figure 3. Mutation rates in functional regions.
(a) Counts of functional regions affected by both local and thesaurus mutations, or only by 

thesaurus mutations. (b) Modeling of cohort frequency in gene coding sequences (cds) as 

a function of region size using quantile regression. Light and dark-shaded regions indicate 

5%-95% and 25%-75% quantile intervals, respectively. Dots display genes outside the 

range. Subpanels show genes affected only by local mutations, by a mixture of local and 

thesaurus mutations, or only thesaurus mutations. (c) Summary of quantile modeling on 

functional regions, and in coding sequences partitioned by mutation effect. (d) Specificity 
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of mutations in coding sequences. Two axes measure over-representation of mutations in the 

pan-cancer cohort and the entropy across cancer types. Labels for TP53 and KRAS indicate 

two canonical cancer genes that harbor local mutations, only. Other labels point to genes 

that contain at least some thesaurus mutations. Percentages show the proportion of mutated 

samples that carry thesaurus mutations. (e) Analogous to previous panel, showing promoter 

regions.
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Figure 4. Thesaurus mutations in gene families.
(a) Thesaurus mutations in coding sequences (cds) of the cancer gene census. Percentages 

on right indicate the proportion of patients that carry exclusively thesaurus mutations. 

(b) Distribution of mutations along the cds of two known cancer genes. (c) Analogous 

to (b), genes carrying both local and thesaurus mutations, but not part of cancer census. 

(d) Analogous to (b) with genes carrying mostly, or exclusively, thesaurus mutations. (e) 

Dominant linking patterns between selected genes. Genes and links are colored according to 

region type: cds, untranslated regions (UTR), promoters, and introns. Links from one region 
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type to another, e.g. from cds to UTR, are grouped into a label ‘other’. (f) Cohort summary 

of mutations in one gene family. (g) Distribution of mutations along sequences upstream 

(promoters) of selected immunoglobulin (IG) fragments. (h) Mutation profiles in promoter 

sequences of B-cell non-Hodgkin’s leukemia (BNHL) and chronic lymphocytic leukemia 

(CLL) consistent with somatic hypermutation by deamination.
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