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Abstract
Background: Machine learning-based analysis can be used in myocardial perfu-
sion imaging data to improve risk stratification and the prediction of major adverse 
cardiovascular events for patients with suspected or established coronary artery dis-
ease. We present a new machine learning approach for the identification of patients 
who develop major adverse cardiovascular events. The new method is robust against 
the deleterious effect of outliers in the training set stratification and training process.
Methods: The proposed sum-of-sigmoids model is obtained by averaging the 
contributions of various input variables in an ensemble of XGBoost models. To il-
lustrate its performance, we have applied it to predict major adverse cardiovascu-
lar events from advanced imaging data extracted from rest and adenosine stress 
13N-ammonia positron emission tomography myocardial perfusion imaging polar 
maps. There were 1185 individual studies performed, and the event occurrence 
was tracked over a follow-up period of 2 years.
Results: The sum-of-sigmoids model achieved a prediction accuracy of .83 on 
the test set, matching the performance of significantly more complex and less 
interpretable models (whose accuracies were .83–.84).
Conclusion: The sum-of-sigmoids model is interpretable and simple, while 
achieving similar prediction accuracy to significantly more complex machine 
learning models in the considered prediction task. It should be suitable for ap-
plications such as automated clinical risk stratification, where clear and explicit 
justification of the classification procedure is highly pertinent.
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1   |   INTRODUCTION

Chronic coronary syndromes represent the most common 
cause of death globally.1,2 Despite substantial develop-
ments in advanced cardiac imaging, accurate risk strati-
fication and therefore prediction of acute events (major 
adverse cardiovascular events (MACE)) derived from 
myocardial ischemia, thromboembolism, heart decom-
pensation and cardiac death remains a major challenge 
for clinicians and an unmet need in cardiology.1

Positron emission tomography (PET) myocardial per-
fusion imaging (MPI) enables quantitative assessment of 
myocardial blood flow (MBF) and flow reserve (MFR), 
thus allowing to detect functionally significant coronary 
artery stenoses and myocardial ischemia.3 Perfusion quan-
tification and the extent of ischemic burden have demon-
strated predictive value for the development of MACE.4–8 
Notably, MPI studies deliver a vast number of qualitative 
and quantitative individual variables, which cannot be 
easily managed by the human operator. Therefore, these 
studies are rendered in polar maps for clinical interpreta-
tion with vessel territory segmentation to facilitate their 
visualization by human operators.

Machine learning-based analysis can be used in myo-
cardial perfusion imaging data to improve risk stratifica-
tion and MACE prediction for patients with suspected or 
established coronary artery disease (CAD), as previously 
demonstrated, for example, in.9,10 In9 a deep learning 
model using PET myocardial perfusion polar maps was 
able to outperform clinical, functional, and quantitative 
flow variables in identifying patients who develop MACE. 
A major drawback of such an approach is that interpret-
ability is often restricted by the complexity of the model 
and the number of non-linear dependencies at play. 
Recently11 machine learning through boosted ensembles 
(XGBoost12) was applied for the identification of patients 
that are likely to benefit from subsequent PET MPI based 
on clinical and CCTA variables. Although effective, ex-
plainability may also be hampered by the complexity of 
the modelling.

Therefore, the present work describes the exploration 
of new machine learning-based approach for the identi-
fication of patients who develop MACEs from the analy-
sis of rest, stress, and reserve myocardial perfusion polar 
maps obtained from 13N-ammonia PET/CT MPI studies. 
The proposed sum-of-sigmoids model is highly interpre-
table, while yielding similar prediction scores as more 
complex baseline models (in this work we compare the 
sum-of-sigmoids model to a convolutional neural network, 
a logistic regression model, and an XGBoost model). The 
decision rule of the sum-of-sigmoids model is explicitly 
obtained from a small set of sigmoid curves of perfusion 
statistics, and therefore is far more interpretable than just 

a feature importance graph of many input variables. This 
contrasts with the considered baseline models: a convo-
lutional neural network is a black box with thousands or 
millions of learned parameters. Similarly, the considered 
XGBoost baseline model is based on a large set of nested 
decision rules, while the considered logistic regression is 
allowed to use all the considered variables (and not just 
a small subset as the presented sum-of-sigmoids model). 
The proposed methodology seems to work notably well 
for the considered objective, and additionally, is general 
enough to be considered for other classification appli-
cations. Its interpretability (scoring is based on sigmoid 
curves of perfusion statistics) and simplicity (prediction 
is based on a sum of scores of a small number of features) 
supports its potential for the improvement of automated 
risk stratification. It could also provide insights into which 
perfusion statistics are most relevant in identifying pa-
tients at risk of MACE.

