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Simple Summary: Chlamydia trachomatis is the most common cause of blindness, ectopic pregnancy,
and bacterial sexually transmitted infections. These diseases affect mostly young women but can
also infect men and women of all ages. It is not difficult to treat, but it can lead to more significant
health problems if left untreated. There is no licensed vaccine available for this pathogen at present.
Hence, a vaccine that can control and prevent C. trachomatis infections is designed in this study by
using different immuno-informatics approaches. However, the designed vaccine is the result of
computational approaches; therefore, experimental validation is required to prove its effectiveness.

Abstract: Chlamydia trachomatis, a Gram-negative bacterium that infects the rectum, urethra, con-
genital sites, and columnar epithelium of the cervix. It is a major cause of preventable blindness,
ectopic pregnancy, and bacterial sexually transmitted infections worldwide. There is currently no
licensed multi-epitope vaccination available for this pathogen. This study used core proteomics,
immuno-informatics, and subtractive proteomics approaches to identify the best antigenic candi-
dates for the development of a multi-epitope-based vaccine (MEBV). These approaches resulted in
six vaccine candidates: Type III secretion system translocon subunit CopD2, SctW family type III
secretion system gatekeeper subunit CopN, SycD/LcrH family type III secretion system chaperone
Scc2, CT847 family type III secretion system effector, hypothetical protein CTDEC_0668, and CHLPN
76kDa-like protein. A variety of immuno-informatics tools were used to predict B and T cell epitopes
from vaccine candidate proteins. An in silico vaccine was developed using carefully selected epitopes
(11 CTL, 2 HTL & 10 LBL) and then docked with the MHC molecules (MHC I & MHC II) and human
TLR4. The vaccine was coupled with Cholera toxin subunit B (CTB) adjuvant to boost the immune
response. Molecular dynamics (MD) simulations, molecular docking, and MMGBSA analysis were
carried out to analyze the molecular interactions and binding affinity of MEBV with TLR4 and MHC
molecules. To achieve the highest level of vaccine protein expression, the MEBV was cloned and
reverse-translated in Escherichia coli. The highest level of expression was achieved, and a CAI score of
0.97 was reported. Further experimental validation of the MEBV is required to prove its efficacy. The
vaccine developed will be useful in preventing infections caused by C. trachomatis.

Keywords: Chlamydia trachomatis; pan-proteomics; cholera toxin subunit B adjuvant; immune-
informatics; MD simulations
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1. Introduction

Chlamydia trachomatis is an ovoid-shaped, Gram-negative, and immobile bacterium
commonly known as chlamydia [1,2]. At present, around 100–150 million new victims
are appearing every year globally [3,4]. Chlamydia continues to be a major pathogen
among sexually transmitted pathogens and is the main cause of morbidity in the United
States [5,6]. The major mode of transmission of the disease is sexual contact but can also be
transmitted from an infective mother to her newborn [7]. Risk of disease is mostly seen
in people aged 15–49 years old, and infections mostly occur in settings of unsafe sexual
encounters [4]. Chlamydia infects the cervix, urethra, rectum, and other non-genital sites
primarily through columnar epithelial cells [8–11]. Chlamydial infections in women can
be serious, including cervicitis, urethritis, pelvic inflammatory disease (PID), and cervical
cancer. Additionally, infections of chlamydia can induce ocular infections and can lead to
blindness if left untreated [12].

The majority of C. trachomatis infections are asymptomatic. However, the bacteria can
manifest in one of three ways: pulmonary (lungs), genitourinary (genitals), or ocular (eyes).
Vaginal bleeding, genital discharge, painful urination (dysuria), and itchiness (pruritus) are
some of the symptoms of genitourinary disorders [13]. When C. trachomatis causes trachoma
in the eye, it first thickens the eyelids and then pulls the eyelashes into the eyelid [14].
When C. trachomatis infects the lungs as a respiratory infection, symptoms include a stuffy
or runny nose, hoarseness of voice, low-grade fever, and other symptoms associated with
general pneumonia [2]. C. trachomatis may infect pregnant women’s chorionic villi tissues
latently, influencing pregnancy outcomes [15].

Treatment is determined by the location of the infection, the patient’s age, and the
presence of another infection. To avoid reinfection, treatment is frequently given to both
partners at the same time. Erythromycin, Azithromycin, Tetracycline, and Ofloxacin are
some of the antibiotics that can be used to treat C. trachomatis infections [7]. Vaccination is
thought to be the most effective way to lower the prevalence of C. trachomatis infections.
It would be far less expensive and have a higher impact on global trachomatis infection
control than a screening program or antibiotic treatment. Multiple types of vaccines,
such as whole organisms vaccines (first generation C. trachomatis vaccines), subunits
vaccines (second generation C. trachomatis vaccines), and DNA vaccines (third generation
C. trachomatis vaccines), have been tried and were found to be ineffective [16–18].

The first vaccine to treat C. trachomatis infections was a live attenuated vaccine. The
vaccine posed an immunopathology risk, and producing pure chlamydia on a large scale is
difficult. The vaccine was only effective in reducing C. trachomatis infections in the early
stages [19]. Since live vaccinations are not always safe, inactivated or killed vaccines were
studied. Chemical and heating treatment was utilized for inactivation. Because of their
incapacity to proliferate and induce immunity, inactivated vaccines could not give maximal
protection. Sub-unit vaccines are antigen components and can overcome previous vaccine
designs [4].

The complicated nature of diseases draws more attention of researchers to fully un-
derstand the pathogenesis and prognosis of the diseases and to develop effective vaccine
candidates in a short time with fewer side-effects for achieving great progress in the fu-
ture [20]. Tackling the major concerns that the world has been confronted with regarding
global health challenges has become the need of the hour. In the last half century, knowl-
edge regarding multi-epitope-based vaccines (MEBV) has become a thirst of the researchers
who are willing and capable of designing vaccines in a short time with a small budget
to meet global health challenges worldwide [21–25]. The emergence of rapidly endorsed
and highly efficient approaches for the analysis of biological data has paved new ways
to find more interesting and promising diagnostic and treatment options. The use of bio-
informatics is becoming more and more common in all areas of life sciences today. Recently,
there has been an explosion of new sequencing technologies that enable researchers to
make important discoveries in the field of vaccine development. Usage of subtractive
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proteomics and immunoinformatic approaches to develop an affordable, efficient vaccine
against various pathogens has recently become more attractive [26–32].

