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Abstract: Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-
cysteine-glycine. GSH content is limited by the availability of glutamate and cysteine. Furthermore,
glutamine is involved in the regulation of GSH synthesis via the glutamate–glutamine cycle.
P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels, which is involved
in neuronal excitability, neuroinflammation and astroglial functions. In addition, P2X7R activation
decreases glutamate uptake and glutamine synthase (GS) expression/activity. In the present study,
we found that P2X7R deletion decreased the basal GSH level without altering GSH synthetic enzyme
expressions in the mouse hippocampus. P2X7R deletion also increased expressions of GS and ASCT2
(a glutamine:cysteine exchanger), but diminished the efficacy of N-acetylcysteine (NAC, a GSH
precursor) in the GSH level. SIN-1 (500 µM, a generator nitric oxide, superoxide and peroxynitrite),
which facilitates the cystine–cysteine shuttle mediated by xCT (a glutamate/cystein:cystine/NAC
antiporter), did not affect basal GSH concentration in WT and P2X7R knockout (KO) mice. However,
SIN-1 effectively reduced the efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice.
Therefore, our findings indicate that P2X7R may be involved in the maintenance of basal GSH levels
by regulating the glutamate–glutamine cycle and neutral amino acid transports under physiological
conditions, which may be the defense mechanism against oxidative stress during P2X7R activation.
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1. Introduction

Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-cysteine-
glycine. Glutamate cysteine ligase (GCLC) converts glutamate and cysteine (mostly derived from
cystine, the oxidized dimer form of cysteine) to the dipeptide γ-glutamylcysteine (γGluCys), which is
the rate-limiting step in cellular GSH synthesis. Thereafter, GSH synthetase (GSS) generates GSH by
adding glycine (derived from exogenous glycine or serine) to γGluCys in an ATP-driven reaction [1].
In the brain, astrocytes play an important role in GSH metabolism. Astrocytes uptake glutamate and
convert it into glutamine via glutamine synthase (GS), which is transferred to neurons to serve as
a precursor for glutamate synthesis [2]. In addition, astrocytes provide neighboring neurons with
the GSH precursors [3]. Thus, the glutathione content is limited by the availability of glutamate and
cysteine in astrocytes, but cysteine is the rate-limiting precursor of GSH synthesis in neurons [4].
Furthermore, glutamine concentration affects GSH synthesis rate [5], since glutamine is used for GSH
synthesis via the glutamate–glutamine cycle mediated by glutaminase (GLS) [1,4,6,7].
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The solute carrier 1 (SLC1) family includes neutral amino acid exchange proteins that preferentially
transfer the substrates alanine, serine and cysteine (termed ASC). Among them, SLC1A4 and SLC1A5
are known as ASCT1 and ASCT2, respectively. Although ASCT1 and ASCT2 have high affinity for
these amino acids, ASCT2 differs from ASCT1 by also accepting glutamine and asparagine as high
affinity substrates [8,9]. In addition, a cystine/glutamate transporter (xCT or SLC7a11) exchanges
cystine for glutamate (or cysteine) with a molar ratio of 1:1 by the substrate gradients across the plasma
membrane under physiological conditions [10,11]. Thus, these membrane transporters also support
GSH synthesis to supply neutral amino acids.

The P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels which is
involved in neuronal excitability, neuroinflammation and astroglial functions [12–18]. Since P2X7R
activation accelerates free radical generations [15,16], it is plausible that the defense mechanism against
P2X7R-mediated oxidative stress may be present to maintain the GSH level during P2X7R activation
under physiological conditions. Interestingly, P2X7R activation decreases glutamate uptake and GS
activity in astrocytes, although P2X7R cannot affect the release of GSH. Furthermore, P2X7R activation
regulates glutamate- and ASCT2-mediated d-serine release from astrocytes [17–21]. Thus, it is likely
that P2X7R may be involved in the glutamate–glutamine cycle and neutral amino acid transports,
which affect GSH levels [1,4,6,7], but is still unveiled.

Here, we demonstrate that P2X7R deletion decreases the basal GSH level in a mouse hippocampus,
although it did not influence GCLC, GSS and GLS expression levels. However, P2X7R deletion
increased GS and ASCT2 expressions without altering xCT expression. Furthermore, P2X7R deletion
prevents the diminished efficacy of N-acetylcysteine (NAC, a GSH precursor) in GSH synthesis
induced by SIN-1. Thus, these findings suggest that P2X7R may modulate GSH levels by regulating
the glutamate–glutamine cycle and neutral amino acid transports via ASCT2 and xCT under
physiological conditions.