2   |   METHODS

2.1  |  Data acquisition and preprocessing

Data from 1185 patients was retrospectively collected and 
analysed from the population referred to quantitative 
13N-ammonia PET myocardial perfusion imaging due to 
suspected myocardial ischemia between 2015 and 2017 
at the department of nuclear medicine of the Northwest 
Clinics, Alkmaar, the Netherlands. Patients with docu-
mented CAD either as prior myocardial infarction (MI) or 
revascularization (percutaneous coronary intervention or 
coronary artery bypass graft surgery), were excluded from 
the study. After the removal of invalid data entries, polar 
maps from 1079 patients were retained for further analy-
sis. Details on the study population, data collection, and 
the acquisition-reconstruction protocol are presented in 
Appendix  S1 and in13 and14, while the quantification of 
the myocardial blood flow (MBF) and flow reserve (MFR) 
in the MPI polar maps is presented in detail in15. For each 
patient it was recorded whether or not they had MACE 
during a follow-up period of 2 years. In this work we aim 
to predict the value of this binary variable based on nu-
merical features obtained from the PET perfusion study.

For each patient, the stress, rest, and reserve perfusion 
polar maps were automatically segmented to the standard 
17 segments16 using a Python script. For each segment, 
the following 13 statistics were computed: the mean, the 
standard deviation, the minimum value, the maximum 
value and the 10th, 20th, … and 90th percentiles. To sum-
marize, for each patient

k = 3 ⋅ 17 ⋅ 13 = 663.
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numerical features were computed from the three perfusion 
polar maps.

This dataset of polar map numerical features was 
randomly divided into a training set and a test set with 
3:1 ratio. As a result, the training set contains data cor-
responding to N1 = 809 patients, and the test set contains 
data corresponding to N2 = 270 patients. Notice that the 13 
statistics are computed independently for each segment, 
and therefore there is no risk of information leakage in 
the train-test split.

Appropriate data division for the numerical features 
was verified using false discovery rate-corrected Kruskal's 
test with p = .05. For the binary outcome variable (MACE) 
we tested that ratios

and

satisfy

Of the 809 patients in the training dataset, 102 had a 
MACE during the follow-up period. Due to this signifi-
cant imbalance in outcomes, the following simple strat-
ification approach was used when training the XGBoost 
models: negative cases were discarded at random to 

obtain a training set with approximately 40% positive (a 
MACE was recorded) and 60% negative (no MACE was 
recorded) cases. This ratio was selected as it is close to 
uniform distribution, but yields a slightly larger training 
sets, which is beneficial in training the models. For each 
XGBoost model considered in this work, an independent 
and random stratification was performed on the training 
dataset.

Examples of myocardial perfusion polar maps found in 
the considered dataset are depicted in Figures 1 and 2. The 
segments highlighted with green correspond to the most 
important features found by the feature selection process 
described in Section II-E. As can be seen, prediction of 
MACE based solely on perfusion maps is not a trivial task; 
a myocardial perfusion polar map with relatively high per-
fusion values—such as the one depicted in Figure  2B—
may still correspond to a patient who had a MACE, while 
a polar map with relatively low perfusion values may cor-
respond to a patient who did not have a MACE (an exam-
ple of this is illustrated in Figure 1B).

2.2  |  Machine learning models

In this work we considered the following machine learn-
ing models: Convolutional Neural Network (CNN), logis-
tic regression, eXtreme Gradient Boosting (XGBoost), and 
the new sum-of-sigmoids model. CNN, logistic regression 
and XGBoost baseline models were used to obtain clas-
sification scores for the evaluation of the sum-of-sigmoids 
model.

As the first baseline model, we trained a CNN model17 
previously used for ischemia detection in 15O-H2O 

r1 =
# (patients without MACE in training set)∕N1
# (patients without MACE in test set)∕N2

r2 =
# (patients with MACE in training set)∕N1
# (patients with MACE in test set)∕N2

1

1.1
< ri < 1.1; i = 1, 2.