This study mainly aims to explore the core proteome of 91 C. trachomatis strains using
reverse vaccinology, immune-informatics, and a subtractive proteomics pipeline to identify
the suitable candidates for vaccine design. Further experimental research on these vaccine
candidates will lead to a greater understanding of how to combat this infectious disease.
Our findings will serve as a key pioneer for the researchers who seek to develop the
immunogenic vaccine model against C. trachomatis infection. Figure 1 shows a flowchart
illustrating entire method from antigen selection to vaccine design and evaluation.
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2. Materials and Methods
2.1. Identification of C. trachomatis Core Proteome

All complete 91 sequenced genomes of the C. trachomatis were downloaded from the
NCBI genome database and investigated for the core proteome using a Perl script [33].
USEARCH was used to cluster the proteomes, and proteins with ≤50% sequence identity
were discarded. The clustered sequences were then examined for the presence/absence of
proteins in all input genomes and core protein sequences shared by all proteomes were
considered for vaccine designing. These conserved sequences are attractive candidates for
broad-spectrum vaccine design [34].
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2.2. Subtractive Proteomics Approach

The core proteome undergoes subtractive proteome analysis for the detection of novel
vaccine candidates. In subtractive proteomics, removing paralogue sequences is the first
step. Cluster Database at High Identity with Tolerance (CD-HIT) is a well-known and
fast program for comparing and grouping nucleotide or protein sequences to minimize
the redundancy of sequences and boost the performance of sequence analysis. CD-HIT is
considered as the most extensively used software to minimize the sequence redundancy.
Regarding this, the core proteome was filtered using CD-HIT server at a threshold of 80%.
It attempts to decrease redundancy by following a user-defined threshold of sequence
identity [35]. The set of proteins obtained from the CD-HIT server was subjected to BlastP
for the detection of non-homologous proteins of C. trachomatis against Homo sapiens. BlastP
(Protein–protein BLAST) is an algorithm and program used to compare the query protein
with the protein databases specified by users in order to retrieve the most similar protein
sequences [36]. Proteins were marked as non-homologous if the protein showed query
coverage of >70% and identity > 30%. To design any vaccine candidates, it is very important
to have knowledge about the function of a specific protein. Sub-cellular localization
prediction provides quick and worthwhile approaches to determine the function of a
particular protein. Moreover, investigations have shown that localization is a key dimension
for designing vaccine candidates due to the localization of proteins at multiple sites. In
this regard, the CELLO server tool was used for sub-cellular localization prediction of
non-homologous proteins. CELLO is a multi-class SVM based classification system, used
for screening the subcellular localization of the targeted proteins [37].

Virulent Proteins are very important as they play a vital pathogenic role behind the
pathogenesis of disease. All non-homologous proteins were subjected to VFDB (Virulence
Factor Database) for the identification of virulent proteins [38]. The homologs marked with
bit score > 100 and identity > 30% for C. trachomatis were regarded as virulent proteins. To
predict transmembrane helices, the TMHMM server was used. TMHMM (Transmembrane
Helices; Hidden Markov Model) is a program that predicts whether or not a protein
contains transmembrane helices [39]. Proteins with multiple transmembrane helices were
eliminated because they are difficult to express, purify, and clone, making them unsuitable
for vaccine development [40]. The top antigenic proteins with 0 or 1 transmembrane helices
were chosen for vaccine development.

Later, the antigenicity of virulent proteins was identified using the Vaxijen server [41].
Virulent proteins with scores > 0.5 were considered as antigenic proteins and those antigenic
proteins with the best antigenicity scores were selected as a putative vaccine candidate.
Aside from this, the AllerTOP server checked the allergic nature of the proteins and
molecular weight was analyzed through the Protparam tool [42,43].

2.3. Epitopes Prediction
2.3.1. HTL Epitopes

Helper T-cells have a critical role in all adaptive immune responses. HTL cells, which
are the most effective cells in adaptive immunity, stimulate B-cells to secrete antibodies,
assist macrophages to engulf and absorbs the pathogens, and also influence CTL cells for
the killing of target parasitized cells [44]. Hence, it is critically important to predict the HTL
epitope in order to generate a good immune response. The MHC-II binding prediction
tool was utilized to recognize 15-mer MHC-class II T-cell epitopes [45] with a percentile
rank threshold < 2. MHC-II is the main class of Major Histocompatibility Complex (MHC),
present on professional antigen-presenting cells such as B cells, dendritic cell, etc. These
cells play a crucial role in the initiation of immunological responses. The HTL epitope
occupies a central position in the vaccine design because they produce several cytokines,
such as interleukin-4 (IL-4), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), causing
the activation of cytotoxic T-cells and other immune cells. Hence, the IFN epitope server
was utilized to predict the interferon-gamma (IFN-)-generating HTL epitopes with the
Non-IFN- versus IFN model [46]. Moreover, IL-4 pred [47] and IL-10 pred servers [48] were
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used to predict the inducing properties of interleukin-4 (IL-4) and interleukin-10 (IL-10)
using the SVM method at 0.2 and −0.3 thresholds values, respectively.

2.3.2. CTL Epitopes

Most of the cytotoxic T-cells reveal T-cell receptors (TCRs), which acknowledged a par-
ticular antigen [49]. The Immune Epitope Database (IEDB) is a freely available resource that
hosts various tools for epitope prediction and analysis. So, the prediction of the CTL epi-
topes to design a putative vaccine is important. A vaccine candidate must be immunogenic,
antigenic, and free of toxins as well as allergic reactions. The IEDB MHC I tool was used to
recognize 12-mer MHC-class I epitopes using the consensus method [50]. Humans were
chosen as the source species for HLA alleles, and epitopes with a consensus score of <2 were
chosen for future study. The human leukocyte antigen (HLA) contains multiple distinct
alleles, which allow it to fine-tune the adaptive immune system. The HLA plays a critical
role in the body’s immunological response against foreign substances. The IEDB-AR v.2.22
MHC-I immunogenicity tool was used for the identification of immunogenicity [51]. The
antigenic characteristics of the predicted epitopes were evaluated using VaxiJen v2.0 [41].
Allergic reactions should not be produced by the vaccine components. Hence, the Allertop
2.0 server was used to forecast the allergenicity of epitopes [42]. Furthermore, Toxinpred
server was employed to check their toxicity [47].

2.3.3. LBL Epitopes

The B-Cell epitope vaccine has a vital role in adaptive immunity as it contributes
to antigen-specific immunoglobin development. These epitopes have undergone further
classification and have been divided into conformation and linear epitopes; however, linear
epitopes are considered in the development of a vaccine. For efficient incorporation in vac-
cine constructs, the linear B-cell epitopes (LBL) were predicted using the ABCPred online
server which works on the principle of neural networking methodology [52]. Furthermore,
the toxicity, antigenicity, and allergenicity of epitopes were further tested by ToxinPred,
VaxiJen v2.0, and AllerTop v1.0 servers, respectively [41,42,47].