2. Materials and Methods

2.1. Experimental Animals and Chemicals

We used male C57BL/6J (P2X7R+/+, wild type, WT) and P2X7R−/− (knockout, KO) mice (60 to
90 days old, 25–30 g, The Jackson Laboratory, USA) in the present study. Animals were given
a commercial diet and water ad libitum under controlled conditions (22 ± 2 ◦C, 55% ± 5% humidity,
and a 12-h light/12-h dark cycle). All experimental protocols described below were approved by the
Institutional Animal Care and Use Committee of Hallym University (Chuncheon, South Korea, Hallym
2018-3, 30th April 2018). Every effort was made to reduce the number of animals employed and to
minimize animal discomfort. All reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA),
except as noted.

2.2. NAC Treatment and Acute Brain Slices

NAC acts as a GSH precursor and a free radical scavenger per se [22]. When NAC is directly applied
in the bath during acute brain slice culture with SIN-1 (a generator of nitric oxide, superoxide and
peroxynitrite [22], see below), SIN-1 might react with NAC and subsequently reduce the efficacy
of NAC in GSH synthesis. Thus, we pretreated NAC in vivo to avoid the action of NAC as a free
radical scavenger.

Five hours after NAC (70 mg/kg, i.p.) or vehicle treatment, animals were sacrificed by cervical
dislocation and decapitated. Brains were rapidly removed and placed in ice-cold cutting solution
(composition in mM: KCl 3, NaH2PO4 1.25, MgSO4 6, NaHCO3 26, CaCl2 0.2, glucose 10 and sucrose
220). Coronal sections (300 µm thickness) were cut on a vibratome (Campden Instruments Limited,
Loughborough, UK) and slices were subsequently transferred to oxygenated ACSF (composition in mM:
NaCl 124, KCl 2.5, NaHCO3 26, KH2PO4 1.25, MgSO4 2, CaCl2 2.5, glucose 10 and sucrose 4, pH 7.4,
bubbled with 95% O2 and 5% CO2) at room temperature [23]. Cutting solution was 300–305 mOsm/L.
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After warming to 34 ◦C for 30 min, the ACSF was exchanged again, and slices were then held at room
temperature. Individual slices were then transferred to a chamber and perfused with oxygenated
ACSF at 2 mL/min [23]. After 10 min of incubation, SIN-1 (500 µM) or vehicle was added to each
chamber for 2 h. After culture, slices were used for immunohistochemistry or GSH assay.

2.3. GSH Assay

Brain slices were sonicated with 0.5 mL of 5% sulfosalicylic acid and centrifuged at 10,000× g
for 10 min at 4 ◦C. The supernatant was mixed with 1 mm dithiobis-2-nitrobenzoic acid and 1 mm
EDTA in 100 mm sodium phosphate buffer, pH 7.5, and 1 mm NADPH and 200 U/mL of glutathione
reductase were added [24]. GSH standards were treated identically, and optical absorbance of samples
and standards was measured at 405 nm. Values were normalized to protein content as determined
with a BCA protein assay kit (Thermo Scientific) [25].

2.4. Immunohisto Chemistry

Brain slices were immersed into 4% paraformaldehyde in 0.1 M PB (pH 7.4) overnight. The brain
tissues were cryoprotected by infiltration with 30% sucrose overnight. Thereafter, the slices were
frozen and sectioned with a cryostat at 30 µm. Free-floating sections were washed 3 times in PBS
(0.1 M, pH 7.3) and incubated with 3% bovine serum albumin in PBS for 30 min at room temperature.
Later, sections were incubated with glial fibrillary acidic protein (GFAP, a marker for astrocytes) or
a cocktail solution containing MAP1 and 4-HNE antisera (Table 1) in PBS containing 0.3% Triton
X-100 overnight at room temperature. Thereafter, sections were visualized with appropriate Cy2- and
Cy3-conjugated secondary antibodies. Immunoreaction was observed using an Axio Scope microscope
(Carl Zeiss Korea, Seoul, South Korea). To establish the specificity of the immunostaining, a negative
control test was carried out with preimmune serum instead of the primary antibody. All experimental
procedures in this study were performed under the same conditions and in parallel. To measure
fluorescent intensity, 5 areas/animals (300 µm2/area) were randomly selected within the hippocampus
(5 sections from each animal, n = 7 in each group). Thereafter, mean fluorescence intensity of 4-HNE
signals on each section was measured by using AxioVision Rel. 4.8 software. Intensity measurements
were represented as the number of a 256 gray scale. The intensity of each section was standardized by
setting the threshold level (mean background intensity obtained from five image inputs). Manipulation
of the images was restricted to threshold and brightness adjustments to the whole image.

