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A clinical deep learning framework for continually
learning from cardiac signals across diseases, time,
modalities, and institutions
Dani Kiyasseh 1✉, Tingting Zhu1 & David Clifton1

Deep learning algorithms trained on instances that violate the assumption of being inde-

pendent and identically distributed (i.i.d.) are known to experience destructive interference, a

phenomenon characterized by a degradation in performance. Such a violation, however, is

ubiquitous in clinical settings where data are streamed temporally from different clinical sites

and from a multitude of physiological sensors. To mitigate this interference, we propose a

continual learning strategy, entitled CLOPS, that employs a replay buffer. To guide the sto-

rage of instances into the buffer, we propose end-to-end trainable parameters, termed task-

instance parameters, that quantify the difficulty with which data points are classified by a

deep-learning system. We validate the interpretation of these parameters via clinical domain

knowledge. To replay instances from the buffer, we exploit uncertainty-based acquisition

functions. In three of the four continual learning scenarios, reflecting transitions across dis-

eases, time, data modalities, and healthcare institutions, we show that CLOPS outperforms

the state-of-the-art methods, GEM1 and MIR2. We also conduct extensive ablation studies to

demonstrate the necessity of the various components of our proposed strategy. Our fra-

mework has the potential to pave the way for diagnostic systems that remain robust

over time.
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Cardiac arrhythmia diagnosis, the identification of abnorm-
alities in the functioning of the heart, is instrumental in
guiding the decision-making process of both cardiologists

and clinicians at large. To perform such a diagnosis, it is common
to leverage the electrocardiogram (ECG), a signal that measures the
electrical activity of the heart. The advent of deep-learning systems
allows for automated cardiac arrhythmia diagnosis at scale and with
reasonable accuracy. Many of these systems require that data are
independent and identically distributed (i.i.d.), and, as such, are
developed based on a single snapshot of cardiac data. In other
words, such deep-learning systems are static. The violation of the i.i.
d. assumption, which can be detrimental to the learning behavior of
a system, may arise, for example, when data are streamed sequen-
tially from a sensor or from multiple sensors in a dynamic envir-
onment. In clinical settings, this dynamic environment is reflected
by the multitude of physiological sensors that generate time-series
recordings that may vary temporally (due to seasonal diseases; e.g.,
the flu), across patients (due to different hospitals or hospital set-
tings), and in their modality. Regardless of the setting, such
dynamics result in a shift in the distribution of data, arguably the
“Achilles heel” in the deployment of deep-learning systems3.

Tackling the challenges posed by dynamic environments is the
focus of continual learning (CL) whereby a learning system, when
exposed to tasks in a sequential manner, is expected to perform
well on current tasks without compromising performance on
previously seen tasks. The outcome is a single system that can
reliably solve a multitude of tasks. The dynamic and chaotic
environment that characterizes healthcare necessitates systems
that are dynamically reliable; those that can adapt to potential
data distribution shift without catastrophically forgetting how to
perform tasks from the past. Such dynamic reliability implies that
systems are less likely to require re-training on data or tasks to
which it has been exposed in the past, thus reducing their overall
data requirements and the burden placed on researchers. Fur-
thermore, we hypothesize that clinical deep-learning systems that
perform consistently well over time and across a multitude of
tasks are more likely to be trustworthy, a desirable trait sought
after by medical professionals4.

Continual, or lifelong, learning algorithms have achieved
notable success in the field of computer vision. Such algorithms, a
recent summary of which is provided by Parisi et al.5, belong
predominantly to one of three approaches; those based on neural
architecture changes, regularization, or replay buffers. The latter
approach, shown to be preferable to the remaining two, involves
storing data points into, and acquiring them from, a buffer during
the learning process. Replay buffers have manifested in various
forms1,6–8. For example, in gradient episodic memory (GEM)1, a
replay buffer is naively populated with the last m data points
observed in previous tasks. Isele et al.9 and Aljundi et al.10 employ
a more sophisticated strategy where a quadratic programming
problem is solved to identify suitable data points for storage.
Another method, maximally interfered retrieval (MIR)2, stores
data points into a buffer using reservoir sampling. It also acquires
data points from a buffer based on whether a system incurs a
large change in the loss when classifying such data points, given
subsequently updated parameters. Such an approach is compu-
tationally expensive since it requires multiple forward and
backward passes through the deep-learning system per batch of
instances. As for replaying data points from the buffer, Titsias
et al.11 and Nguyen et al.12 exploit the notion of model uncer-
tainty and variational methods. Beyond computer vision, CL in
the medical domain has been limited to the application of
existing methodologies on a chest X-ray dataset13. However, to
the best of our knowledge, no study has designed and evaluated a
continual deep-learning system in the context of physiological
signals.