2.4. World Population Coverage Analysis

Based on ethnic communities, the transmission and the expression of the HLA alleles
differ, consequently helping to enhance the design of an epitope-based vaccine. In the
world population, the role of the HLA allele’s distribution is necessary for multi-epitope
vaccine development. IEDB-AR v2.20 examined the population coverage of the selected
epitopes and their specific HLA binding alleles [53].

2.5. Designing and Validation of MEBV

B-cell, HTL, and CTL were joined to form an MEBV construct with the appropriate
adjuvant (immunogenic element which elevate immunogenicity in the vaccines) and
linkers. Instead of large proteins or complete genomes, which are commonly employed in
recombinant vaccine technology, the multi-epitope-based vaccine (MEBV) elicits immune
responses based on small immunogenic sequences. As a result, this method prevents both
excessive antigenic load and allergic responses in the host. Cholera enterotoxin subunit
B was used as the adjuvant for the vaccine construct (accession no: P01556). An EAAAK
linker was used to combine the adjuvant because it increases the stability of the overall
structure. Then, CTL, LBL, and HTL epitopes were attached by an AAY linker, KK linker,
and GPGPG linker, respectively.

2.6. Structural Analysis of MEBV Construct

The Protparam server was employed in order to evaluate the physio-chemical proper-
ties of the MEBV construct, which included the Theoretical Isoelectric Point (theoretical
PI), Grand Average of Hydropathicity (GRAVY), Alphabetic Index (AI), Molecular Weight
(MW), Instability index (II), etc. [54]. Furthermore, the antigenicity and immunogenicity of
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the MEBV construct were checked by employing the VaxiJen v2.0 server [41] and immuno-
genicity IEDB tool [50], respectively. AllerTop [42] was used to analyze the allergenicity of
the vaccine designed with a main focus of avoiding any vaccine-related allergen reactions.
SOPMA Tool evaluates the secondary structure of the MEBV construct, which is important
because it is a key indicator for protein folding [55]. In addition, the solubility of the MEBV
construct was checked by employing the SolPro server [56].

2.7. Tertiary Structure Prediction and Validation

The I-TASSER server was utilized for the modeling of the 3D structure of the MEBV
construct by using various computational algorithms [57]. The I-TASSER server predicts the
3D structure of the vaccine construct based on simulations of iterative template fragment
assembly and multiple-threading alignments. For determining the quality of a model, I-
TASSER provides confidence scores. The 3D model obtained from I-TASSER was subjected
to 3DRefine web server for the refinement of the predicted model of the vaccine. Using
molecular dynamics, side chains were reconstructed by the 3DRefine web-server; then, they
performed their structural repacking, and after that, final complete structural refinement
was carried out [58]. For the overall quality score of the predicted structure, the ProSA-web
was used; the ERRAT server was employed for the evaluation of interactions between non-
bonded and atom–atom, and for the evaluation of potentially prohibited and permissible
dihedral phi (φ) and psi (ψ) angles, respectively, a Ramachandran plot was used [59–61].

2.8. B-Cell Epitope Mapping

ABCPred and Ellipro servers of IEDB-AR v.2.22 were employed for the prediction of
linear and conformational B-cell epitopes of the MEBV construct, respectively [52,62]. The
Immune Epitope Database Analysis Resource (IEDB-AR) is a companion website to the
IEDB that offers computational tools for predicting and analyzing B and T cell epitopes.
In the ABCPred server, the amino acid sequence of the vaccine construct was taken as the
input by keeping a threshold of 0.5 and a length of 14 amino acids. However, in the Ellipro
tool, a 3D model of the vaccine was taken as the input and by keeping all parameters
as default.

2.9. Molecular Docking (MEBV + TLR4, MHCI and MHCII)

When a vaccine injects into the host it interacts with host cells and triggers the immune
system. To investigate this interaction, the protein–protein docking method was performed
to analyze MEBV’s ability to attach with human MHCI, MCHII, and TLR4 molecules.

HADDOCK is a dynamic docking approach that uses the information to design
biomolecular complexes. The HADDOCK server version 2.4 was used (https://bianca.
science.uu.nl/haddock2.4/; accessed on 26 June 2021). HADDOCK (High Ambiguity
Driven protein–protein DOCKing) is an integrative platform for protein–protein docking
based on biophysical as well as biochemical information. MEBV was docked with along
MHC I (PDB Id: 1I1Y), TLR4 (PDB Id: 4G8A), and MHC II (PDB Id: 1KG0). Their inter-
acting residues were analyzed by PDBsum [63] and the dock complex was visualized by
Pymol [64].

2.10. Molecular Dynamics Simulation

The molecular dynamics of docked complexes were studied using simulations. This
was accomplished using the AMBER software and its numerous modules [65]. Assisted
Model Building with Energy Refinement (AMBER) is the name given to a group of pro-
grams that enable users to run and analyze molecular dynamics simulations. Initially, the
TLeap module was used to produce topological files and initial co-ordinates. In the TIP3P
water box with 8.0 dimensions, the system was solved using the force field ff14SB [66]. The
energy of the complex was minimized through the conjugate gradient for 1000 steps and
the steepest descent to recover adverse conflicts. The device was then heated for 10 ps,
and the algorithm Langevin Dynamics was used to maintain the temperature stability.

https://bianca.science.uu.nl/haddock2.4/
https://bianca.science.uu.nl/haddock2.4/
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The pressure was balanced as per the protocol. Finally, the complex was subjected to a
100 ns efficient simulation. The canonical ensemble of the simulation box inferred periodic
boundary conditions. To keep the temperature stable, the algorithm Berendsen Coupling
Integration was used [67]. To analyze the results, the TRAJectory (PTRAJ) module was used.
Two properties were calculated and displayed using Xmgrace (Version 5.1.19. Available
online: https://plasma-gate.weizmann.ac.il/Grace/ (accessed on 22 May 2021)) [68]. The
root mean square deviation (RMSD) and radius of gyration (RoG) were used. Alpha carbon
(C) coordinates are commonly thought to represent an amino acid’s position in 3D space.
The RMSD approach analyzes the relative positions of protein carbon atoms over time by
calculating the average distance between them [69]. The 3D packaging and density of the
docked complexes are evaluated by RoG [70].