F I G U R E  1   Myocardial perfusion 
polar maps of two patients who did 
not have a MACE during the two-year 
follow-up period. Segments highlighted 
with green correspond to the four most 
important features selected in Section 
II-E. Inset (A): Correct negative prediction 
by the sum-of-sigmoids model described 
in Section III, inset (B): Incorrect positive 
prediction by the sum-of-sigmoids model.
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perfusion studies (using only reserve polar maps) using 
the 13N-ammonia reserve polar maps. Classification re-
sults of the CNN model on the 13N-ammonia test set can 
be seen in Table 1.

As the second baseline model, an XGBoost model was 
trained on a stratified training set (using all of the 663 nu-
merical features), with the following hyperparameters:

Classification results for this model are presented in 
Table 2. The performance is quite similar to the baseline 
CNN model; the main difference seems to be that the base-
line XGBoost model yields less false negatives and more 
false positives than the baseline CNN model. As the third 
baseline model we trained a logistic regression model with 
LASSO (based on L1 regularization) on a stratified training 
set using all the 663 numerical features. The classification 
results are presented in Table 3. As presented in Table 5, 

the logistic regression model’s performance is very similar 
to the baseline XGBoost model’s performance.

2.3  |  Feature selection

Next, 100 XGBoost models with the same hyperparam-
eters as above and with the maximum depth of one were 
trained on independently stratified training sets. The 
maximum depth of one means that the XGBoost models 

Use label encoder = False, evalmetric = ‘‘logloss’’.

F I G U R E  2   Myocardial perfusion 
polar maps of two patients who had a 
MACE during the two-year follow-up 
period. Segments highlighted with green 
correspond to the four most important 
features selected in Section II-E. Inset (A): 
Correct positive prediction by the sum-of-
sigmoids model described in Section III, 
inset (B): Incorrect negative prediction by 
the sum-of-sigmoids model.

T A B L E  1   Baseline CNN model. Classification statistics in the 
test set: #TN = 202, #FP = 32, #FN = 11, #TP = 25, where #TN, #FP, 
#FN, and #TP denote the numbers of true negatives, false positives, 
false negatives, and true positives, respectively.

Precision Recall f1-score

Patients without a 
MACE

.95 .86 .90

Patients with a MACE .44 .69 .54

Accuracy .84

Weighted averages .88 .84 .85

T A B L E  2   Baseline XGBoost model which uses all the 
663 numerical features. Classification statistics in the test set: 
#TN = 191, #FP = 43, #FN = 4, #TP = 32.

Precision Recall f1-score

Patients without a 
MACE

.98 .82 .89

Patients with a MACE .43 .89 .58

Accuracy .83

Weighted averages .91 .83 .85

T A B L E  3   Logistic regression with LASSO. Classification 
statistics in the test set: #TN = 192, #FP = 42, #FN = 5, #TP = 31.

Precision Recall f1-score

Patients without a MACE .97 .82 .89

Patients with a MACE .42 .86 .57

Accuracy .83

Weighted averages .90 .83 .85
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consist of independent tests, each of which considers only 
a single input variable. Each test obtains a gain value (out-
put of the function call get booster().get score(importance 
type=’gain’) in the XGBoost library) associated with the 
tested input variable, which represents the importance 
of that test and variable in the overall classification task. 
By summing up all gains of a specific input variables over 
all the trained XGBoost models, we can sort the input 
variables in order of decreasing sum gain. The sorted top 
20 input variables obtained in this manner (listed in de-
creasing importance) are STRESS_S14_MIN, STRESS_
S10_MIN, STRESS_S15_MIN, RESERVE_S14_MIN, 
STRESS_S16_MIN, STRESS_S17_P20, STRESS_S10_P10, 
STRESS_S15_P10, RESERVE_S4_P10, RESERVE_S9_
P10, RESERVE_S9_SD, RESERVE_S14_SD, RESERVE_
S17_MIN, RESERVE_S9_MIN, STRESS_S17_MIN, 
RESERVE_S14_P10, STRESS_S14_SD, RESERVE_S4_
P30, RESERVE_S10_SD and RESERVE_S17_P20.