More formally, we designed and evaluated a continual deep-
learning system capable of diagnosing cardiac arrhythmias based
on ECG data streaming in a sequential manner. The system
received an input of single-lead ECG data and returned a single
cardiac arrhythmia diagnosis. We hypothesized that such a deep-
learning system could perform the clinical task of cardiac
arrhythmia diagnosis in several dynamic environments without
catastrophically forgetting how to perform previous tasks.

In contrast to previous research that investigates the storage of
data points into, and the acquisition of data points from, the
buffer independently, we focused on a dual storage and acquisi-
tion strategy. First, to determine which data points were most
informative for storage, we associated each one with a learnable
parameter that acted as a coefficient of the loss function. We
showed that this parameter is a proxy for the difficulty with which
a data point is classified by the deep-learning system, lending
itself to a high degree of intepretability. Second, to determine
which data points should be replayed from the buffer, we peri-
odically quantified the uncertainty with which each data point
was classified by the deep-learning system. When combining the
buffer storage and acquisition mechanisms, we showed that our
CL framework outperformed state-of-the-art CL methods,
including GEM and MIR, in three of the four diverse CL sce-
narios. We also conducted extensive ablation studies and showed
that our proposed buffer storage and acquisition mechanisms
were essential for the improved performance. Furthermore, we
validated our interpretation of the learnable parameters as a
proxy for difficulty by making reference to ECG domain
knowledge.

Results
Data. We designed and evaluated our deep-learning system using
four publicly available datasets comprising ECGs alongside car-
diac arrhythmia labels. The first dataset, which we refer to as
Cardiology14, includes ECG data collected via a chest patch from
292 patients alongside twelve cardiac arrhythmia labels: AFIB,
AVB, BIGEMINY, EAR, IVR, JUNCTIONAL, NOISE, NSR, SVT,
TRIGEMINY, VT, and WENCKEBACH. The second dataset,
which we refer to as Chapman15, includes ECG data collected
from 10,646 patients alongside four high-level cardiac arrhythmia
labels: AFIB, GSVT, sinus bradycardia, and sinus rhythm. The
third dataset, which we refer to as PhysioNet 202016, includes
ECG data collected from 6876 patients alongside nine cardiac
arrhythmia labels: AFIB, I-AVB, LBBB, Normal, PAC, PVC,
RBBB, STD, and STE. The fourth dataset, we which we refer to as
PhysioNet 201717, includes 8528 single-lead ECG recordings
alongside four labels: normal, AFIB, other, and noisy. Across all
datasets, we split patients randomly into training, validation, and
test sets, ensuring that there was no patient overlap between sets.

Outcomes. The primary outcome was to diagnose cardiac
arrhythmias in various CL scenarios, defined as environments
with changing dynamics (described next). The secondary out-
come was to mitigate catastrophic forgetting experienced by our
deep-learning system as a result of data distribution shift. We
define catastrophic forgetting as a hindered ability of the deep-
learning system to diagnose cardiac arrhythmias based on data
exposed to in the past.

Algorithm development. The deep-learning system involved a
lightweight convolutional network which received a single-lead
ECG as input and returned a probability distribution over cardiac
arrhythmias as output. This clinical task was performed in four
distinct CL scenarios. From hereon forward, we refer to our deep-
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learning system as CLOPS, for the continual learning of physio-
logical signals.

Continual learning scenarios. We simulated four environments
with changing dynamics in which the deep-learning system was
sequentially tasked with performing cardiac arrhythmia classification.

In the class incremental learning (Class-IL) scenario, the deep-
learning system solved a binary classification problem in response
to data from mutually exclusive pairs of cardiac arrhythmia
classes (see Fig. 1 left). In our context, we split the Cardiology
dataset based on the following class-pairs [0, 1], [2, 3], [4, 5], [6,
7], [8, 9], and [10, 11]. In light of this setup, the final classification
head of the deep-learning system was specific to each task. This
scenario allowed us to evaluate the sensitivity of a network to new
classes.

In the time incremental learning (Time-IL) scenario, the deep-
learning system solved a multi-class classification problem in
response to data collected at different times of the year (e.g.,
winter and summer) (see Fig. 1 left). In our context, we split the
Chapman dataset into three tasks; Term 1, Term 2, and Term 3
corresponding to mutually exclusive dates of the year during
which patient data were collected. This scenario allowed us to
evaluate the effect of temporal non-stationarity on the system’s
performance.

In the domain incremental learning (Domain-IL) scenario, the
deep-learning system solved a multi-class classification problem
in response to inputs with a different modality (see Fig. 1 right).
In our context, we split the PhysioNet 2020 dataset according to
the 12 leads of an ECG, which can be considered as 12 different
projections of the same electrical signal generated by the heart.
This scenario allowed us to evaluate the robustness of a system to
changes in the input distribution.