2.11. MMGBSA Binding Energy Analysis

The binding free energies of the dominant simulated complexes were calculated
using MMGBSA. The MMGBSA (molecular mechanics, the generalized Born model and
solvent accessibility) approach is used to elicit free energies from structural information
circumventing the computational complexity of free energy simulations [71]. The initial
prompt files for MEBV, TLR4, MHCI, MHCII, and complexes were analyzed and created
by the ante-MMPBSA.py module. Free energy was calculated using the receptor, complex,
and vaccine energies variation:

∆Gbind = (∆Gcomplex) − (∆Greceptor + ∆Gvaccine) (1)

Throughout this procedure, the energy impacts of gas-phase salvation free energy
modules are shared between non-polar and polar salvation free energy modules [72].
MMGBSA calculates Gibb’s free energy, which is a term used to represent the amount of
energy, symbolized by G, for each terminus, as follows:

∆G = Egas + ∆Gsolv − TS (2)

where T stands for temperature and is multiplied by S for entropy, which is calculated
using normal mode analysis. When reached at the gas stage, the MM energy from the force
field is frequently employed as “Egas”. This category includes van der Waals collaboration
and internal and electrostatic energy.

2.12. Immune Simulation

C-ImmSim version 10.1 [73] is a tool for the immune simulation used to estimate
immunological response of the MEBV. It performs three major simulations, namely bone
marrow, thymus and lymph node. The parameters included for immune simulation are as
follows: HLA (B0702, A0101, B0702, DRB1_0101, A0101, and DRB1_0101), number of steps
(100), number of injections set to 1, volume (10), and random seed (12,345). The remaining
parameters were deemed to be the default.

2.13. In Silico Cloning

Codon optimization is required for the expression of a foreign gene in a host organism
based on the specific host organism. In this case, the widely used E. coli K12 was considered
as the host. The MEBV sequence was uploaded to the JCat server (http://jcat.de/; accessed
on 13 July 2021) for codon adaptation [74]. In silico cloning was performed to assure the
expression of a multiepitope vaccine in an extensively employed E. coli pET28a (+) vector
with the SnapGene v4.3 server [68].

3. Results
3.1. Core Proteome Analysis

The core proteins are currently appreciated in the design of vaccines, as they exist
in all or most of the target pathogen strains and their inclusion in the formulation of

https://plasma-gate.weizmann.ac.il/Grace/
http://jcat.de/
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vaccines provides immune protection against wider pathogenic species. For vaccine design
against C. trachomatis, 91 prominent pathogenic strains of C. trachomatis were considered
(Additional File 1). The total protein count of these strains was 81,485, which was reduced
to 66,696 after core proteome analysis.

3.2. Identification of Target Proteins

Subtractive proteomic analysis was performed to analyze the core proteome of
C. trachomatis using different computational tools and databases. The core proteome
consists of 66,696 proteins. These proteins were subjected to CD-HIT at an 80% threshold
and 798 proteins were retrieved from 66,696 proteins by excluding paralog sequences.
The non-redundant proteins are not important for the survival of an organism; therefore,
these proteins may not be targeted directly. The identification of essential proteins that
are non-homologous to host proteins are very important because these proteins are nec-
essary for the survival of pathogens and also considered a requirement to prevent the
cross binding of drugs with the host proteins [75]. BlastP was used to identify an essential
protein that is non-homologous to humans. When 798 proteins were subjected to BlastP
with an identity ≤30%, 547 essential proteins were distinguished that are non-homologous
to humans. To obtain the information of how particular proteins perform their function,
sub-cellular localization prediction was performed. Out of the total 547 targets, 210 were
predicted as cytoplasmic and were excluded from the studies. The remaining 337 proteins
(36 extracellular, 91 outer membranes, 136 inner membranes and 74 periplasmic) were
blasted against VFDB and yielded 34 virulent proteins with a cut-off bit score >100 and
sequence identity ≤30. The antigenicity of these proteins was evaluated utilizing the
VaxiJen v2.0 server. Among these 34 proteins, 17 were found to be highly antigenic. In
addition to this, nine proteins were found to have no transmembrane helices. Furthermore,
six proteins were found to be non-allergenic and having a molecular weight of <110 kDa,
making them prime candidates for vaccine development and to be taken as a target. Details
of these proteins are enlisted in Table 1.

Table 1. Details of Antigenic Vaccine Candidates of C. trachomatis.

Protein Name Accession No Location Antigenicity Transmembrane
Helices

Molecular
Weight

Type III secretion system
translocon subunit CopD2 WP_009873465 Outer Membrane 0.5273 0 55.01 kDa

SctW family type III
secretion system

gatekeeper subunit CopN
WP_009873547 Extracellular 0.6041 0 45.2 kDa

SycD/LcrH family type III
secretion system
chaperone Scc2

WP_009873911 Outer Membrane 0.6154 0 27.09 kDa

Hypothetical protein
CTDEC_0668 ADI51345 Periplasmic 0.5663 0 24.45 kDa

CT847 family type III
secretion system effector WP_009873454 Extracellular 0.6101 0 19.97 kDa

CHLPN 76kDa-like
protein CPR70663.1 Extracellular 0.5456 0 68.91 kDa

3.3. Epitopes Prediction

The selected target proteins were screened for CTL, HTL, and LBL epitopes. A total
of 217 unique CTL epitopes with MHC-1 binding alleles were predicted. The top 11 CTL
epitopes were selected, which were non-toxic, antigenic, non-allergen, and immunogenic
(Table 2).
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Table 2. Final CTL epitopes used to construct MEBV.

Protein Name Allele Epitopes Immunogenicity Antigenicity

Type III secretion system
translocon subunit CopD2 HLA−C *14:02, HLA−C *08:02 VYDLRANAV 0.10067 1.4953

Type III secretion system
translocon subunit CopD2 HLA−B *08:01, HLA−B *14:02 LLHIRLNHL 0.19782 2.0095

SctW family type III secretion
system gatekeeper subunit CopN HLA−B *40:02, HLA−A *32:01 KDLALDYLI 0.03625 0.8238

SctW family type III secretion
system gatekeeper subunit CopN HLA−B *44:02, HLA−B *44:03 SETFASRAN 0.07931 0.892

SycD/LcrH family type III
secretion system chaperone Scc2

HLA−C *14:02, HLA−A *23:01,
HLA−C *07:02 PYYIADSLM 0.0456 0.6918

SycD/LcrH family type III
secretion system chaperone Scc2

HLA−B *18:01, HLA−B *40:01,
HLA−B *44:03, HLA−E *01:03,
HLA−B *44:02, HLA−E *01:01,
HLA−B *38:01, HLA−B *40:02

DEAAFGFFL 0.36517 0.6844

Hypothetical protein CTDEC_0668 HLA−C *08:02, HLA−C *05:01 FSDRNGERE 0.19962 1.889

