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Abstract: Understanding the mechanism by which sulforaphene (SFE) affects esophageal squamous
cell carcinoma (ESCC) contributes to the application of this isothiocyanate as a chemotherapeutic
agent. Thus, we attempted to investigate SFE regulation of ESCC characteristics more deeply. We
performed gene set enrichment analysis (GSEA) on microarray data of SFE-treated ESCC cells and
found that differentially expressed genes are enriched in TNFα_Signaling_via_the_NFκB_Pathway.
Coupled with the expression profile data from the GSE20347 and GSE75241 datasets, we narrowed
the set to 8 genes, 4 of which (C-X-C motif chemokine ligand 10 (CXCL10), TNF alpha induced protein
3 (TNFAIP3), inhibin subunit beta A (INHBA), and plasminogen activator, urokinase (PLAU)) were
verified as the targets of SFE. RNA-sequence (RNA-seq) data of 182 ESCC samples from The Cancer
Genome Atlas (TCGA) were grouped into two phenotypes for GSEA according to the expression of
CXCL10, TNFAIP3, INHBA, and PLAU. The enrichment results proved that they were all involved in
the NFκB pathway. ChIP-seq analyses obtained from the Cistrome database indicated that NFκB-p65
is likely to control the transcription of CXCL10, TNFAIP3, INHBA, and PLAU, and considering
TNFAIP3 and PLAU are the most significantly differentially expressed genes, we used chromatin
immunoprecipitation-polymerase chain reaction (ChIP-PCR) to verify the regulation of p65 on their
expression. The results demonstrated that SFE suppresses ESCC progression by down-regulating
TNFAIP3 and PLAU expression in a p65-dependent manner.

Keywords: sulforaphene; esophageal squamous cell carcinoma; NFκB; TNFAIP3; PLAU

1. Introduction

Esophageal cancer is the sixth leading cause of cancer-related deaths worldwide,
with many causes that vary by histologic type. Esophageal squamous cell carcinoma
(ESCC) and adenocarcinoma (EADC) are the major subtypes of esophageal cancer and
are epidemiologically and pathologically distinct. ESCC accounts for 70% of esophageal
cancer cases worldwide, and cigarette smoking, alcohol consumption, and low intake of
fruit and vegetables are the primary risk factors for esophageal cancer [1,2]. As symptoms
from an obstructing lesion may be noticeable only when the tumor has reached a relatively
advanced stage, the general prognosis is poor, and the 5-year survival rate is only 10–15%.
Multimodality treatments, including surgical resection, chemotherapy, and radiotherapy,
are offered to ESCC patients [3]. However, approximately one third of these patients show
only partial response to chemotherapy and chemoradiation, and even among responders of
these pre-surgery adjuvant treatments, some may gradually develop resistance. Therefore,
proposals of novel therapeutic strategies and more treatment options for patients are
urgently needed.

Sulforaphene (SFE), an isothiocyanate isolated from radish seed [4,5], has attracted
increasing attention for its strong anticarcinogenic activities in experimental models. SFE
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has reportedly regulated several signaling pathways involved in cell proliferation, invasion,
metastasis, and apoptosis. It inhibited triple-negative breast cancer by activating the tumor
suppressor Egr1 [6], induced hepatocellular carcinoma cell death by repressing keratin 8
and promoting anoikis [7], and targeted the PI3K-Akt pathway to cause lung cancer cell
apoptosis [8]. We previously emphasized that SFE could also block ESCC progression
by suppressing stearoyl-CoA desaturase (SCD) and cadherin 3 (CDH3) expression and
boosting the GADD45B-MAP2K3-p38-p53 positive feedback loop [9].

The nuclear factor kappa B (NFκB) family consists of dimeric transcription factors
central to the regulation of genes related to inflammation, the immune response, cell
differentiation, proliferation, and survival [10]. Many inflammatory cascades enhance
NFκB-dependent transcription, which in turn promotes inflammatory programs. In brief,
activation of these cascades leads to increased inhibitory kappa kinase activity and phos-
phorylation, ubiquitination and degradation of the inhibitory proteins IκBα and IκBβ,
eliciting NFκB-p65 translocation to the nucleus and transcription of proinflammatory
genes [11]. Regarding tumorigenesis, NFκB has context-dependent effects that lead to
elevated tumorigenic inflammation and stimulate tumor initiation and progression [12–15].
TNFAIP3 and PLAU have been proven to be the target genes of NFκB [16–19]. TNFAIP3
was originally identified as a protector of cells from TNF-induced cytotoxicity and, most no-
tably, a repressor of excessive inflammation [20,21]. However, some recent studies implied
a paradoxical role for TNFAIP3 outside the immune system, suggesting its contributory
effects to the proliferation and metastasis of a variety of cancer cells [22–25]. The evaluation
of genes differentially expressed in normal esophageal mucosa and ESCC also identified
TNFAIP3 as a candidate biomarker of dysplasia or invasive ESCC [26]. uPA encoded by
PLAU is produced by cancer cells and/or surrounding stromal cells as a proenzyme and
converted to an active form when secreted into the tumor microenvironment by binding to
the uPA receptor. uPA is involved in cell invasion and metastasis and is correlated with a
poor prognosis of patients with one of various malignant tumors, including colon, breast,
and stomach tumors [27–29].