Here S refers to the segment number (for example, S14 
refers to segment number 14), MIN refers to the minimum 
value, SD to the standard deviation and P10 to the 10th 
percentile (similar notation is used for other percentiles). 
As can be seen, all the variables on this list are either from 
stress or the reserve polar maps. The first rest polar map-
based variable was found to be the 36th most important. 
We note that the 20 most important input variables are 
all either minimum values, low percentiles (from 10th to 
30th percentiles) or standard deviations.

2.4  |  Sum-of-sigmoids model

The sum-of-sigmoid model is derived from an ensem-
ble of XGBoost models, whose maximum depth is one. 
Let us denote the number of the XGBoost models in the 
ensemble by N; in the results presented in this work 
N = 100. Each of the XGBoost models comprises of a 
set of tests (a single test considers one of the input vari-
ables) of the type

•	 Is the considered input variable larger than a threshold 
θ? If it is, add v1 to the overall score; otherwise, add v2.

For each of the input variables, we compute an input 
variable score curve by computing the average effect of 
the tests corresponding to that variable over the XGBoost 
models. The process of computing the input variables 
score curve s(x) is defined in Algorithm 1.

Here H(x) is the Heaviside step function:

Next, each input variable score curve si(x) is approxi-
mated by curve fitting a sigmoid function of the form

where Ai, ti, ki and mi are the fitting parameters.
Sigmoids can be used to approximate both linear func-

tions (within finite ranges) as well as functions which sat-
urate either to some minimum or some maximum values, 
so long as the functions are monotonous. We expect that 
myocardial blood flow values should affect the predic-
tion of MACE monotonously (for example, the larger the 
value, the less likely it is to have a MACE); the evaluation 
of this model will show if our intuitive expectation is well 
justified.

Finally, the sum-of-sigmoid model proposed in this 
paper is a binary predictor, where the sigmoid functions 
corresponding to each of the input variables are summed 
together and passed through the Heaviside step function:

where ŷ denotes the binary prediction (where ŷ = 0 denotes 
the prediction of no MACE and ŷ = 1 the prediction of a 
MACE).

3   |   RESULTS

Let us consider the four most important input variables 
STRESS_S14_MIN, STRESS_S10_MIN, STRESS_S15_
MIN and RESERVE_S14_MIN.

Their input variable score curves and approximations 
by sigmoid functions are represented in Figure 3.H(x) =

{

1, x≥0

0, otherwise.

fi(x) = Ai

(

1

1 + exp
(

ki
(

x − ti
)) −mi

)

,

ŷ = H

(

N
∑

i=1

fi
(

xi
)

)

,

Algorithm 1  Compute input variable score 
curves

 FOR EACH INPUT VARIABLE i:  
   SET si(x) = 0  
    FOR EACH XGBOOST MODEL IN THE 
ENSEMBLE:  
     FOR EACH TEST OF INPUT VARIABLE i, 
SET:  
        si(x) += (v1 · H(x − θ)+ v2 · (1 − H(x − θ)))/N,  
       WHERE θ, v1, v2 ARE THE TEST 
PARAMETERS.  
  RETURN si(x)
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Let us denote these sigmoid approximations as fi(xi), 
where i = 1, …, 4. The variable xi corresponds to the perfu-
sion statistics (here, each variable is a minimum value of 
a myocardial blood flow statistic) in the considered polar 
map and segment, and the value fi(x) is a score which rep-
resents the average effect of that perfusion statistics to the 
overall decision made by the ensemble of the XGBoost 
models. Now the final sum-of-sigmoids model can be 
written simply as

If the sum of the sigmoids is negative, no MACE is pre-
dicted, and if it is positive, a MACE is predicted. Notice that 
this model is no longer an XGBoost model, although sev-
eral XGBoost models were used to define it. Classification 
results for this model are presented in Table 4. The results 
are similar to the ones obtained with the baseline models, 
but the sum-of-sigmoid model with four input features is 
clearly much easier to interpret than the baseline models.

Figure 4 illustrates input variable scores obtained from 
myocardial perfusion polar maps depicted in Figures  1 
and 2. Four different cases are illustrated based on the 
prediction by the sum-of-sigmoids model: true nega-
tive (TN) having as input Figure 1A, false negative (FN) 
having as input Figure  2B, true positive (TP) having as 
input Figure  2A and false positive (FP) having as input 
Figure 1B. Here the sum of the four scores associated with 
the TN and FN cases is negative (no MACE is predicted), 
and the sum of the scores associated with the TP and FP 
cases is positive (a MACE is predicted).