In the institute incremental learning (Institute-IL) scenario, the
deep-learning system solved a multi-class classification problem
in response to inputs from disparate healthcare institutions (see
Fig. 1 right). In our context, the notion of disparate healthcare
institutions manifested as different datasets. Specifically, the deep-
learning system was exposed to the following datasets in
sequence: Chapman, PhysioNet 2017, and Cardiology. This
scenario allowed us to evaluate the robustness of the system to
a change in healthcare institutions, one which impacts both input
and output distributions.

Replay-based method. In order to satisfy our primary and sec-
ondary outcomes, we designed a deep-learning system capable of

diagnosing cardiac arrhythmias accurately while mitigating the
phenomenon of catastrophic interference. To achieve this in the
aforementioned CL scenarios, we designed a strategy where
the deep-learning system identifies important ECG signals, stores
them in a buffer, and replays them in the future. By replaying
examples from the past, we can reduce the potentially drastic
changes in the distribution of the data. In short, our replay-based
method is anchored in a buffer-storage and -acquisition
mechanism, which are outlined next.

During training, the deep-learning system needs to identify
important ECG signals to store in a buffer. To quantify
importance, we assigned each ECG signal a parameter (which
we refer to as s for storage) that the deep-learning system learns
based on data. This parameter represents the difficulty with which
an ECG signal is diagnosed according to one of the cardiac
arrhythmias. As the deep-learning system concludes its training
on a particular task, it stores in the buffer a fraction (b) of the
ECG signals with the highest importance parameter value. A
detailed description and a summary algorithm can be found in
the Methods section and Supplementary Note 1, respectively.

When training on tasks in the future, the deep-learning system
may be exposed to data from a different distribution. This can
hinder the system’s ability to perform tasks achieved in the past.
To avoid this behavior, the system selectively chooses ECG signals
from the buffer and replays them. To achieve this, we assigned a
value to each of the ECG signals in the buffer based on the degree
to which the system was uncertain about the cardiac arrhythmia
diagnosis. By replaying a fraction (a) of such uncertain ECG
signals from the past, the system was nudged to remember how to
diagnose such signals correctly.

Evaluation. To evaluate our continual deep-learning system, we
exploited metrics common in the field such as average AUC and
backward transfer (BWT)1. The former evaluates the perfor-
mance of the deep-learning system at the end of the sequence of
tasks it has been exposed to. The latter involves deploying and
evaluating the deep-learning system on data exposed to in the
past. BWT is a metric that ultimately sheds light on the degree of
catastrophic forgetting a system is experiencing.

Our focus on catastrophic forgetting motivated us to propose
two additional evaluation metrics. To determine how perfor-
mance changes “t-steps into the future,” we proposed BWTt that
evaluates the performance of the system on a previously seen task,
after having trained on t subsequent tasks. We also extended
BWTt to consider all possible time-steps, t, and generated the

Fig. 1 Four continual learning scenarios. A deep-learning system, fω, is sequentially exposed to tasks with potential data distribution shifts. In the Class-IL
scenario, we present mutually exclusive pairs of classes to reflect novel diseases. In the Time-IL scenario, we present data collected at different times of the
year to reflect temporal non-stationarity. In the Domain-IL scenario, we present data from different input modalities to reflect different physiological
sensors. In the Institute-IL scenario, we present completely different datasets to reflect disparate healthcare institutions. The system in the Class-IL
scenario has a classification head that is specific to the task, and is thus task-specific. In the remaining scenarios, the system is task-agnostic; it is not aware
of the task identity of the data.
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metric BWTλ. This allowed us to identify improvements in the
system at the task level. A detailed description of these metrics is
provided in the Methods section.

We compared our deep-learning system to several baseline
methods. First, we trained a static multi-task learning (MTL)
system that had access to all data from the sequential tasks.
Second, we trained a naive fine-tuning system that did not deploy
an explicit CL strategy. Lastly, we trained two state-of-the-art CL
methods, GEM1 and MIR2. A detailed description of these
methods is provided in Supplementary Note 3.

In a CL setting, deep-learning systems are evaluated primarily
based on generalization performance and the degree to which
they experience catastrophic forgetting. We quantified these two
components when our deep-learning system was deployed in four
distinct CL scenarios, Class-IL, Time-IL, Domain-IL, and
Institute-IL, and present these results in Table 1.

When deployed in the Class-IL scenario, our deep-learning
system, CLOPS, achieved an AUC= 0.796 (SD 0.013) whereas the
MTL paradigm, one that is expected to achieve relatively strong
results, only achieved AUC= 0.701 (SD 0.014). One hypothesis for
this behavior revolves around the notion of curriculum learning
wherein the strategic presentation of sequential tasks to a deep-
learning system can contribute to its generalization performance18

(discussed later in Table 3). Another hypothesis notes that the MTL
paradigm in the Class-IL scenario, in contrast to the other strategies,
involves a multi-class classification problem. This is arguably
harder to solve than a binary classification problem, and, as such,
could depress the performance score. On another note, CLOPS
not only outperformed state-of-the-art CL methods, GEM,
and MIR, in terms of generalization performance but also
exhibited constructive interference. For example, CLOPS and
MIR achieved an AUC= 0.796 (SD 0.013) and 0.753 (SD 0.014),
respectively. They also achieved a BWT= 0.053 (SD 0.023)
and 0.009 (SD 0.018), respectively. Such a finding underscores the
ability of CLOPS to deal with tasks involving novel classes. We

found that this holds regardless of task order (see Supplementary
Fig. 3).