We have verified SCD, CDH3, MAP2K3 and GADD45B as the targets of SFE in ESCC
through microarray analyses [9]; however, changing the expression of these genes could not
completely reverse the inhibitory effect of SFE on ESCC proliferation and metastasis, which
suggests that there must be some other mediators to connect SFE with ESCC characteristics.
Since confirming the mechanism by which SFE inhibits ESCC progression contributes
to the application of this isothiocyanate as a chemotherapeutic agent, we attempted to
investigate SFE regulation of ESCC progression more deeply. Previously, we were absorbed
in identifying individual genes that exhibited differences between ESCC cells with or
without SFE treatment. Although useful, it failed to detect biological processes that are
distributed across an entire gene network and slight at the level of individual genes. Gene
Set Enrichment Analysis (GSEA) can overcome this analytical flaw as it focuses on groups of
genes that are defined based on published biological knowledge about signaling pathways,
and share common location, regulation, or biological function. Reinterpreting the data of
microarray analyses by GSEA, we found the significantly differentially expressed genes
in SFE-treated EC109 and KYSE510 cells were enriched in the NFκB pathway. The Gene
Expression Omnibus (GEO) database is an international public repository which hosts
high-throughput gene expression data and other categories of functional genomic data.
Two independent cohorts archived in the GEO database were processed to pick out genes
influencing ESCC characteristics and being regulated by SFE. Based on the ChIP-seq
data of NFκB-p65 in multiple cancer cells and samples from the Cistrome database and
subsequent verification experiments, we guessed and acknowledged that SFE could block
the transcription-promoting activity of the NFκB pathway to suppress ESCC development.
In short, all our efforts were to prove that SFE is a promising chemotherapeutic agent that
may be used to treat ESCC in the future.
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2. Results
2.1. Identification of SFE-Regulated Molecular Signatures in ESCC

To shed more light on SFE-induced inhibition of ESCC tumorigenesis and development,
we conducted GSEA to reanalyze previously described microarray results (GSE150891) [9]
(Supplementary Figure S1A) and set the cutoff criteria as p < 0.05 and false discovery rate
(FDR) < 0.05. We found that the significantly differentially expressed genes (DEGs) in ESCC
cells treated with dimethyl sulfoxide (DMSO) as negative control were mainly enriched
in pathways related to immunity, cell proliferation, and metastasis, such as epithelial
mesenchymal transition, up-regulated KRAS proto-oncogene, GTPase (KRAS) signaling;
IL6, Jak, and STAT3 signaling and IL2 and STAT5 signaling (Supplementary Figure S1B).
The pathways meeting the screening criteria were sorted by normalized enrichment scores
(NESs), and the top 10 in EC109 and KYSE510 cells are shown in Figure 1. We noticed that
the TNFα_Signaling_via_the_NFκB_Pathway, which is closely related to caner progression,
was identified in both ESCC cell lines.

1 
 

 
Figure 1. 

Figure 1. Enrichment of sulforaphene (SFE)-associated differentially expressed genes in esophageal squamous cell carcinoma
(ESCC) cells. (left) The top 10 pathways of differentially expressed genes (DEGs) enriched in EC109 and KYSE510 cells.
(right) The gene set enrichment analysis (GSEA) enrichment plot of tumour necrosis factor alpha-like (TNFα) Signaling via
nuclear factor kappa B (NFκB) Pathway.

We downloaded and processed the GSE20347 and GSE75241 datasets from the GEO
database, which were obtained from the expression matrices of 17 and 15 paired ESCC
samples and matched normal adjacent tissue samples, respectively, to acquire more ESCC
development signatures. (Supplementary Figure S2). There were 12 DEGs in the GSE20347
dataset and 22 in the GSE75241 dataset that were also involved in the aforementioned
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TNFα_Signaling_via_the_NFκB_Pathway (Figure 2A). Excluding ZFP36, the change in
the expression of which in the two datasets was inconsistent with that in the microarray
analyses, we identified 8 genes as potential pivotal targets of SFE in ESCC (Figure 2B). The
Cancer Genome Atlas (TCGA) is the largest and most commonly used public database,
providing genomic sequence, expression, methylation, and copy number variation data on
over 10,000 individuals which represent more than 30 different types of cancer, while the
Genotype-Tissue Expression (GTEx) project established a data resource and tissue bank that
release includes genotype data from 714 donors and over 11688 RNA-seq samples across
53 tissue sites. We downloaded the RNA-seq data of 182 ESCC samples and 13 normal
tissues from the TCGA database, and 273 normal tissues from the GTEx database to
detect the expression of these genes in tumor and normal samples. All these genes were
overexpressed in the TCGA ESCC samples compared with in the normal tissues collected
in the TCGA database or the TCGA and the GTEx databases (Supplementary Figure S3,
Figure 2C). We then performed qRT-PCR in SFE-treated ESCC cells (Figure 3A) and ground
tumor lumps (Figure 3B) from the previous xenograft tumor assay [9], verifying that the
expression of CXCL10, TNFAIP3, INHBA, and PLAU was indeed controlled by SFE in
ESCC.