Table 1. Primary antibodies used in the present study.

Antigen Host Manufacturer (Catalog Number) Dilution Used

4-HNE Rabbit Alpha Diagnostic (# HNE11-S) 1:1000 (IH)

ASCT2 Rabbit Alomone labs (#ANT-082) 1:500 (WB)

GCLC Rabbit Abcam (#ab190685) 1:2000 (WB)

GFAP Mouse Millipore (#MAB3402) 1:1000 (IH)

GLS Rabbit Abcam (#ab93434) 1:1000 (WB)

GS Mouse Millipore (#MAB302) 1:1000 (WB)

GSS Rabbit Abcam (#ab133592) 1:2000 (WB)

MAP2 Mouse Millipore (#MAB3418) 1:100 (IH)

xCT Rabbit Abcam (#ab175186) 1:1000 (WB)

β-actin Mouse Sigma (#A5316) 1:5000 (WB)

IH: Immunohistochemistry; WB: Western blot.
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2.5. Western Blot

Animals were decapitated under urethane anesthesia (1.5 g/kg, i.p.). Animal protocols were
approved by the Institutional Animal Care and Use Committee of Hallym University
(Chuncheon, Korea). The hippocampus was rapidly dissected out and homogenized in lysis buffer.
The protein concentration in the supernatant was determined using a Micro BCA Protein Assay Kit
(Pierce Chemical, Dallas, TX, USA). Thereafter, Western blot was performed by the standard protocol
(n = 7 in each group). The primary antibodies used in the present study are listed in Table 1. The bands
were detected and quantified on an ImageQuant LAS4000 system (GE Healthcare Korea, Seoul, South
Korea). As an internal reference, rabbit anti-β-actin primary antibody (1:5000) was used. The values of
each sample were normalized with the corresponding amount of β-actin.

2.6. Data Analysis

All data obtained from the quantitative measurements were analyzed using Student’s t-test
and one-way ANOVA to determine statistical significance. Bonferroni’s test was used for post hoc
comparisons. A p-value below 0.05 was considered statistically significant.

3. Results

3.1. P2X7R Deletion Increases GS and ASCT2 Expression

Since P2X7R activation decreases glutamate uptake and GS activity/expression in vitro [17],
we investigated the effect of P2X7R deletion on GS expression in vivo. GS expression in P2X7R KO mice
was slightly, but significantly, higher than that in WT mice (p < 0.05 vs. WT animals; n = 7; Figure 1A,B
and Supplementary Figure S1). However, P2X7R KO mice showed no difference in GLS expression,
as compared to WT mice (Figure 1A,C and Supplementary Figure S1). These findings indicate that
P2X7R deletion may increase GS activity/expression more than GLS, which would increase glutamine
concentration. The increased GS expression and glutamine concentration potentially facilitates
glutamine efflux from astrocytes by inducing ASCT2 trafficking [26,27]. Thus, we confirmed whether
the upregulation of GS expression induced by P2X7R deletion affects ASCT2 expression. Consistent with
a previous study [28,29], the present study showed two ASCT2 bands: a N-linked glycosylated band
(70~90 kDa) and an intact band (non-glycosylated, ~55 kDa) (Figure 1A and Supplementary Figure S1).
P2X7R deletion elevated N-linked glycosylated-ASCT2 levels approximately 1.23-fold of WT level
(p < 0.05 vs. WT animals; n = 7; Figure 1A,D and Supplementary Figure S1). P2X7R deletion also
increased intact ASCT2 and total ASCT2 levels to approximately 1.55- and 1.25-fold of WT level (p < 0.05
vs. WT animals; n = 7; Figure 1A,E,F and Supplementary Figure S1). P2X7R deletion did not lead to
reactive astrogliosis in the hippocampus (Figure 1G). Since N-glycosylation of ASCT2 at N163 and N212
sites is critical for trafficking to membrane [30], our findings indicate that P2X7R deletion may increase
glutamine concentration and ASCT2-mediated glutamine efflux without inducing reactive astrogliosis.