4   |   DISCUSSION

The need for interpretable machine learning models 
for the analysis of myocardial perfusion maps has been 

ŷ = H

(

4
∑

i=1

fi
(

xi
)

)

.

F I G U R E  3   Input variable score 
curves for the four most important 
features in blue, and their sigmoid 
approximations in red.

T A B L E  4   Sum-of-sigmoids model with four input features. 
Classification statistics in the test set: #TN = 196, #FP = 38, #FN = 7, 
#TP = 29.

Precision Recall f1-score

Patients without a 
MACE

.97 .84 .90

Patients with a MACE .43 .81 .56

Accuracy .83

Weighted averages .89 .83 .85
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widely recognized. In18 a radiomics approach was applied 
to myocardial retention images to identify patients with 
reduced global myocardial flow reserve. The main focus 
of18 was on the extraction and usefulness of the radiomic 
features—which have some correlation to the variables 
considered in this work—and only univariate logistic re-
gression analysis was applied for classification. In contrast, 
our work concentrates on the development of a novel pre-
diction method. Of note, the Smote-XGBoost algorithm 
for predicting cardiac events from patient-derived data 
(numeric and categorical variables, not restricted to medi-
cal imaging) has been previously presented in.19 Similarly 
to our work, the most important features are selected 
using the XGBoost gain value. However, their dataset was 
substantially different, and this reflected in the final pre-
diction method (XGBoost was found to be the most effec-
tive prediction model out of many other machine learning 
methods). In our previous work,20 we found XGBoost to 
be an efficient method for predicting cardiac events using 

clinical variables, coronary computed tomography angi-
ography and 15O-H2O PET-based myocardial perfusion 
values. An interesting topic for future work is to extend 
the current sum-of-sigmoids model to include also clinical 
variables as input variables.

F I G U R E  4   Scores of four different myocardial perfusion polar maps corresponding to Figure 1(TN corresponds to inset (a) and FP 
corresponds to inset (b)) and Figure 2 (TP corresponds to inset (a) and FN corresponds to inset (b)). In this figure, inset (A) illustrates the 
input variable score curve for the variable STRESS_S14_MIN, inset (B) illustrates the input variable score curve for STRESS_S10_MIN, inset 
(C) illustrates the input variable score curve for STRESS_S15_MIN, and inset (D) illustrates the input variable score curve for RESERVE_
S14_MIN. The individual scores are presented by colored squares. Here, TN stands for the true negative (no MACE) case which was 
correctly predicted, FP stands for the false positive (no MACE) case which was incorrectly predicted, TP stands for the true positive (MACE) 
case, which was correctly predicted, and FN stands for the false negative (MACE) case which was incorrectly predicted.

T A B L E  5   Prediction accuracies and classification performance 
values for the considered machine learning models. BL XGBoost 
and Log. reg. with LASSO are baseline model which receives all the 
663 numerical features as inputs.

Method CNN
BL 
XGBoost

Log. reg. 
with LASSO

Sum-of-
sigmoids

Accuracy .84 .83 .83 .83

#TN 202 191 192 196

#FP 32 43 42 38

#FN 11 4 531 7

#TP 25 32 31 29
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Our approach is related to the surrogate models in ma-
chine learning.21 Surrogate models are models that can 
enhance interpretability, while having been trained using 
the outputs of more complex models. However, a signif-
icant difference is that the proposed sum-of-sigmoids 
model is not trained but constructed using curve-fitting—
where each input variable is fitted independently—from 
an ensemble of XGBoost models. This means that we did 
not need to apply any learning method such as gradient 
descent to our final sum-of-sigmoids model, which signifi-
cantly simplifies the overall procedure.

Table  5 lists the prediction performance of the con-
sidered machine learning models. It can be seen that no 
one model performed the best in every considered clas-
sification performance category. The proposed sum-of-
sigmoids model is a good middle ground approach that 
doesn't achieve the best performance value in any of the 
categories but also avoids the worst performance values. 
At the same time, it is the most easily explainable model 
together with the logistic regression model.

As explained in Section II-E, we selected the four most 
important numerical features as the variables of the sum-
of-sigmoids model. Figure 5 shows how the classification 
accuracy depends on the number of input features in the 
final model. As can be seen, accuracy does not signifi-
cantly improve when using more than four input variables 
with this data.