2.2. Evaluation of the SFE-Regulated ESCC Progression Signatures in the TCGA Samples

We tried to use the RNA-seq data of 182 ESCC samples to further assess the biological
characteristics of CXCL10, TNFAIP3, INHBA, and PLAU. The dataset was divided into
a high-level group and a low-level group based on the median expression level of these
4 genes, and as shown in Supplementary Figure S4, all the high-level groups correlated
with advanced pathology T stage and pathologic stage (except for TNFAIP3). We performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biologi-
cal process, cellular component, and molecular function functional enrichment analyses
and found that highly expressed CXCL10, TNFAIP3, INHBA, and PLAU were positively
correlated with the immune response, cell adhesion and growth (Figure S5A–D). The top
3 enriched pathways of these four genes in the ESCC samples are shown in Figure 3C,
which shows a significant association between TNFα signaling via NFκB and high levels
of TNFAIP3, INHBA, and PLAU. Although TNFα signaling via NFκB was not in the top
3 CXCL10-related pathways, it was statistically significant with NES >1.5. Interestingly,
we found that the expression levels of CXCL10, TNFAIP3, INHBA, and PLAU were signifi-
cantly correlated with each other in the TCGA ESCC samples (Figure 3D), and considering
that p65 of the NFκB family can regulate genes involved in the immune response, cell
proliferation, differentiation, and metastasis as a transcription factor, we speculated that
these 4 genes might be the direct downstream targets of p65 in ESCC.
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Figure 2. Figure 2. Screening the potential target genes of SFE in ESCC cells. (A) The volcano plots visualize the DEGs in GSE20347

and GSE75241. |log2(Fold Change)| > 1 and p < 0.05 were set as screening criteria. Genes overlapped with GSEA results
are noted. (B) The common DEGs in GSEA results of EC109 and KYSE510, GSE20347, and GSE75241. (C) Comparison
of the expression of C-X-C motif chemokine ligand 1 (CXCL1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif
chemokine ligand 11 (CXCL11), C-C motif chemokine ligand 20 (CCL20), plasminogen activator, urokinase receptor (PLAUR),
plasminogen activator, urokinase (PLAU), inhibin subunit beta A (INHBA), and TNF alpha induced protein 3 (TNFAIP3)
in ESCC and normal samples. The red and green boxes represent tumor (T) and normal (N) samples, respectively. The
* represents p < 0.01.
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Figure 3. Figure 3. Identifying the relation of SFE, CXCL10, TNFAIP3, INHBA, and PLAU in ESCC. (A) The relative mRNA levels

of CXCL10, TNFAIP3, INHBA, and PLAU in ESCC cells treated with SFE (20 µM). (B) The relative mRNA levels of CXCL10,
TNFAIP3, INHBA, and PLAU in vivo. (C) The top 3 pathways of GSEA in high expression groups were gathered by bubble
chart. (D) Gene expression correlation of CXCL10, TNFAIP3, INHBA, and PLAU in The Cancer Genome Atlas (TCGA) ESCC
data. Data represent the mean ± SD of three independent experiments. NES, normalized enrichment score. The statistical
significance was assessed by Student’s t-test. * p < 0.05, ** p < 0.01, and *** p < 0.005. ns, not significant.

2.3. NFκB-p65 Can Induce TNFAIP3 and PLAU Expression in ESCC Cells

We searched publicly available ChIP-seq data related to CXCL10, TNFAIP3, INHBA,
and PLAU in the Cistrome database to verify the association between p65 and its 4 possible
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targets. Supplementary Figure S6A shows the top 20 transcription factors that were the
most likely regulators of CXCL10, TNFAIP3, INHBA, and PLAU based on the positions of
transcription factor ChIP-seq peaks relative to the transcription start site. We found that
p65 (corresponding to RELA proto-oncogene (RELA), the gene encoding p65, in Supple-
mentary Figure S6A) can obviously regulate CXCL10 and TNFAIP3 expression, with the
greatest potential for TNFAIP3 regulation. To further analyze the possible promotion of
p65 on gene expression, we selected ChIP-seq analyses of p65 in multiple cancer cells and
samples (A549, HeLa, Huh7, LNCaP, MCF-7, and LoVo cells, and GM12892, GM15510,
GM18505, GM18526, GM19099, and GM19193 datasets) that met all the quality criteria from
the Cistrome database and visualized sample batches with the University of California
Santa Cruz (UCSC) Genome Browser assembled for the human genome, GRCh38/hg38.
These data indicated that p65 can directly bind to cis-regulatory elements and regulate
the transcription rates of CXCL10, TNFAIP3, INHBA, and PLAU in diverse cancer cells
(Supplementary Figure S6B–E). As H3K4me1 and H3K4me3 mark enhancers and promot-
ers, respectively, and H3K27ac is associated with the active state of both elements, histone
ChIP-seq data of 6 common cell lines (H1-hESC, HSMM, HUVEC, K562, NHEK, and NHLF
cells) and esophagus muscularis mucosa samples from the Encyclopedia of DNA Elements
(ENCODE) database were also aligned to the GRCh38/hg38 reference assembly to confirm
the characteristics of p65-binding sites. We found that p65 can bind to the promoter regions
of CXCL10, TNFAIP3, INHBA, and PLAU and the second intron region of TNFAIP3, as
reported previously [16].