To gain a better understanding of the effect of destructive
interference on a deep-learning system, we illustrate, in Fig. 2a,
the AUC achieved by a naive, fine-tuning deep-learning system
deployed in the Class-IL scenario. As expected, in the absence of
an explicit CL strategy, destructive interference was prevalent. For
example, the system has quickly forgotten how to perform task
[0–1] once exposed to data from task [2–3], both of which
constitute binary cardiac arrhythmia diagnosis. Specifically, the
system transitioned from an AUC ≈ 0.92→ 0.30 within a matter
of a few training epochs. The final performance of the network for
that particular task (AUC ≈ 0.78) is also lower than that
maximally achieved (AUC ≈ 0.90). In Fig. 2b, we illustrate the
AUC of our deep-learning system, CLOPS, showing that it
alleviated destructive interference. This can be seen by the
absence of significant decreases in AUC and the higher final
performance exhibited by the deep-learning system on all cardiac
arrhythmia tasks relative to the naive (fine-tuning) strategy.

In addition to changes in medical conditions that may occur
within a clinical setting, environmental changes can also
introduce seasonal shift into clinical datasets. We quantify the
effect of such a shift on deep-learning systems and illustrate, in
Fig. 2c, the AUC achieved by a deep-learning system deployed in
the Time-IL scenario.

When deployed in the Time-IL scenario, our deep-learning
system, CLOPS, performed slightly worse than MIR. For example,
CLOPS and MIR achieved AUC= 0.834 (0.014) and 0.856
(0.010), respectively (see Table 1). Despite this outcome, we found
that CLOPS continued to exhibit forward transfer (FWT), a
feature that indicates that performing a task in the present
facilitates the ability of a deep-learning system to perform a task
in the future. For example, in Fig. 2d, CLOPS achieved an AUC ≈
0.62 after a single epoch of training on task Term 3, a value that
the fine-tuning deep-learning system, whose results are shown in

Table 1 Performance of various continual learning strategies in the continual learning scenarios.

Method Average AUC (SD) BWT (SD) BWTt (SD) BWTλ (SD)

Class incremental learning
MTL 0.701 (0.014) – – –
Fine-tuning 0.770 (0 .020) 0.037 (0.037) −0.076 (0.064) −0.176 (0.080)

Replay-based methods
GEM1 0.544 (0.031) −0.024 (0.028) −0.046 (0.017) −0.175 (0.021)
MIR2 0.753 (0.014) 0.009 (0.018) 0.001 (0.025) −0.046 (0.022)
CLOPS 0.796 (0.013) 0.053 (0.023) 0.018 (0.010) 0.008 (0.016)

Time incremental learning
MTL 0.971 (0.006) – – –
Fine-tuning 0.824 (0.004) −0.020 (0.005) −0.007 (0.003) 0.010 (0.001)

Replay-based methods
GEM1 QP problem could not be solved
MIR2 0.856 (0.010) −0.007 (0.006) −0.003 (0.004) 0.001 (0.004)
CLOPS 0.834 (0.014) −0.018 (0.004) −0.007 (0.003) 0.007 (0.003)

Domain incremental learning
MTL 0.730 (0.016) – – –
Fine-tuning 0.687 (0.007) −0.041 (0.008) −0.047 (0.004) −0.070 (0.007)

Replay-based methods
GEM1 0.502 (0.012) −0.025 (0.008) 0.004 (0.010) −0.046 (0.021)
MIR2 0.716 (0.011) −0.022 (0.011) −0.013 (0.004) −0.019 (0.006)
CLOPS 0.731 (0.001) −0. 011 (0.002) −0. 020 (0.004) −0.019 (0.009)

Institute incremental learning
MTL 0.825 (0.037) – – –
Fine-tuning 0.589 (0.007) −0.203 (0.022) −0.097 (0.020) −0.087 (–0.023)

Replay-based methods
GEM1 QP problem could not be solved
MIR2 0.631 (0.012) −0.140 (0.015) −0.018 (0.006) −0.036 (−0.004)
CLOPS 0.664 (0.015) −0.110 (0.016) −0.063 (0.014) −0.049 (−0.031)