3.2. P2X7R Deletion Reduces GSH Concentration

ASCT2-mediated glutamine release from astrocytes is required for alanine, serine or cysteine in
extracellular space [27]. Considering glutamine and cysteine as GSH precursors [1,4,6,7], it is likely that
upregulated ASCT2 expression would elevate GSH concentration in P2X7R KO mice via facilitation of
glutamine-cysteine antiport as well as the increased GS activity. Thus, we measured GSH concentration
in the hippocampus. Unexpectedly, we found that total GSH level in P2X7R KO mice (3.45 ± 0.29
µg/mg protein; p < 0.05 vs. WT animals; n = 7; Figure 2) was lower than that in WT mice (3.98 ± 0.19
µg/mg protein; Figure 2). Thus, we explored if P2X7R deletion would influence GSH synthetic enzyme
expressions. However, P2X7R deletion did not affect GCLC and GSS expressions (Figure 3A–C and
Supplementary Figure S2.).

Next, we applied NAC (a GSH precursor, 70 mg/kg, i.p.) to validate whether P2X7R deletion
affects the efficacy of NAC in GSH synthesis. In WT mice, NAC elevated GSH concentration to
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4.53 ± 0.09 µg/mg protein (p < 0.05 vs. vehicle; n = 7; Figure 2). However, NAC did not affect GSH
concentration in P2X7R KO mice (3.49 ± 0.27 µg/mg protein, Figure 2). These findings indicate that
P2X7R deletion may decrease basal GSH levels by reducing the yield of GSH precursor transports.Cells 2019, 8, x FOR PEER REVIEW 5 of 13 

 

 
Figure 1. Effects of P2X7R deletion on expressions of glutamine synthase (GS), glutaminase (GLS), a 
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increases GS and ASCT2, but not GLS, expressions. (A) Representative Western blots of GS, GLS and 
ASCT2 expressions. (B–F) Quantification of GS (B), GLS (C), glycosylated ASCT2 (Glycol-ASCT2, D), 
intact ASCT2 (E) and (F) total ASCT2 levels based on Western blot data. Open circles indicate each 
individual value. Horizontal bars indicate mean value (mean ± S.E.M.; * p < 0.05 vs. WT animals; n = 
7, respectively). (G) Representative photos for GFAP expression in the hippocampus. P2X7R deletion 
does not result in reactive astrogliosis in the hippocampus. Abbreviations: CA1, CA1 pyramidal cell 
layer; SR, stratum radiatum; SLM, stratum lacunosum-moleculare; ML, molecular layer of the dentate 
gyrus. 
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Figure 1. Effects of P2X7R deletion on expressions of glutamine synthase (GS), glutaminase (GLS),
a glutamine:cysteine exchanger (ASCT2) and glial fibrillary acidic protein (GFAP). P2X7R deletion
increases GS and ASCT2, but not GLS, expressions. (A) Representative Western blots of GS, GLS and
ASCT2 expressions. (B–F) Quantification of GS (B), GLS (C), glycosylated ASCT2 (Glycol-ASCT2,
D), intact ASCT2 (E,F) total ASCT2 levels based on Western blot data. Open circles indicate each
individual value. Horizontal bars indicate mean value (mean ± S.E.M.; * p < 0.05 vs. WT animals; n = 7,
respectively). (G) Representative photos for GFAP expression in the hippocampus. P2X7R deletion
does not result in reactive astrogliosis in the hippocampus. Abbreviations: CA1, CA1 pyramidal
cell layer; SR, stratum radiatum; SLM, stratum lacunosum-moleculare; ML, molecular layer of the
dentate gyrus.
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3.3. P2X7R Deletion Inhibits xCT-Mediated NAC Transport 

Since xCT is one of the transporters for cystine and NAC into the intracellular space [10,11,31–
33], we investigated whether P2X7R deletion affects xCT expression. However, there was no 
difference in xCT expression between WT and P2X7R KO mice (Figure 4A,B). These findings indicate 
that P2X7R deletion may decrease basal GSH levels by inhibiting xCT-mediated cystine or NAC 
transport without affecting xCT expression. To confirm this, we applied SIN-1 (500 μM) in acute brain 

Figure 2. GSH assay in the hippocampus. P2X7R deletion decreases basal GSH level. NAC increases
GSH level in WT animals but not P2X7R KO mice in vivo. Although SIN-1 does not affect GSH level in
the hippocampal slices of both animals, it reduces GSH concentration to a basal level in NAC-treated WT
animals but not P2X7R KO mice, ex vivo (mean ± S.E.M.; *,# p < 0.05 vs. WT animals and vehicle-treated
animals, respectively; n = 7, respectively).