We then tested whether p65 functions as a transcription factor to drive the expres-
sion of SFE targets in ESCC cells. The JASPAR database provides the sequence logo of
p65 (Figure 4A) and predicts the binding sites in CXCL10, TNFAIP3, INHBA, and PLAU,
and since TNFAIP3 and PLAU were the most down-regulated genes in the SFE-treated
ESCC cells, we chose these genes for follow-up verification (Figure 4B). lipopolysaccharide
(LPS) [30] and ammonium pyrrolidinedithiocarbamate (PDTC) [31] are widely used ago-
nists and inhibitors of the NFκB pathway, and we performed ChIP-PCR with an anti-p65
antibody in LPS- or PDTC-treated ESCC cells, confirming p65 occupancy at the predicted
loci (Figure 4C). Additionally, the mRNA and protein levels of TNFAIP3 and PLAU were
changed after treating ESCC cells with LPS or PDTC (Supplementary Figure S7A). After
verifying that SFE could increase the content of p65 bound to IκBα and inhibit p65 from en-
tering the nuclear to inactivate the NFκB pathway (Figure 4D, Supplementary Figure S7B),
we further identified the inhibitory effect of SFE on p65 binding to TNFAIP3 and PLAU,
which can be reversed by LPS treatment, analyzed by ChIP-PCR and luciferase reporter
assays (Figure 4E, Supplementary Figure S8A). Also, the change trend of TNFAIP3 and
PLAU expression was consistent with that shown by the ChIP-PCR results (Supplementary
Figure S8B). In summary, these results revealed that SFE prevented p65 from enhancing
transcription to regulate TNFAIP3 and PLAU expression.

2.4. SFE Suppresses TNFAIP3 and PLAU Expression by Inactivating the NFκB Pathway to
Inhibit ESCC Cell Progression

We next sought to determine whether TNFAIP3, PLAU, and their regulator p65 were
involved in SFE-mediated inhibition of ESCC cell progression. We previously confirmed
that SFE induced ESCC cell G2/M arrest and apoptosis to inhibit cell proliferation, and
reduced the invasive and migratory abilities of ESCC cells [9]. Flow cytometry analyses,
scrape motility, and trans-well assays shown in Figure 5 also suggested SFE inhibition of
ESCC cell progression. However, when overexpressing TNFAIP3 and PLAU (Supplemen-
tary Figure S9A,B) or upon activation of the NFκB pathway, all the inhibitory effects of SFE
were reversed (Figure 5A–D), suggesting that SFE blocked the p65 promotion of TNFAIP3
and PLAU expression to inhibit ESCC cell proliferation and metastasis.



Int. J. Mol. Sci. 2021, 22, 60 8 of 15 

4 

 
Figure 4. 

Figure 4. The inhibitory effect of SFE on TNFAIP3 and PLAU expression is NFκB-P65-dependent. (A) NFκB−p65
binding logo collected in the JASPAR database. (B) Schematic diagram of the TNFAIP3 and PLAU locus. The sequence and
relative location of p65 binding sites are noted. (C) chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR)
analysis of p65 occupancy within the TNFAIP3 and PLAU loci in ESCC cells treated with DMSO, lipopolysaccharide (LPS)
(0.3 mg/L), or ammonium pyrrolidinedithiocarbamate (PDTC) (80 µM) for 48 h. ChIP experiments were conducted in
biological triplicate. (D) Co-immunoprecipitation (Co-IP) assays were carried out in EC109 and KYSE510 cells treated with
SFE (20 µM) for 48 h. (E) ChIP-PCR analysis of p65 occupancy within the TNFAIP3 and PLAU loci in ESCC cells treated with
DMSO, SFE (20 µM), or a combination of SFE and LPS (0.3 mg/L) for 48 h. ChIP experiments were conducted in biological
triplicate. Data represent the mean ± SD of three independent experiments. IP, immunoprecipitation. IgG, immunoglobulin
G. The statistical significance was assessed by Student’s t-test. * p < 0.05, ** p < 0.01, and *** p < 0.005. ns, not significant.
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Figure 5. Figure 5. SFE inhibits ESCC progression through suppressing TNFAIP3 and PLAU expression in a NFκB-dependent