For all experiments, the storage and acquisition fractions are b= 0.25 and a= 0.50, respectively. The mean and standard deviation (SD) are shown across five seeds. MTL refers to multi-task learning
and involves training on all tasks simultaneously. GEM could not always solve the quadratic programming (QP) problem. Also note that ↑BWT indicates reduced catastrophic forgetting. CLOPS
outperformed GEM and MIR in the Class-IL, Domain-IL, and Institute-IL scenarios (bold).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24483-0

4 NATURE COMMUNICATIONS |         (2021) 12:4221 | https://doi.org/10.1038/s41467-021-24483-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 2c, achieved only after 20 full epochs. Such a finding suggests
that CLOPS has the potential to reduce the overhead associated
with training deep-learning systems. We attribute this FWT to
the way in which the deep-learning system identified important
ECG signals and modulated the degree to which it should learn
from such signals. By placing greater emphasis on more
important signals, through a higher-valued task-instance para-
meter (loss coefficient), the deep-learning system was better able
to focus on a subset of ECG signals. An in-depth description of
this loss coefficient is provided in the Methods section. It could be
argued that such FWT is not unique to CLOPS but rather is a
function of the data distribution. In other words, training on data
from Term 2 somehow allowed the system to transfer knowledge
useful for solving Term 3. Although possible in principle, this was
not the case in our experiment. Specifically, if such FWT were
attributable to the data distribution, then we would have expected
the fine-tuning system to also exhibit some signs of transfer at

epoch 40 in Fig. 2c. However, this was not observed as evident by
the starting AUC ≈ 0.50 (random chance) for Term 3. Further-
more, CLOPS mitigated catastrophic forgetting relative to the
fine-tuning system. For example, performance on tasks Term 1
and Term 2 was maintained at an AUC > 0.90 when training on
task Term 3. This was not observed for the fine-tuning system.

In the Domain-IL scenario, we simulated the presence of various
medical sensors by splitting the ECG data into multiple leads, where
applicable, and presented those in a sequential manner to the deep-
learning system. In Table 1, we present the performance of the deep-
learning system when deployed in the Domain-IL scenario. Our
deep-learning system, CLOPS, achieved AUC= 0.731 (SD 0.001)
whereas a state-of-the-art method, MIR, achieved AUC= 0.716 (SD
0.011). Consistent with earlier findings, CLOPS was also better able
to mitigate catastrophic forgetting; CLOPS and MIR achieved BWT
=−0.011 (SD 0.002) and −0.022 (SD 0.011), respectively.
Furthermore, when deployed in the Institute-IL scenario, our

Fig. 2 Performance of fine-tuning and continual deep-learning system in various continual learning scenarios. We present the performance of the (a)
Fine-tuning strategy and (b) CLOPS in the Class-IL scenario which is characterized by six sequential tasks. We also present the performance of the (c)
Fine-tuning strategy and (d) CLOPS in the Time-IL scenario which is characterized by three sequential tasks. The x-axis denotes the number of training
epochs, the colored blocks reflect the task currently being trained on by the deep-learning system, and the y-axis denotes the average AUC. The
performance of the fine-tuning system on tasks not currently being trained on degrades significantly, demonstrating catastrophic forgetting. CLOPS
dramatically mitigates this catastrophic forgetting. The results are an average across five seeds and the shaded area represents one standard deviation
from the mean.
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continual deep-learning system outperformed MIR and the fine-
tuning system along the dimensions of generalization performance
and BWT. For example, CLOPS achieved AUC= 0.664 (SD 0.015)
whereas MIR and the fine-tuning system achieved AUC= 0.631 (SD
0.012) and 0.589 (SD 0.007), respectively. Such a finding provides
further evidence in support of CLOPS as a favourable replay-based,
continual deep-learning system in the context of physiological signals.

Effect of storage and acquisition mechanisms on performance.
To better understand the root cause of CLOPS’ benefits, we
conducted additional studies investigating the marginal effect of
our storage and acquisition mechanisms on performance. These
mechanisms are dependent upon the amount of data that were
stored and acquired, and as such, we conducted these studies
while varying the fraction of data that are stored into, and
retrieved from, the buffer. Such fractions are denoted by b (sto-
rage) and a (acquisition), respectively. In the random storage
study, we dispensed with our storage mechanism and instead
randomly stored ECG signals into the buffer. In the random
acquisition study, we dispensed with our acquisition mechanism
and instead randomly acquired ECG signals from the buffer.
Lastly, in the random storage and acquisition study, we stored
ECG signals into, and acquired them from, the buffer randomly.
We present the resulting AUC of these experiments in Fig. 3.

Our storage mechanism contributed drastically to the general-
ization performance of our deep-learning system. Specifically, the
incorporation of the storage mechanism increased the AUC of the
deep-learning system regardless of the amount of data that were
stored and acquired from the buffer. For example, when we only
stored 10% of the ECG signals in the buffer (b= 0.1) and
acquired 50% of the ECG signals from the buffer (a= 0.5), we
observed an improvement in the AUC= 67.2→ 80.4, reflecting a
13.2% improvement. Such a finding points to how indispensable
our storage mechanism is.