Hypothetical protein CTDEC_0668 HLA−B *15:02, HLA−B *07:02 SLGGGGAAL 0.16588 2.1805

CT847 family type III secretion
system effector

HLA−B *40:02, HLA−B *44:03,
HLA−B *40:01, HLA−B *48:01,
HLA−B *44:02, HLA−C *04:01

KELINIPLL 0.23346 0.625

CHLPN 76kDa-like protein HLA−B *51:01, HLA−B *53:01 NPQANQEEI 0.02943 0.9999

CHLPN 76kDa-like protein HLA−A *68:01, HLA−A *11:01,
HLA−A *03:01, HLA−A *30:01 STVTRVAAK 0.1976 0.7123

A total of 215 HTL epitopes with MHC-II binding alleles were predicted and only two
HTL epitopes that were highly antigenic, IL-4 and IL-10 inducers, and IFN-γ positive were
picked for MEBV designing (Table 3).

Table 3. Final HTL epitopes used to construct MEBV.

Protein Name Peptide Allele IL4 IL10 IFN

SctW family type III
secretion system

gatekeeper subunit CopN
EEKFESLEARRKPTA HLA−DRB5 *01:01,

HLA−DRB5 *01:05 Inducer Inducer Positive

SctW family type III
secretion system

gatekeeper subunit CopN
KEEKFESLEARRKPT HLA−DRB5 *01:01,

HLA−DRB5 *01:05 Inducer Inducer Positive

Moreover, 315 unique LBL epitopes were forecasted and, based on their anti-toxic,
immunogenicity, rich antigenicity, and non-allergenicity, the top 10 LBL epitopes were
chosen for MEBV design (Table 4).

Table 4. Final LBL epitopes used to construct MEBV.

Protein Name Sequence Position Score Immunogenicity Antigenicity

Type III secretion system translocon
subunit CopD2 IATGEQTETSCEEA 25 0.77 0.13565 1.5065

Type III secretion system translocon
subunit CopD2 CRERGGENEMTITV 1 0.67 0.33982 1.6901
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Table 4. Cont.

Protein Name Sequence Position Score Immunogenicity Antigenicity

SctW family type III secretion
system gatekeeper subunit CopN RERGGENEMTASGG 2 0.83 0.05641 2.1554

SctW family type III secretion
system gatekeeper subunit CopN TEDLSEVSGEDFRG 110 0.64 0.09196 1.3234

SycD/LcrH family type III
secretion system chaperone Scc2 FGFFLAFDAQPENP 142 0.83 0.31428 1.0071

SycD/LcrH family type III
secretion system chaperone Scc2 FDAQPENPIPPYYI 148 0.71 0.06882 1.1690

Hypothetical protein CTDEC_0668 SDRNGERETLADFL 183 0.7 0.43964 1.2628

Hypothetical protein CTDEC_0668 FSLGGGGAALDSTV 48 0.54 0.09884 1.5042

CHLPN 76kDa-like protein GQVAFAAAKVGGGS 449 0.76 0.19157 1.0759

CHLPN 76kDa-like protein KQEHTGLTDSPLVK 299 0.76 0.02767 1.0426

3.4. Population Coverage Analysis

A global population coverage study was performed on the chosen CTL and HTL
epitopes, as well as their alleles. HLA alleles differ between ethnic groups and geographical
regions. Consequently, these influence the construction of the MEBV. The statistical results
showed a cumulative distribution of 99.9% of the world population for final epitopes
(Figure 2A). Maximum population coverage was found in South Asia (100%), Southeast
Asia (100%), South America (100%), East Asia (100%), and North America (100%). Central
America has shown the lowest population coverage (5.68%).

Figure 2. Various vaccine design analyses were conducted in this study. (A) Global population coverage map based on the
opted T cell epitopes. (B) Graphical map of the designed multi-epitope-based vaccine (MEBV) construct. (C) The primary
sequence of the MEBV, where black color represents adjuvant and epitopes and orange color represents linkers. (D) Tertiary
structure of the MEBV.
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3.5. Construction of Multi-Epitope Based Vaccine (MEBV)

Finally, a 458 amino acid long vaccine was constructed by joining multiple linkers
and adjuvant in appropriate manner (Figure 2C). The 11 CTL, 2 HTL, and 10 LBL epitopes
were connected to AAY, GPGPG, and KK linkers accordingly to activate an antigen-specific
immune response. Furthermore, the EAAAK linker was used to attach cholera enterotoxin
subunit B (236 amino acids) as an adjuvant to the first CTL epitope (Figure 2B).

3.6. Structural Analysis of the Vaccine Construct

Physiochemical and immunological profiling of the MEBV construct was carried
out. Initially, the vaccine construct was blasted against homo-sapien proteins, and the
results showed that the vaccine construct had no resemblance to any human protein. After
this, a detailed study regarding the allergenicity was performed. Although antigenicity
and toxicity of the MEBV designed were also performed, results have shown that the
vaccine model is strongly antigenic (0.8456 at 0.5 thresholds), non-allergenic, and non-
toxic. The ProtParam server was employed for the evaluation of the physiochemical
properties of the vaccine construct. The molecular weight and theoretical PI were 7.59 and
50,631.33, respectively, which indicates a good antigenic nature of the vaccine construct. The
instability index of MEBV is 34.57, which classifies that the vaccine construct is stable. The
Aliphatic index is 71.51 which considers the relative volume held by aliphatic side chains,
and the GRAVY value of the vaccine construct is −0.550, which reflects the hydrophilic
nature of the MEBV construct. Lastly, the solubility of the MEBV construct was predicted
using the SOLPro tool, which had a probability of 0.589196; hence, it represents that there
is good solubility of the MEBV construct. Moreover, no transmembrane helices were
identified in the MEBV construct. All these features indicate that the MEBV construct has a
good chance of being recognized as a potential vaccine candidate. The SOPMA server was
employed for secondary structure analysis of the MEBV construct. Overall, the estimation
of secondary structural features showed 45.95% α-helix, 14.44% β-strands, and 31.95%
random coils.