manner. (A) ESCC cells were treated with SFE (20 µM), SFE + pcDNA3.0-TNFAIP3 (SFE + TNFAIP3), SFE + pcDNA3.0
(SFE + PLAU), or SFE + LPS (0.3 mg/L) for 24 h, respectively, followed by assessing cell cycle distribution. (B) ESCC cells
were treated with SFE (20 µM), SFE + pcDNA3.0-TNFAIP3 (SFE + TNFAIP3), SFE + pcDNA3.0 (SFE + PLAU), or SFE + LPS
(0.3 mg/L) for 48 h, respectively, followed by assessing the apoptotic rates. (C,D) Scrape motility assay (C) and trans-well
assay (D) were performed in ESCC cells with SFE (20 µM), SFE + pcDNA3.0-TNFAIP3 (SFE + TNFAIP3), SFE + pcDNA3.0
(SFE + PLAU), or SFE + LPS (0.3 mg/L) treatment. Data represent the mean ± SD of three independent experiments. The
statistical significance was assessed by Student’s t-test. * p < 0.05, ** p < 0.01, and *** p < 0.005.

3. Discussion

ESCC is the most common type of esophageal cancer, a serious malignancy considering
both the mortality and prognosis associated with it, and accounts for 70% of all ESCC cases.
Owing to recurrence, diagnosis in advanced stages, extensive invasion, and metastasis, the
overall 5-year survival of ESCC worldwide is lower than 15% after the initial diagnosis.
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Therefore, it is of utmost urgency to further comprehend the molecular mechanisms that
underlie the initiation, development, and metastasis of ESCC. To improve the prognosis
and reduce the mortality of patients, identifying novel therapeutic targets and effective
diagnostic markers should be on the research agenda. As an isothiocyanate isolated from
radish seeds, SFE has attracted increasing attention for its anticancer effects in multiple
cancers, such as breast cancer, lung cancer, ovarian cancer, and hepatocellular carcinoma.
We also verified the inhibitory influence of SFE on ESCC cell proliferation and metastasis,
providing strong proof for the broad-spectrum anticarcinogenic activity of SFE. In this
study, we attempted to further shed light on the mechanism involved in the regulation of
SFE on ESCC cell progression with the assistance of various bioinformatics analyses.

We reanalyzed the microarray results of SFE-treated ESCC cells with GSEA and
identified the DEGs that are enriched in TNFα_Signaling_via_the_NFκB_Pathway. After
screening or the shared genes in the GSE20374 and GSE75241 datasets with the aforemen-
tioned NFκB pathway, we confirmed 8 genes that were most likely to be involved in SFE
inhibition of ESCC progression, 4 of which were eventually identified as the targets of
SFE in ESCC. We then downloaded the RNA-seq analysis results obtained from ESCC
samples in the TCGA database and categorized all the data into two phenotype groups, the
high-level group and low-level group, according to the median expression level of CXCL10,
TNFAIP3, INHBA, and PLAU, respectively. GSEA was applied to perform KEGG and
GO biological process, cellular component, and molecular function functional enrichment
analyses with CXCL10, TNFAIP3, INHBA, and PLAU in ESCC samples. We found that
the high levels of all 4 genes were related to the immune response and cell adhesion and
growth and were significantly and positively correlated with the NFκB pathway, which
was consistent with the microarray analysis of ESCC cells. While processing RNA-seq data
of CXCL10, TNFAIP3, INHBA, and PLAU in ESCC samples, we noticed that the expression
levels of these genes were correlated with each other, and as the p65 in the NFκB family is
an established transcription factor, we hypothesized that these 4 genes might be directly
regulated by p65 in ESCC. We searched publicly available ChIP-seq results associated with
p65 and aligned the data to the GRCh38/hg38 reference assembly using UCSC Browser,
finding that p65 can bind to the promoter regions of CXCL10, TNFAIP3, INHBA, and PLAU
and the second intron region of TNFAIP3 in various kinds of cancer cells and samples.
We selected TNFAIP3 and PLAU to verify the regulation of p65 on the expression of these
two genes because they were down-regulated to the greatest extent in the SFE-treated
ESCC cells. The ChIP-PCR results indicated that p65 functions as a transcription factor
to regulate the transcription rates of TNFAIP3 and PLAU, and SFE can block this effect.
After confirming that SFE inactivated the NFκB pathway and decreased the content of
p65 in the nuclear, we can conclude that SFE prevents p65 from functioning as a regula-
tor of gene expression and resulting in the down-regulation of TNFAIP3 and PLAU. The
dose-dependent inhibition of SFE on ESCC cell proliferation, invasion and migration had
been confirmed previously [9], and data shown in Figure 5 could also indicate that SFE
induced G2/M cell cycle arrest, cell apoptosis, and decreased the metastasis of ESCC cells.
However, when overexpressing TNFAIP3 and PLAU, or activating the NFκB pathway by
LPS, the proliferative and metastatic abilities of SFE-treated cells were partially restored.
These results suggested that SFE suppressed ESCC progression through inactivating the
NFκB pathway which lowered TNFAIP3 and PLAU expression. As far as we know, this is
the first study to verify TNFAIP3 and PLAU as direct downstream targets of p65 in ESCC
and to reveal the association between the NFκB pathway and SFE suppression of ESCC
progression. Of course, further studies are warranted to investigate the regulatory mecha-
nism of SFE on ESCC development. The GO enrichment analysis results of the high-level
ESCC sample group showed that these genes are related to extracellular matrix, which is
benefits to tumor proliferation, invasion and migration [32,33], suggesting that high levels
of CXCL10, TNFAIP3, INHBA, and PLAU might affect the structure and composition of
the extracellular matrix to promote ESCC progression. Therefore, next, we will focus on
whether SFE has an inhibitory effect on extracellular matrix formation and maintenance.
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Additionally, the positive influence of p65 on CXCL10 and INHBA expression in ESCC cells
needs to be confirmed in the future.