When we independently evaluated the acquisition mechanism,
we showed that it also contributed drastically to the general-
ization performance of our deep-learning system. Specifically, the
incorporation of the acquisition mechanism increased the AUC
of the deep-learning system regardless of the amount of data that
were stored and acquired from the buffer. For example, when we
only stored 10% of the ECG signals in the buffer (b= 0.1) and
acquired 10% of the ECG signals from the buffer (a= 0.1), we

observed an improvement in the AUC= 70.3→ 79.6, reflecting a
9.3% improvement. Such a finding, particularly with such a small
storage and acquisition fraction of ECG signals, points to how
robust our acquisition mechanism can be to scarce data
environments. Although we presented results illustrating the
generalization performance (average AUC), we arrived at similar
conclusions when we evaluated the degree to which these
mechanisms alleviate catastrophic forgetting (see Supplementary
Fig. 10).

Exploration of alternative storage mechanisms. Our buffer
storage mechanism involved exploiting learnable parameters that
acted as a proxy for the difficulty with which an instance was
classified by the deep-learning system. In the next two sections,
we provide further empirical evidence to support our design of
the storage mechanism.

At face value, it may appear that our learnable parameters,
given their interpretation as a proxy for instance difficulty, could
simply be replaced by the per-instance loss when deciding which
instances to store into the buffer. However, we claim that these
two quantities, our learnable parameters and the per-instance
loss, are not interchangeable. First, this can be seen by the
different roles that these two quantities play. Recall that the
learnable parameters have a dual role; they act as a coefficient to
the loss term (see Eq. (2)), and thus modulate the degree to which
the deep-learning system learns from each instance, and they
guide the storage of instances into the buffer.

To further substantiate our claim that these two quantities do
indeed have different effects on the continual deep-learning
system, we conducted the following study. We experimented with
a deep-learning system exactly similar to CLOPS, yet comprised a
different storage mechanism. Instead of tracking our proposed
learnable parameters, we tracked the loss incurred by the deep-
learning system on each data point in the current task. When
deciding which instances to store in the buffer, we calculated their
corresponding area under the loss curve, and identified those with
the smallest area, noting that those with a small area coincide
with the least difficult data points. In doing so, we remain
consistent with the CLOPS implementation that also stored the
least difficult instances. In Table 2, we present the performance of
such a continual deep-learning system across the CL scenarios.

Fig. 3 Marginal benefit of storage and acquisition mechanisms on performance of continual deep-learning system. We show three different learning
strategies in the Class-IL scenario. Random storage and acquisition stores instances into, and acquires them from, the buffer randomly. Random acquisition
stores instances into the buffer using our importance-based strategy and acquires them from the buffer randomly. Random storage stores instances into
the buffer randomly and acquires them from the buffer using our uncertainty-based strategy. The results are shown as a function of the storage fraction, b,
and acquisition fraction, a, and are an average across five seeds. Improvement in performance of the random acquisition and random storage learning
strategies relative to the random storage and acquisition strategy points to the benefit of our storage and acquisition mechanisms, respectively.
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By comparing the performance of CLOPS in Table 1 to that in
Table 2, we found that the deep-learning system employing task-
instance parameters outperformed that employing the per-
instance loss in several CL scenarios. For example, in the Class-
IL scenario, the two systems achieved AUC= 0.796 (SD 0.013)
and AUC= 0.685 (SD 0.006), respectively. This difference is even
more notable when looking at BWT. Such an outcome also holds
in the Institute-IL scenario, where the two systems achieved AUC
= 0.664 (SD 0.015) and AUC= 0.615 (SD 0.012), respectively.
On the other hand, in the Time-IL scenario, both systems
performed on par with one another when the results are viewed
holistically. Although the deep-learning system employing the
per-instance loss achieved a slightly higher AUC= 0.844 (SD
0.011) vs. 0.834 (SD 0.014), it performed worse in terms of BWT
=−0.023 (SD 0.013) vs. −0.018 (SD 0.004). We arrived at a
similar conclusion in the Domain-IL scenario. Overall, these
findings indicate that task-instance parameters, despite their
simple interpretation as a proxy for instance difficulty, had a
more significant positive impact on the continual deep-learning
system than the per-instance loss. This justifies our use of task-
instance parameters during the learning process. In the next
section, we continue to validate these parameters and illustrate
additional potential applications.

Validation of interpretation of storage parameters. We claimed
that our deep-learning system was learning to identify important
ECG signals for their eventual storage in a buffer. We then
mathematically showed the equivalency of this importance with
the difficulty with which the deep-learning system diagnosed the
cardiac arrhythmia of ECG signals (Methods section). To validate
this claim empirically, we explored and visualized the importance
parameters that were learned by the deep-learning system. In

Fig. 4, we illustrate the distribution of these parameters for all
ECG signals and across all tasks that the deep-learning system
was sequentially exposed to in the Class-IL scenario.