Interestingly, when adding the 11th input variable to 
the set of input variables of the model, the accuracy drops. 
One should note that although the ten other input variables 
are the ones used in the 10-variable model, the underlying 

XGBoost models can be quite different, which also yields 
different input variable curves. In practice, we recommend 
plotting the accuracy versus number of parameters curve 
and to select the number of input variables from a ‘stable’ 
part on the curve. However, this nonmonotonicity of the ac-
curacy curve should be investigated in more detail in future.

The range of the input variable score curve corre-
sponding to RESERVE_S14_MIN is the largest of the four 
illustrated in Figure  3, although it was the fourth most 
important variable. It seems then that the sum gain of a 
variable, obtained from the XGBoost library, is not directly 
connected to the range of the input variable score curve. 
This naturally raises the question whether the sum gain 
represents the best criterion for selecting the input vari-
ables for the proposed sum-of-sigmoids model. This ques-
tion, however, should be answered in future research.

As a practical note, in the case of many input features, 
one can discard sigmoid functions which have a small 
output range (smaller than some threshold) from the final 
model; this does not affect much the overall performance 
and may simplify the model significantly.

As can be seen, the logistic regression model (based on 
the 4 most important features) has similar performance as 
compared to the sum-of-sigmoids model. However, it should 
be noted that the sum-of-sigmoids model is less sensitive to 
the selection of the balanced training set as it is the result 
of 100 models. A more sophisticated linear model could be 
obtained, for example, by training separate linear models 
for each of the most important features and summing these 
models for the final prediction. Such a model would prove 
more immune to missing values in the inputs. Averaging 
weights and biases of several linear models trained with dif-
ferent stratified training sets could also yield a more robust 
model. Such improvements of the linear and logistic regres-
sion models are outside the scope of this work, and compar-
ison of such models against the proposed sum-of-sigmoids 
model warrants further investigation.

The sum-of-sigmoids model presented in this work 
is based on an ensemble of XGBoost models (here, the 
ensemble consists of 100 XGBoost models), each of 
which is trained on an independently chosen stratified 
training set. The resulting model is not sensitive to any 
specific training set stratification or XGBoost model 
performance but is rather based on how the XGBoost 
models on average treat different input variables. The 
sigmoid input variable score curves show explicitly how 
different variables affect the final score (positive values 
steer the classification towards prediction of an event), 
and the ranges of different score curves determine how 
strongly different input variables affect the prediction. 
The final classification result can be easily visualized by 
highlighting the segments corresponding to the input 
variables and by showing the scores on the sigmoid 

F I G U R E  5   Classification accuracy of the sum-of-sigmoids 
models as the function of the number of input variables included in 
the final model.
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curves as represented in Figures 1, 2 and 4. This makes 
the presented model easily interpretable, which in turn 
supports its potential for automated risk stratification, 
where clear and explicit justification of the classifica-
tion procedure is highly pertinent.

An underlying assumption of the proposed method is 
that the prediction task can be performed with indepen-
dent tests of input variables, as each XGBoost model in 
the ensemble has a unit depth. The PET MPI polar map-
based prediction task seems to satisfy this assumption, as 
the performance of the sum-of-sigmoids model matches 
that of more holistic and complex approaches, such as the 
convolutional neural network or the XGBoost model with 
depth of six. In the future, we will additionally investigate 
the applicability of this method to other datasets and appli-
cations, including PET studies with different radiotracers.

5   |   CONCLUSION

In this work we proposed a sum-of-sigmoids model, which 
is obtained by averaging the contributions of input vari-
ables in an ensemble of XGBoost models. The proposed 
model is simple and interpretable, and yet it achieves simi-
lar accuracy scores to significantly more complex machine 
learning models in predicting major cardiovascular events 
from 13N-ammonia PET perfusion imaging polar maps. In 
addition to interpretability, an advantage of the proposed 
sum-of-sigmoids model is its robustness against outlier ef-
fects in training set stratification and the training process. 
We believe that the proposed model could be highly useful 
in automated clinical risk stratification, where clear and 
human-understandable justification of the decision is of 
utmost importance. As this is the first work to propose 
and analyse the sum-of-sigmoids model, we have also 
identified several important directions for future research.
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