In summary, we identified that SFE inactivated the NFκB pathway and down-regulated
TNFAIP3 and PLAU expression to suppress ESCC cell proliferation and metastasis, provid-
ing new insights into the anticarcinogenic activity of SFE and confirming SFE as a potential
chemotherapeutic agent.

4. Materials and Methods
4.1. Cell Culture and Chemicals

The human esophageal cancer EC109, KYSE510 cell lines were obtained from the Na-
tional Infrastructure of Cell Line Resource, cultured in RPMI-1640 medium (Gibco, Grand
Island, NY, USA) with 10% fetal bovine serum (FBS) (Gibco), 100 units/mL penicillin
(Invitrogen, Carlsbad, CA, USA) and 100 mg/mL streptomycin (Invitrogen). The cell lines
were characterized by Genetic Testing Biotechnology Corporation (Suzhou, China) using
short tandem repeat markers within the last three years and they were not contaminated by
mycoplasma detected by Myco-Lumi Luminescent Mycoplasma Detection Kit (Beyotime,
Shanghai, China). SFE was separated and purified from radish seeds (Beijing Tongrentang
Co., LTD, Beijing, China) as reported previously [4,5], dissolved in DMSO (Beijing Chem-
ical Factory, Beijing, China). LPS (HY-D1056) and PDTC (HY-18738) was obtained from
MedChem Express (Monmouth Junction, New Jersey, USA).

4.2. Plasmid Construction

Full-length homo sapiens TNFAIP3 and PLAU were cloned into the pcDNA3.0 (pC3.0)
plasmid, producing pC3.0-TNFAIP3 and pC3.0-PLAU plasmids. All the plasmids were
purchased from Genepharma (Shanghai, China).

4.3. Cell Apoptosis and Cell Cycle Analysis

Cells treated with DMAO, SFE (20 µM) and transfected with plasmiads or treated
with LPS (0.3 mg/L) in combination with SFE treatment, were collected after 24 h for
cell cycle analysis and 48 h for cell apoptosis analysis. Cell apoptosis was determined
using the Dead Cell Apoptosis Kit with Annexin V Alexa Fluor™ 488 and Propidium
Iodide (Invitrogen) and cell cycle distribution was analyzed with Cell Cycle Detection Kit
(KeyGEN BioTECH, Jiangsu, China) according to the manufacturer’s instructions. Both
analyses were detected with MoFlo XDP flow cytometer (Beckman Coulter, Miami, FL,
USA) and data was processed by Summit V5.2.1 (Beckman Coulter).

4.4. Scrape Motility and Trans-Well Assays

In scrape motility assay, cells were scratched with a sterile 100 µl pipette tip and
photographed at × 100 magnification using BEION medical image software V4.20 (Beion,
Shanghai, China) at different time points. In trans-well assay, the trans-well chambers
(Corning, NY, USA) were covered with matrigel (Biosciences, San Jose, CA, USA) overnight.
Cells cultured in 1 % FBS were added to the chambers and medium with 10 % FBS was
added to the lower wells. After 48 h incubation, the number of cells invading through the
matrigel was counted in 6 randomly selected visual fields using a Leica DM3000 microscope
(Leica, Wetzlar, Germany). Data was analyzed by ImageJ 2X software.

4.5. Quantitative Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted from cells or grinded tumor lumps treated with trizol reagent
(Invitrogen). Each sample was reverse transcribed into cDNA with the PrimeScript™RT
Master Mix (TaKaRa). SYBR Green Real-time PCR Master Mix (TOYOBO, Osaka, Japan)
and ABI 7500 real-time PCR system (Applied Biosystems) were used to measure the
expression of target genes according to the recommendations of the manufacturer. Gene
expression was calculated relative to β-actin, an internal reference gene, using the 2method.
Primers were shown in Supplementary Table S1.
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4.6. Nuclear and Cytoplasmic Protein Extraction

Extraction was performed using Nuclear and Cytoplasmic Protein Extraction Kit
(Beyotime). Briefly, cells were resuspended in cytoplasmic protein isolation solution A with
phenylmethanesulfonyl fluoride (PMSF) (Beyotime). Next, homogenate was treated with
cytoplasmic protein isolation solution B and centrifuged at 4 ◦C for 10 min. The obtained
supernatant was cytoplasmic protein fraction. Then the precipitate was resuspended in
nuclear protein isolation solution with PMSF, vortexed and homogenized on ice alternately
for 30 min and centrifuged at 4 ◦C for 10 min. The supernatant was nuclear protein fraction.