We found that the deep-learning system perceived various
tasks to differ in their level of difficulty. For example, the deep-
learning system struggled more to solve the cardiac arrhythmia
task [6–7] relative to the task [8–9]. This is supported by the
observation that the parameter values of the distribution of task
[6–7] are lower than those of task [8–9]. At this stage, it might be
tempting to correlate the relative difficulty of these tasks to their
relative performance, shown earlier in Fig. 2. We believe that such
attempts might be of little value given the absence of a strict
correlation between loss values and performance scores, such as
the AUC. In other words, a decrease in the loss does not always
translate to a higher AUC score.

Nonetheless, to validate that these distributions were indeed
indicative of the difficulty with which ECG signals were
diagnosed, we identified the two ECG signals associated with
the lowest and highest importance parameter values and present
them alongside the distributions. Based on our setup, these two
ECG signals should correspond to the most and least difficult
signals to diagnose, respectively. We found that our expectations
were indeed corroborated by basic ECG domain expertise. For
example, both of these signals had a ground-truth, cardiologist-
derived label of normal sinus rhythm. However, the ECG signal
deemed most difficult by the deep-learning system exhibited
morphological aberrations, such as ST-elevation, a typical feature
in certain cardiac abnormalities. Such a feature could have
confused the deep-learning system and hindered its ability to
diagnose the ECG signal correctly. We provide additional
qualitative evidence in Supplementary Figs. 5 and 6. Such a
finding reaffirms our interpretation of the importance parameters

Table 2 Effect of the alternative storage mechanism, based on tracking the per-instance loss, on the performance of the
continual deep-learning system.

CL scenario Average AUC (SD) BWT (SD) BWTt (SD) BWTλ (SD)

Class-IL 0.685 (0.006) −0.004 (0.016) −0.050 (0.020) −0.063 (0.026)
Time-IL 0.844 (0.011) −0.023 (0.013) −0.011 (0.008) 0.007 (0.005)
Domain-IL 0.730 (0.007) −0.021 (0.002) −0.025 (0.002) −0.034 (0.004)
Institute-IL 0.615 (0.012) −0.173 (0.019) −0.203 (0.014) −0.278 (0.013)

The mean and standard deviation (SD) are shown across five seeds. The continual deep-learning system with such a storage mechanism performs worse than that with our proposed strategy (based on
task-instance parameters) in the Class-IL scenario. This finding provides evidence in support of our task-instance parameters.

Fig. 4 Distribution of the storage parameter values, s, learned by the deep-learning system in the Class-IL scenario. The storage and acquisition
fractions are b= 0.25 and a= 0.50, respectively, and each color corresponds to a different task. Based on our interpretation of storage parameters as a
proxy for instance difficulty, we selected two ECG recordings associated with the lowest (most difficult) and highest (least difficult) s values. The ECG
recording deemed most difficult by the deep-learning system had a ground-truth cardiologist-derived label of normal sinus rhythm. However, the presence
of ST-elevation, a feature typical in an abnormal condition known as myocardial infarction, could have been a source of confusion for the deep-learning
system and hindered its ability to correctly diagnose this ECG signal.
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as a proxy for the difficulty with which an ECG signal is
diagnosed. As a result, we have a tool at our disposal that allows
us to monitor the learning dynamics of the deep-learning system
and identify data points that the system struggles to diagnose.

In addition to validating our interpretation of the storage
parameters qualitatively, we set out to do so more quantitatively.
We took inspiration from the curriculum learning literature18

that has shown that the order with which data are presented to a
learning system can impact the system’s generalization capabil-
ities. Specifically, we exploited the storage parameters, s, to design
several curricula based on the notion of task difficulty and
similarity, as explained next. First, we fit a Gaussian distribution,
N ðμk; σ2kÞ, to each of the six distributions shown in Fig. 4. Using
this information, we defined the difficulty of task, k, as dk ¼ 1

μk
and the similarity, S(j, k), between task j and k based on the
Hellinger distance, as shown in Eq. (1).

Sðj; kÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ jσk
σ2j þ σ2k

e
�1

4

ðμj�μk Þ2

σ2
j
þσ2

k

vuut
vuuut
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D H¼Hellinger Distance

ð1Þ

In Fig. 5, we illustrate the resulting pairwise task similarity
matrix for tasks in the Class-IL scenario. For this particular
example, we found that task [8–9] is most similar to task [10–11].
Conversely, task [0–1] and [10–11] are identified as being least
similar to one another, based on our definition of similarity.
Insight from such a similarity matrix, although preliminary, has a
twofold effect. First, when coupled with clinical domain expertise,
it has the potential to supplement clinical knowledge by
potentially identifying differences between medical conditions
and patient cohorts, depending on the chosen task definition.
Second, by allowing researchers to identify which tasks are
believed to be different by the deep-learning system, it could
facilitate transfer learning across tasks, domain adaptation, and

even curriculum learning. To illustrate this point, we experi-
mented with the latter.