Cells 2019, 8, x FOR PEER REVIEW 6 of 13 

 

synthetic enzyme expressions. However, P2X7R deletion did not affect GCLC and GSS expressions 
(Figure 3A–C and Supplementary Figure S2.). 

Next, we applied NAC (a GSH precursor, 70 mg/kg, i.p.) to validate whether P2X7R deletion 
affects the efficacy of NAC in GSH synthesis. In WT mice, NAC elevated GSH concentration to 4.53 
± 0.09 μg/mg protein (p < 0.05 vs. vehicle; n = 7; Figure 2). However, NAC did not affect GSH 
concentration in P2X7R KO mice (3.49 ± 0.27 μg/mg protein, Figure 2). These findings indicate that 
P2X7R deletion may decrease basal GSH levels by reducing the yield of GSH precursor transports. 

. 

Figure 2. GSH assay in the hippocampus. P2X7R deletion decreases basal GSH level. NAC increases 
GSH level in WT animals but not P2X7R KO mice in vivo. Although SIN-1 does not affect GSH level 
in the hippocampal slices of both animals, it reduces GSH concentration to a basal level in NAC-
treated WT animals but not P2X7R KO mice, ex vivo (mean ± S.E.M.; *,# p < 0.05 vs. WT animals and 
vehicle-treated animals, respectively; n = 7, respectively). 

 
Figure 3. Effects of P2X7R deletion on expression of GSH synthetic enzymes. P2X7R deletion does not 
affect GCLC and GSS expressions. (A) Representative Western blots of GCLC and GSS expressions. 
(B–C) Quantification of GCLC (B) and GSS (C) levels based on Western blot data. Open circles indicate 
each individual value. Horizontal bars indicate mean value (mean ± S.E.M.; n = 7, respectively). 

3.3. P2X7R Deletion Inhibits xCT-Mediated NAC Transport 

Since xCT is one of the transporters for cystine and NAC into the intracellular space [10,11,31–
33], we investigated whether P2X7R deletion affects xCT expression. However, there was no 
difference in xCT expression between WT and P2X7R KO mice (Figure 4A,B). These findings indicate 
that P2X7R deletion may decrease basal GSH levels by inhibiting xCT-mediated cystine or NAC 
transport without affecting xCT expression. To confirm this, we applied SIN-1 (500 μM) in acute brain 

Figure 3. Effects of P2X7R deletion on expression of GSH synthetic enzymes. P2X7R deletion does not
affect GCLC and GSS expressions. (A) Representative Western blots of GCLC and GSS expressions.
(B,C) Quantification of GCLC (B) and GSS (C) levels based on Western blot data. Open circles indicate
each individual value. Horizontal bars indicate mean value (mean ± S.E.M.; n = 7, respectively).

3.3. P2X7R Deletion Inhibits xCT-Mediated NAC Transport

Since xCT is one of the transporters for cystine and NAC into the intracellular space [10,11,31–33],
we investigated whether P2X7R deletion affects xCT expression. However, there was no difference in
xCT expression between WT and P2X7R KO mice (Figure 4A,B). These findings indicate that P2X7R
deletion may decrease basal GSH levels by inhibiting xCT-mediated cystine or NAC transport without
affecting xCT expression. To confirm this, we applied SIN-1 (500 µM) in acute brain slice culture,
since this SIN-1 concentration facilitates the xCT-mediated cystine–cysteine shuttle via the increased
cysteine release from cells [34].