Later, I-TASSER was used to find the tertiary structure of the designed MEBV
(Figure 2D). Model number 1 has been identified as the best-optimized model (c-score =
−1.79). The 3DRefine server was employed for the refinement of the model. From five
models refined using 3DRefine, the top first model was selected. Later, the final approval
of the model was made through Ramachandran plot analysis, ProSA-web, and ERRAT.
According to the Ramachandran plot analysis, 77.9% of residues were located in the fa-
vored region, 1.5% in the disallowed region, 1.8% in the generously allowed region, and
18.8% in the allowed region. Moreover, the Z score of −4.85 was predicted by the ProSA
web server. The quality of non-bonded atomic interactions is determined by the ERRAT
so-called ‘quality factor’, with higher scores suggesting higher quality. For high-quality
models, ERRAT generates an overall quality factor of >50, and our model’s quality factor
was 94.27.

3.7. Prediction of B Cell Epitopes of MEBV

Humoral immunity is mediated by antibodies, which are secreted by B-lymphocytes.
Therefore, it has been suggested that B cell epitopes must exist within the domain of MEBV.
Six conformal B cell epitopes (Additional file 2: Table S1) and 33 linear B cell epitopes
(Additional file 2: Table S2) were predicted from the MEBV construct.

3.8. Protein–Protein Docking

A vaccine must have a high binding affinity to the host’s immune receptors, such
as MHC molecules and Toll-like receptors, to elicit the proper immune responses. For
stimulating the immune reaction, an adequate interaction among the molecules of the
immune receptors and the antigen molecule is crucial. Thus, the HADDOCK v.2.4 server
was utilized to perform protein–protein docking among the MEBV construct and hu-
man TLR4, MHCI, and MHCII. Binding scores of MEBV-MHC I, MEBV-MHC II, and
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MEBV-TLR4 complexes were 221.3 ± 13.2 kcal/mol, 179.4 ± 17.3 kcal/mol, and 202.6 ±
13.6 kcal/mol, respectively (Table 5). According to docking statistics, MEBV has strong
binding interactions with MHCI, MHC II, and TLR4.

Table 5. Docking statistics of MEBV with immune receptors and MHC molecules.

Parameters MEBV-TLR4 MEBV-MHCI MEBV-MHCII

HADDOCK score 202.6 ± 13.6 221.3 ± 13.2 179.4 ±17.3

Cluster size 6 5 6

RMSD from the overall
lowest-energy structure 45.4 ± 0.1 33.6 ± 0.1 9.4 ± 0.5

van der Waals energy −33.0 ± 2.1 −48.8 ± 4.6 −60.1 ± 2.1

Electrostatic energy −96.3 ± 21.8 −63.8 ± 10.0 −261.1 ± 24.8

Desolvation energy −0.1 ± 2.9 −1.8 ± 1.3 −10.7 ± 3.8

Restraint violation energy 2549.5 ± 170.4 2846.2 ± 134.9 3024.6 ± 192.4

Buried Surface Area 1154.6 ± 98.4 2101.9 ± 120.2 2907.6 ± 63.1

Z-Score −1.6 −0.8 −1.6

A pictorial analysis of the MEBV and receptor molecule binding interactions were
obtained through the PDBsum server, as well as a sketch of the interactional map among
docked complexes. PDBsum provides a schematics representation of the residue interacting
with binding and non-binding molecules. MEBV had eight hydrogen bonds with MHCI in
the range of 3.17 Å, six hydrogen bonds with MHCII in the range of 2.58 Å, and ten hydro-
gen bonds with TLR4 receptor in the range of 2.82 Å. Figure 3 shows the MEBV docked
conformation and atomic-level hydrogen bonding with various immunological receptors.

Figure 3. MEBV–immune receptor binding conformation and interaction analysis. Intermolecular binding mode and
residue-level chemical interactions of (A) MEBV-MHC I; (B) MEBV-MHC II; (C) MEBV-TLR4.
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3.9. Molecular Dynamics Simulation

To establish the docked and structural stability of the built MEV, statistical characteris-
tics based on the 100 ns MD simulation RMSD were computed for the docked complexes
MEBV-TLR4, MEBV-MHCI, and MEBV-MHCII, as shown in Figure 4A. Both analyses used
simulation trajectories. The RMSD backbone in the complexes progressively increases
over time, and viewing frames at various time intervals revealed that the fluctuating plot
correlates to minor structural changes generated by the MEBV due to flexible loop areas.
These alterations had no effect on TLR4, MHC I, or MHC II binding, nor on the overall
stability of the complexes. The MEBV-TLR4, MEBV-MHC I, and MEBV-MHC II complexes
had mean RMSD values of 4.8 Å, 7.0 Å, and 8.5 Å, respectively. Complexes were next
investigated by measuring the RoG in a 100 ns simulation (Figure 4B). Over a 100-ns time
span, the TLR4 receptor remained stable up to 37.5 Å. The RoG MHC-II plots demonstrate
that they were stable between 31.5 Å with slight deviations of 1 Å throughout a 100-ns
time period. The MHC-I receptor’s RoG conformational stability with MEBV was steady at
34 Å throughout a 20-s period, then showed a small variation up to 60 ns before remaining
stable up to 100 ns. These two statistical tests confirmed that the MEBV has more stable
dynamics with TLR receptors than with MHC molecules, implying that the MEBV is more
likely to bind to TLRs.
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3.10. Binding Free Energies

The binding free energies of docked complexes were calculated using the MM-
GBSA and MM-PBSA methods and are represented in Table 6. The Gibbs free energies
of MEBV-TLR4, MEBV-MHCI, and MEBV-MHCII complexes are −121.75 kcal mol−1,
−83.63 kcal mol−1, and −85.07 kcal mol−1, respectively in the case of MM-GBSA. In MM-
PBSA, the binding free energy is −116.45 kcal mol−1 (MEBV-TLR4), −82.23 kcal mol−1

(MEBV-MHCI) and −90.81 kcal mol−1 (MEBV-MHCII). All the systems have an equal con-
tribution from both van der Waals energy as well as electrostatic energy, though the former
contributed more than the later. The polar energies in all three systems are non-favorable,
whereas the non-polar solvation energies contributed favorably to the systems binding
energy.

Table 6. Binding energies of the MEBV to the human receptors and MHC molecules.

Energy Parameter TLR-4-MEBV Complex MHC-I-MEBV Complex MHC-II-MEBV Complex

MM-GBSA

VDWAALS −79.80 −61.96 −72.10
EEL −71.77 −53.07 −59.00

EGB 36.45 42.58 52.13

ESURF −6.63 −8.18 −6.10

Delta G gas −151.57 −118.03 −131.10

Delta G solv 29.82 34.4 46.03

Delta Total −121.75 −83.63 −85.07

MM-PBSA

VDWAALS −79.80 −61.96 −72.10
EEL −71.77 −53.07 −59.00

EPB 43.58 41.55 49.65

ENPOLAR −8.46 −5.75 −9.36

Delta G gas −151.57 −118.03 −131.10

Delta G solv 35.12 35.8 40.29

Delta Total −116.45 −82.23 −90.81
VDWAALS (van der Waals), EEL (electrostatic), EGB (polar solvation energy of MM-GBSA), ESURF (non-polar
solvation energy), Delta G gas (net gas phase energy), Delta G solv (net solvation energy), Delta Total (net energy
of system).