4.7. Western Blotting Assay

Protein was isolated from cells or grinded tumor lumps using Radio-Immunoprecipitation
Assay (RIPA) Lysis Buffer (Beyotime) with PMSF. After measuring protein concentration by
Bicinchonininc Acid (BCA) Protein Assay Kit (Beyotime), all the samples were boiled with
4 x SDS-PAGE Sample Loading Buffer (Beyotime) for 7 min at 100 ◦C. Then protein was
separated by SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes
(Millipore, Darmstadt, Germany). Membranes were blocked by 5% milk and immunoblot-
ted with primary antibodies (Supplementary Table S2). After incubation with HRP-labeled
goat anti-mouse immunoglobulin G (IgG) or goat anti-rabbit IgG (Beyotime), the blots
were detected using the Chemiluminescence Image Analysis System (Tanon, Shanghai,
China) with Enhanced Chemiluminescence (ECL) Luminescence reagent (Sangon Biotech,
Shanghai, China). β-actin and lamin B1 were used as loading control.

4.8. Chromatin Immunoprecipitation (ChIP) and ChIP-qPCR Assays

Chromatin immunoprecipitation (ChIP) was performed using a Magna ChIP™ Pro-
tein G Magnetic Beads (Millipore, MA, USA) (16-662) according to the manufacturer’s
instructions. EC109 cells were cultured in 100-mm dishes and treated with DMSO, SFE
(20 µM), or with a combination of SFE and LPS (0.3 mg/L) for 48 h. After fixed with
1% formaldehyde for 10 min and washed with cold phosphate buffer saline (PBS), cells
were lysed using cell and nuclear lysis buffer and sonicated on ice using a Sonics Vibra-Cell
processor (Sonics & Materials Inc., Newtown, CT, United Kingdom) to generate DNA frag-
ments. Approximately 2% of the suspension was removed to determine the input quantity
of DNA. Then chromatin was immunoprecipitated by incubating overnight at 4 ◦C with
protein G magnetic beads and the following antibodies: 3 µg rabbit anti-NF-κB p65 (8242,
Cell Signaling Technology) and normal rabbit IgG (2729, Cell Signaling Technology). The
precipitated DNA-protein complexes were washed with wash buffer and eluted in elution
buffer. RNA was digested with RNase A for 30 min at 37 ◦C, and proteins were digested
with Proteinase K for 2 h at 45 ◦C. After DNA purification, the resulting DNA was analyzed
by qPCR and normalized by total chromatin (input). Primers specific to the predicted
binding sites of p65 in TNFAIP3 and PLAU are described in Supplementary Table S1.

4.9. Co-Immunoprecipitation (Co-IP) Assay

Co-IP was performed as previously described [9]. Briefly, lysate of EC109 and KYSE510
cells treated with SFE (20 µM) for 48 h were generated under addition of Halt Protease
Inhibitor Cocktail (Thermo Fisher Scientific, Waltham, MA, USA) and Halt Phosphatase
Inhibitor Cocktail (Thermo Fisher Scientific). Protein concentration was measured by the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). A total of 2250 µg/mL protein was
used for co-IP assay performed with the Pierce™ Co-Immunoprecipitation Kit (Thermo
Fisher Scientific). 35 µg of the IκBα primary antibody was incubated with the delivered
resin and covalently coupled for 2 h. The antibody-coupled resin was incubated with 200 µL
cell lysates overnight at 4 ◦C, and then the protein complexes were eluted. Subsequent
western blotting assay was performed as described before.
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4.10. Luciferase Reporter Assay

The predicted binding sites of p65 in TNFAIP3 and PLAU promoters and the intron
2 of TNFAIP3 were cloned into pRP-Puro-Luc vector (Cyagen, Santa Clara, CA, USA) to
construct plasmids named TNFAIP3-promoter-Luc, PLAU-promoter-Luc, and TNFAIP3-
intron 2-Luc. These plasmids were co-transfected with pRL-TK (Promega, Madison, WI,
USA) expressing renilla luciferase as the internal control into EC109 and KYSE510 cells,
followed by LPS (0.3 mg/L), SFE (20 µM) or a combination of SFE and LPS treatment for
48 h. Then the luciferase activity was measured by the Dual Luciferase Reporter Gene
Assay Kit (Beyotime). The relative activity was calculated by normalizing to the renilla
luciferase activity.