As compared to the vehicle, SIN-1 similarly increased 4-hydroxy-2-nonenal (4-HNE) signals in
both WT and P2X7R KO mice (Figure 5A,B). Since SIN-1 generates nitric oxide, superoxide, nitric oxide
and peroxynitrite, which produces 4-HNE as a stable end production of lipid peroxidation [22,35],
our findings indicate that P2X7R deletion may not influence SIN-1-induced oxidative stress.
Furthermore, SIN-1 did not affect basal GSH concentration in both WT (3.91 ± 0.21 µg/mg protein) and
P2X7R KO (3.31 ± 0.18 µg/mg protein) mice (Figure 2). However, SIN-1 effectively reduced the efficacy
of NAC in GSH synthesis (3.99 ± 0.17 µg/mg protein) in WT mice (p < 0.05 vs. NAC; n = 7; Figure 2),
but not in P2X7R KO mice (3.37 ± 0.32 µg/mg protein; Figure 2). These findings indicate that P2X7R
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deletion may inhibit xCT function, which would decrease the cystine or NAC transport, and that P2X7R
knockout may elevate ASCT2 expression as an adaptive response to exchange glutamine for cysteine.
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4. Discussion

The major findings in the present study are that P2X7R deletion reduced the basal GSH level,
accompanied by increased GS and ACST2 expressions. In addition, the lack of P2X7R prevented the
reduced efficacy of NAC in GSH synthesis induced by SIN-1, suggesting the relevance between P2X7R
and xCT system (Figure 6).Cells 2019, 8, x FOR PEER REVIEW 9 of 13 
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Figure 6. Scheme of roles of P2X7R in basal GSH levels based on the present data and a previous
report [17]. Under physiological conditions, P2X7R activation increases Ca2+ influx, which would
inhibit GS expression by PKC activation without altering GLS expression. This mode of regulation
maintains the yield of the glutamate (Glu)–glutamine (Gln) cycle and xCT-mediated uptake of cysteine
(Cys) precursors such as cystine/NAC, which increases GSH level. However, P2X7R deletion leads to the
upregulation of GS expression, which inhibits xCT activity due to reduced glutamate level. Instead, the
elevated glutamine level accelerates ACST2-mediated glutamine–cysteine exchanges. The reductions
in both glutamate and cystine levels diminish the GSH level.

Glutamate is one of the excitatory neurotransmitters and substrates for GSH as well as
bioenergetics. In astrocytes, the up-taken glutamate is converted to glutamine via GS [2,3]. Interestingly,
P2X7R activation inhibits GS expression/activity in protein kinase C (PKC)-dependent manner [17].
Consistent with this report, the present study shows that P2X7R deletion increases GS expression
without changing GLS. Furthermore, P2X7R knockout enhanced the N-glycosylated ASCT2 expression
that is an indicative of its cell surface expression [30]. Since the upregulation of GS expression exerts
ASCT2 trafficking into the astroglial surface [26], our findings indicate that P2X7R deletion may
increase GS-mediated glutamine synthesis in astrocytes, and subsequently facilitate ASCT2-mediated
glutamine efflux from astrocytes [27].

On the other hand, glutamine is involved in GSH synthesis via the glutamate–glutamine cycle,
mediated by GLS [4,6,7]. Considering the roles of ASCT2 as a glutamine:cysteine exchanger [4,6–9], it is
plausible that P2X7R deletion may elevate basal GSH concentration. Unexpectedly, the present study
showed that P2X7R knockout resulted in the reverse phenomenon. Thus, it is simply interpreted that the
lower GSH level in P2X7R KO mice would be a consequence of the facilitating GSH efflux or inhibiting
GSH synthesis. However, P2X7R is not involved in GSH efflux from astrocytes [20], and P2X7R deletion
did not affect GLS, GCLS and GSS expressions in the present study. Therefore, our findings suggest
that P2X7R deletion may decrease GSH concentration due to the reduced turnover of glutamine to
glutamate by GS overexpression or the excessive ASCT2-mediated glutamine efflux. Furthermore, it is
likely that P2X7R deletion may reduce the demand of GSH for maintenance of the intracellular redox
state, since P2X7R activation generates reactive oxygen species (ROS) via p38 mitogen-activated protein
kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) [36]. Indeed, intervention of P2X7R signaling
hinders production of nitric oxide, peroxynitrite and hydroxyl radicals [15,16,37–39]. In addition,
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the GSH level affects P2X7R expression and its activity [40]. Thus, our findings indicate that P2X7R may
facilitate GSH synthesis by regulating the glutamate–glutamine cycle and cystine uptake to prevent
free radical damage during its activation under physiological conditions.