Based on the computed values, it appears that van der Waals energy and electrostatic
energy are more useful in complex formation than the modest contribution of the non-
polar fraction of the solvation energy, despite the fact that polar solvation energy is less
advantageous than net energy.

3.11. Immune Simulation

The C-IMMSIM server was employed for testing the immunogenic profile of the
MEBV construct. All secondary and primary immune responses contribute significantly
to the immune reaction (Figure 5B). The primary reaction was described by the high
concentration of IgG + IgG and IgM, followed by the secondary and primary phases of
IgM, IgG1 + IgG2, and IgG1 with consequent antigen reduction. Significant cytokine
and interleukin responses have also been noted (Figure 5A). All of this demonstrates the
MEBV’s effective immune response and acceptance.
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3.12. In Silico Cloning and Codon Optimization

The codon adaptation of the MEBV sequence was performed through the JCAT tool.
The Java Codon adaptation tool (JCAT) serve is a novel and simple method to adapt the
codon usage of the target gene to its expression host. The length of the optimum codon
sequence was 1263 nucleotides. JCAT revealed that the GC content of the improved cDNA
sequence was 49.30% and the CAI was 0.97%. Moreover, the adapted codon has been
integrated at MCS of the E. coli vector pET28a (+) between the XhoI and NdeI restriction
sites (Figure 5C). The clone, therefore, had a total length of 6.66 kbp.

4. Discussion

Chlamydia trachomatis is a mysterious bacterial pathogen with no vaccine available
to treat ocular, pulmonary, and genital tract infections in humans [76]. Untreated genital
chlamydial infection can lead to serious complications, such as infertility, pelvic inflamma-
tory disease, and ectopic pregnancy [77,78]. The risk of HIV/AIDS and cervical dysplasia
is also associated with chlamydial infection [79,80], while untreated trachoma in the eye
pulls the eyelashes into the eyelid and causes blindness [14]. Although effective antimi-
crobial therapy is available, the number of C. trachomatis infections in the last decade has
increased considerably due to drug resistance and a high recurrence rate. Vaccines are
widely acknowledged as the most effective method of preventing C. trachomatis infections
and related disorders, including autoimmune diseases, that are caused indirectly or di-
rectly by C. trachomatis infection [81–83]. Despite years of research and development, no
vaccines that effectively prevent the aforementioned C. trachomatis infections are currently
available. Hence, designing a vaccine that can control and prevent C. trachomatis infections
is crucial [84,85].

Manufacturing and developing an effective live or attenuated vaccination is an expen-
sive and time-consuming process. Aside from that, the use of classic attenuated vaccines is
restricted due to certain factors, including their low ability to stimulate immune responses
and a variety of adverse reactions [86]. Multi-epitope-based vaccines are preferred over
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traditional vaccines owing to their cost-effectiveness, improved safety, and the prospect
to sensibly engineer the epitopes for amplified potency [87,88]. There are currently nu-
merous strategies available for developing and manufacturing effective epitope-based
vaccines [89,90].

In this study, subtractive proteomics was used in conjunction with reverse vacci-
nology and molecular docking to identify and assess antigenic peptide proteins in the
core proteome of C. trachomatis strains. The core proteome was subjected to a subtractive
proteomics pipeline to identify non-redundant, virulent, non-homologous, antigenic, and
non-allergenic vaccine candidates. The number of transmembrane helices is another key
criterion for excluding proteins. Because it is very difficult task to purify proteins with
more than one transmembrane helix, it seems wise to exclude these proteins from the
selection process [40]. The TMHMM server revealed that none of our six antigenic pro-
teins had any transmembrane domain, implying that they are all extracellular proteins
that may be fully contacted by antigen-presenting cells to trigger T- and B-cell priming
and strong immune responses. To be potentially good candidates, the selected proteins
must be surface-exposed and able to be recognized by the immune system. Six proteins:
Type III secretion system translocon subunit CopD2, SctW family type III secretion system
gatekeeper subunit CopN, SycD/LcrH family type III secretion system chaperone Scc2,
CT847 family type III secretion system effector, Hypothetical protein CTDEC_0668, and
CHLPN 76 kDa-like protein were identified as vaccine candidates. A slew of in vivo studies
have been conducted on antigenic proteins of C. trachomatis and it is noteworthy that our
five antigenic proteins, named type III secretion system translocon subunit CopD2, SctW
family type III secretion system gatekeeper subunit CopN, CT847 family type III secretion
system effector, and CHLPN 76 kDa-like protein, are correlated with antigenic proteins
of chlamydia [91–95]. Following that, it gives clear evidence that all these proteins play a
critical role in pathogenesis, and hence might be potential chlamydial vaccines candidates.
When a persistent, substantial immune response is desired, both B and T cell epitopes must
combine and generate both humoral and cellular immunity. Hence, T and B cell epitopes
from vaccine candidates were forecasted and thoroughly examined. The epitopes chosen
accounted for 99.9% of the global population.

To design the vaccine, HTL, CTL, and B cell epitopes were bonded to GPGPG, AAY,
and KK linkers, respectively. The use of linkers in MEBV development can improve its
expression, stability, and folding. The EAAAK linker is a stiff linker that has been em-
ployed in numerous studies on vaccine constructions, such as bacterial and viral diseases,
particularly when separate epitopes and adjuvants are needed in the design [96]. GPGPG,
AAY, and KK linkers typically consist of hydrophilic, flexible amino acids and can pre-
vent a disruption of the domain function and folding by combining these two residues.
Multi-epitope vaccines on their own cannot produce sufficient immunogenicity and require
the addition of adjuvants [97]. Cholera toxin B subunit (CTB) was used as an adjuvant.
CTB was studied as a traditional mucosal adjuvant with the potential to boost vaccine
immunogenicity and it has been used in many previous studies [98]. Adjuvants in vaccine
formulations can help protect against infection and enhance immune responses to antigens,
as well as their stability, development, and duration [99]. In the functional and biochemical
investigation, the solubility of the recombinant protein overexpressed inside an E. coli host
is crucial [100]. The solubility of the MEBV protein was detected, and its ease of access
to the host was confirmed. The aliphatic index and GRAVY score, respectively, are used
to represent thermostability and hydrophilicity. To ensure the vaccine’s basic nature, the
theoretical pI value was used. Furthermore, the instability index predicted in our study
confirms the protein’s stability after expression, indicating that its usage capacity has
improved.