4.11. Statistics and Bioinformatics

GSEA v2.0 [34] was used to determine enrichment of significantly DEGs in microarray
data of EC109 and KYSE510 cells treated with 20 µM SFE, and the high mRNA levels of
CXCL10, TNFAIP3, INHBA, and PLAU-related GO annotations and pathways in Illumina
HiSeq 2000 RNA Sequencing of TCGA ESCC data. RNA-seq data was separated into two
phenotypes for GSEA according to the median of CXCL10, TNFAIP3, INHBA, and PLAU
expression respectively: high-level group and low-level group. The expression of genes
was submitted to GSEA V2.0, using the hallmark gene sets from The Molecular Signatures
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and log2
ratio of classes method. Multiple probe matches for the same gene were collapsed into
one value and the highest probe reading was used in each case. GSEA was run with a
weighted statistic and evaluated by comparison to results obtained using 500 random
permutations of each data set. Default settings were used for all other parameter. The
significant enrichment results were demonstrated based on NES, p-value, and FDR value.

GSE20347 [35] and GSE75241 [36] were analyzed using the Sangerbox tools (http:
//www.sangerbox.com/tool) to identify genes that overlap with the GSEA enrichment
analysis of EC109 and KYSE510 microarray data (GSE150891).

RNA-seq data collected in the TCGA and GTEx databases were downloaded from
the UCSC Xena (https://xenabrowser.net/datapages/). Excluding duplicate samples,
metastatic samples, and samples with incomplete clinical information, we got a final
dataset of 182 primary ESCC samples and 13 normal samples (from muscularis, mucosa,
gastroesophageal junction) in the TCGA database, and 273 normal samples (from muscu-
laris, mucosa, gastroesophageal junction) in the GTEx database.

The JASPAR CORE database (http://jaspar.genereg.net/) was selected to determine
the sequence logo of NFκB-p65 protein, and predict the binding sites in TNFAIP3 and
PLAU. ChIP-seq data of p65 with multiple biological sources is displayed in Cistrome
Data Browser (http://cistrome.org/db/#/), and samples passed all the quality controls
(A549, Hela, Huh7, LNCaP, MCF-7, LoVo, GM12892, GM15510, GM18505, GM18526,
GM19099, GM19193) were aligned to the GRCh38/hg38 reference assembly using UCSC
Browser. To further comprehend the information of p65 binding sites in TNFAIP3 and
PLAU, histone ChIP-seq data of 6 cell lines (H1-hESC, HSMM, HUVEC, K562, NHEK,
NHLF) and esophagus muscularis mucosa samples collected by the ENCODE database
were also visualized by UCSC Browser and all experiments were conducted three times

Data was analyzed and graphs were plotted by Prism software version 7 (Graph-
Pad software Inc., San Diego, CA, USA). For association between gene expression and
pathologic stage or pathology Tumor-Node-Metastasis (TNM) stage, data was analyzed
via Kruskal–Wallis test. For gene expression in ESCC samples from TCGA and GTEx
database, data was analyzed via one-way analysis of variance (ANOVA). For other statis-
tical analyses, results were represented as mean ± SD of three independent experiments
and significance was determined using the two-tailed Student’s t-test. p < 0.05 and FDR
< 0.05 was considered statistically significant for GSEA of microarray data in SFE-treated
ESCC cells, GSE20347, and GSE75241 datasets, and statistical significance was considered
starting from p < 0.05 and FDR < 0.25 for KEGG and GO functional enrichment analyses of

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.sangerbox.com/tool
http://www.sangerbox.com/tool
https://xenabrowser.net/datapages/
http://jaspar.genereg.net/
http://cistrome.org/db/#/
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CXCL10, TNFAIP3, INHBA, and PLAU. For other analyses, differences were considered to
be significant at p < 0.05.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/1/60/s1. Figure S1: Enrichment of SFE-associated differentially expressed genes in ESCC
cells, Figure S2: Analysis of GSE20347 and GSE75241 dataset, Figure S3. CXCL1, CXCL10, CXCL11,
CCL20, PLAUR, PLAU, INHBA, TNFAIP3 are overexpressed in the ESCC samples (n = 182) compared
with the normal samples (n = 13) collected in the TCGA database. Figure S4: Correlation between
the expression of CXCL10, TNFAIP3, INHBA, PLAU, and the pathologic stage, pathology T stage of
ESCC patients, Figure S5: GO analyses of CXCL10, TNFAIP3, INHBA, and PLAU, Figure S6: NFκB
p65 regulates the transcription of CXCL10, TNFAIP3, INHBA, and PLAU, Figure S7: SFE inactivates
the NFκB pathway to reduce TNFAIP3 and PLAU expression, Figure S8: SFE can inhibit NFκB from
promoting the transcription of TNFAIP3 and PLAU. Figure S9: The effect of pC3.0-TNFAIP3 and
pC3.0-PLAU transfected on TNFAIP3 and PLAU expression, Table S1: Primer sequence for qPCR and
ChIP-PCR, Table S2: Primary antibodies used in this study.
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