In the present study, we found that P2X7R deletion abrogated the GSH-increasing capacity of NAC
without altering xCT expression. Since the GSH conversion from NAC is required for subphysiological
glutamine level [5], it is likely that the increased glutamine concentration by the upregulated GS
expression in P2X7R KO mice may diminish the efficacy of NAC in GSH synthesis. In addition,
xCT plays a role as a NAC transporter [31–33], although NAC is a membrane-permeable cysteine
precursor that does not require active transport [41]. Under physiological conditions, xCT exchanges
cysteine for glutamate with a molar ratio of 1:1, which is driven by the substrate gradients across the
plasma membrane [10,11,31–33,42]. xCT also constitutes a cystine –cysteine shuttle whereby cystine
uptake drives cysteine release [34]. Since the xCT-mediated cystine transport is involved in the supply
of cysteine for GSH synthesis [43], it is also plausible that P2X7R deletion would diminish xCT-mediated
NAC transport without affecting xCT expression, due to the reduced glutamate–glutamine cycle by GS
overexpression. Interestingly, the present study shows that SIN-1 (500 µM) effectively decreased the
efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice, although SIN-1 did not affect
basal GSH levels in both mice. GSH does not affect the decomposition kinetics of SIN-1 [44]. In addition,
this concentration of SIN-1 affects GSH level by glutamate-inhibitable cystine uptake and an increased
rate of cysteine release from cells without changing total GSH concentration [34,45,46]. Indeed, 4-HNE
production induced by SIN-1 was unaffected by the distinct endogenous GSH level between WT and
P2X7R KO mice, indicating that 500 µM SIN-1 may not evoke GSH degradation or consumption.
Therefore, our findings suggest that P2X7R deletion may inhibit xCT functions, and upregulate ASCT2
expression as an adaptive response for xCT inhibition under physiological conditions.

There is no experimental evidence or literature concerning P2X7R interactions with xCT.
However, over 50 different proteins have been identified to physically interact with P2X7R, since P2X7R
contains a long intracellular C-terminus that constitutes 40% of the whole protein [47]. In particular,
P2X7R activation results in translocation of the Ca2+-dependent PKC isoforms, such as PKCα and
PKCβI, but not the Ca2+-independent isoform PKCδ in osteoclasts [48]. However, P2X7R activated
PKCδ and PKCµ in rat parotid acinar salivary cells and astrocytes [49,50]. Furthermore, P2X7R
interacts with PKCγ in astrocytes [51]. In the present study, we speculate that P2X7R-mediated
PKC activation may regulate GS expression, since P2X7R activation inhibits GS expression/activity
in PKC-dependent manner [17]. Indeed, the P2X7R-mediated decreases in GS activity/expression
are restored by GF109203X (an inhibitor of Ca2+-dependent PKCα, PKCβI, PKCβII, and PKCγ) and
Gö6979 (an inhibitor of Ca2+-dependent PKCα and PKCβI) [17]. In addition, stimulation of PKCδ

(Ca2+-independent, diacylglycerol-dependent PKC isoform) in glial cells also causes a marked decrease
in the expression of GS [52]. With respect to these previous reports, PKCα, PKCβ, PKCγ and PKCδ are
involved in P2X7R-mediated GS regulation. Further studies are needed to elucidate the PKC isoform
specificity of P2X7R-mediated GS regulation.

Recently, the decrease of GSH level has been shown to induce cognitive decline and neuronal
death during aging and neurodegenerative diseases [53,54]. Interestingly, P2X7R is a therapeutic
target in the treatment of epilepsy [12–14,55]. Indeed, benzoylbenzoyl-ATP (BzATP, an P2X7R agonist)
increases GSH concentration in the cerebrum through penicillin-induced epileptiform activity, which is
reversed by A-438079, a P2X7R antagonist [56]. In contrast, Brilliant Blue G (another P2X7R antagonist)
attenuated the decreased GSH level in the cortex of a pentylenetetrazol-induced kindling epilepsy
model [57]. Therefore, it is worth further investigating the relevance between P2X7R and GSH in
neurodegenerative diseases, the aging process and epilepsy.

5. Conclusions

The present study demonstrates for the first time the P2X7R-mediated regulation of GSH levels in
the hippocampus. Under physiological conditions, P2X7R deletion reduced the basal GSH level and
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the efficacy of NAC in GSH synthesis by modulating GS and ASCT2 expression, and presumably by
xCT inhibition. In addition, P2X7R deletion prevented the decrease in the efficacy of NAC in GSH
production induced by SIN-1. Therefore, we suggest that P2X7R may be involved in the regulation of
GSH metabolism under physiological conditions.
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