The three-dimensional structure not only contains useful information about the spatial
formation of major protein components, but it also aids in the investigation of protein
dynamics and function, as well as interactions between ligands and other proteins [101,102].
The refinement of the MEBV construct significantly improved its desirable attributes. The
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Ramachandran plot shows that there are just a few residues in the disallowed area, and
most are in favored regions (77.9%). The ERRAT quality factor and the Z-score for our
MEBV were 94.27 and −4.85, respectively. A model with a quality factor > 50% is regarded
as high-quality. The quality factor and z-score confirm our model’s high quality. The MEBV
construct was used to forecast B-cell epitopes to determine whether it contained enough
epitopes for antibodies to detect and latch onto [103].

The recombinant protein must be expressed in the appropriate host. E. coli expression
systems are being developed to produce recombinant proteins. A high level of recombinant
vaccine protein expression in E. coli K12 was the aim of codon optimization [104,105]. The
high-level expression of the protein in bacteria was ensured in terms of GC content (53.63%)
and codon adaptability index (0.98) values [104,106].

Since MEBV includes various epitopes (B and T cell), cellular and humoral immune
responses should be triggered. IFN-β production was the highest among cytokines, and sig-
nificant IL-10 and IL-2 activities were also observed. Antibodies also provided extracellular
protection. A large number of active immunoglobulins, including IgM and IgG, as well as
their isotypes, have been discovered that can contribute to isotype switching. Furthermore,
the negligible Simpson Index (D) indicates a plausible, varied immune response because
the MEBV contains a variety of B and T cell epitopes.

MEBV must have a high binding affinity for the immune receptor in order to be
transported into the body successfully. The strong binding capacity of the MEBV with the
MHC (MHC-I and MHC-II) molecules is necessary to elicit the immune system and to
develop immunotherapy and vaccine for infectious microorganisms. These interactions
initiate the naive immune response and then generate an adaptive immune response to
the given epitopic antigens [107,108]. The strong interactions of MEBV with TLR4, MHC
I, and MHC II were verified in MD simulation and molecular docking; the MMGBSA
studies showed that this stable bonding requires very little energy. A significant number of
H-bonds were observed during docking and minor fluctuations during MD simulations.
These findings indicate that the MEBV can bind to immune receptors effectively.

MEBV has excellent properties that give it benefits compared with conventional
vaccines, for example: (a) it contains B-cell and T-cell epitopes, and thus may be capable of
generating humoral or cellular immunity inside the host; (b) it is comprised of epitopes
which target various HLAs and allow the identification of several T-cell receptors, showing
useful effect for a broad population; (c) a single vaccine hopefully contains several targeted
proteins, as it deals with many immunogenic protein areas that tend to be combined
into one peptide fragment which increases their effectiveness; (d) because the epitopes
are evolved by human proteins and the rest of the unwanted proteins are removed, the
risk of auto-immune illnesses may be decreased; (e) these vaccines can deliver long-
lasting immunity to hosts since they are related to adjuvants; (f) these vaccines may
elicit mucosal immunological responses when given orally, intranasally, or sublingually,
inhibiting pathogen entry into the host’s body by inducing the generation of host-defensive
B and T cells in the mucosal and systemic environments. These multi-epitope vaccines can
therefore in the future become an important tool to fight pathogens.

Shiragannavar et al. [4] and Pourhajibagher et al. [109] predicted potential epitopes
for vaccine design against C. trachomatis, while Nunes et al. [110] identified potential
vaccine antigens in their studies. Hence, no study has reported a vaccine construct yet,
so the MEBV designed in this study will pave the way for future research in the field
of vaccinology. Since the present study is based on an integrated computation pipeline
and requires additional laboratory tests to demonstrate the safety and effectiveness of the
designed vaccine.

5. Conclusions and Limitations

A reverse vaccinology approach was applied on the core proteome of C. trachomatis
strains to identify six conserved antigenic proteins. Furthermore, a multi-epitope-based
vaccine (MEBV) was designed containing potential epitopes from all six antigens and
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evaluated using protein–protein docking and MD simulations. The designed MEBV has
appropriate structural, immune, and physiochemical properties that can successfully trig-
ger the humor and cell immune response against C. trachomatis. Moreover, the MEBV
can easily be overexpressed in E. coli strain K12. The current work is, however, an out-
come of an integrated vaccinomics approach. Thus, the effectiveness and tolerance of the
proposed MEBV should therefore be demonstrated in laboratory tests and subsequent
pharmacological trials.
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presented peptides that enhance immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [CrossRef] [PubMed]

52. Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct.
Funct. Bioinform. 2006, 65, 40–48. [CrossRef] [PubMed]

53. Ong, E.; He, Y.; Yang, Z. Epitope promiscuity and population coverage of Mycobacterium tuberculosis protein antigens in current
subunit vaccines under development. Infect. Genet. Evol. 2020, 80, 104186. [CrossRef]

54. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the
ExPASy server. In The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 571–607.

55. Deléage, G. Alignsec: Viewing protein secondary structure predictions within large multiple sequence alignments. Bioinformatics
2017, 33, 3991–3992. [CrossRef] [PubMed]

56. Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25,
2200–2207. [CrossRef] [PubMed]

57. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [CrossRef]
58. Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: An interactive web server for efficient protein structure refinement.

Nucleic Acids Res. 2016, 44, W406–W409. [CrossRef] [PubMed]
59. Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of

proteins. Nucleic Acids Res. 2007, 35, W407–W410. [CrossRef]
60. Xia, T.H.; Bushweller, J.H.; Sodano, P.; Billeter, M.; Björnberg, O.; Holmgren, A.; Wüthrich, K. NMR structure of oxidized

Escherichia coli glutaredoxin: Comparison with reduced E. coli glutaredoxin and functionally related proteins. Protein Sci. 1992, 1,
310–321. [CrossRef]

61. Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; De Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure
validation by Cα geometry: φ, ψ and Cβ deviation. Proteins Struct. Funct. Bioinform. 2003, 50, 437–450. [CrossRef]

62. Dhanda, S.K.; Mahajan, S.; Paul, S.; Yan, Z.; Kim, H.; Jespersen, M.C.; Jurtz, V.; Andreatta, M.; Greenbaum, J.A.; Marcatili, P.
IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Res. 2019, 47, W502–W506. [CrossRef]
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