We designed a curriculum by first selecting the easiest task
(# dk, task [10–11]), based on Fig. 4, and then creating a chain of
tasks that are similar to one another, based on Fig. 5. This
chaining process is illustrated by the arrows in Fig. 5. Conversely,
for an anti-curriculum, we repeated the process except that we
started with the hardest task (" dk, task [6–7]). In Table 3, we
show the performance of the continual deep-learning system as a
result of these various curricula.

Our continual deep-learning system achieved the highest
constructive interference when trained with a curriculum
(easy→ hard) as opposed to when trained with an anti-
curriculum or randomly ordered tasks. For example, with a
curriculum, BWT= 0.087 (0.011) whereas BWT= 0.058 (0.016)
and 0.053 (0.023) with an anti-curriculum and randomly ordered
tasks, respectively. We hypothesize that transitioning from easy to
hard tasks along a chain of similar tasks allowed the continual
deep-learning system to efficiently maintain knowledge from one
task to the next. Such a finding, which aligns well with the
broader expectations of curriculum learning, further supports the
intuition that our storage parameters act as a proxy for the
difficulty of instances. However, we also found that such
improved constructive interference comes at a cost of general-
ization performance. This was evident by the AUC= 0.744
(0.009) and 0.796 (0.053) achieved by the continual deep-learning
system when trained with a curriculum and randomly ordered
tasks, respectively. We hypothesize that maintaining knowledge
from the past hindered the deep-learning system’s ability to
perform as well on the current task.

Discussion
In this paper, we proposed a replay-based CL strategy applied to
cardiac signals, entitled CLOPS, with the aim of mitigating
destructive interference. CLOPS consisted of an importance-
guided buffer storage and an uncertainty-based buffer-acquisition
mechanism. In the process, we learned parameters, entitled task-
instance parameters, that acted as a proxy for the difficulty with
which data points are classified by a deep-learning system. We
validated this intuition qualitatively by exploiting ECG domain
knowledge and quantitatively by generating learning curricula.
Moreover, we showed that, on three of the four CL scenarios,
CLOPS outperformed the state-of-the-art methods, GEM and
MIR, along both dimensions of generalization performance and
backward transfer.

Our system does have several limitations. First our approach
assumed that a portion of the data that were used for training
could be temporarily stored in a buffer for future use. However,
this approach may be considered infeasible due to patient privacy
constraints and data storage limitations. Despite these con-
siderations, and in conversations with a medical domain expert, it
became apparent that our system could be deployed if data were
anonymized and remained within the confines of the same
healthcare institution. We appreciate that such insight is

Fig. 5 Similarity of tasks in the Class-IL scenario overlaid with the chain
of tasks used for curriculum learning. The curriculum begins with the task
identified as being the easiest ([10–11]), which is chained to similar tasks by
following the arrows, and concludes with the task identified as being the
most difficult ([6–7]). The effect of such a curriculum on the learning
process can be found in Table 3.

Table 3 Effect of various curricula on the performance of the continual deep-learning system in the Class-IL scenario.

Task order Average AUC (SD) BWT (SD) BWTt (SD) BWTλ (SD)

Random 0.796 (0.013) 0.053 (0.023) 0.018 (0.010) 0.008 (0.016)
Curriculum 0.744 (0.009) 0.087 (0.011) 0.038 (0.021) 0.076 (0.037)
Anti-curriculum 0.783 (0.022) 0.058 (0.016) −0.013 (0.013) −0.003 (0.014)

The storage and acquisition fractions are b= 0.25 and a= 0.50, respectively. The mean and standard deviation (SD) are shown across five seeds. Bold results reflect the curricula leading to the best
performance. The constructive interference exhibited by a deep-learning system following a curriculum based on our task-instance parameters supports our interpretation of such parameters as a proxy
for instance difficulty.
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institution and country-specific, and as such, recommend that
practitioners communicate with their local domain experts before
deploying such a system. Moving forward, if our system were to
be deployed with other data modalities (e.g., medical images) that
more blatantly violate patient privacy, then one could store
representations of data points into the buffer, as opposed to the
raw data points themselves. Another option would involve
incorporating concepts of differential privacy19 into the continual
deep-learning system. Second, our study focused predominantly
on a single modality of data, namely the ECG. Although this was
partially motivated by the presence of publicly available data,
incorporating additional modalities that are routinely collected in
a clinical setting would increase the value of our deep-learning
system. This could be investigated in future work. Third, our
deep-learning system operated at the level of single-lead ECGs
and returned a single cardiac arrhythmia label for such ECGs.
However, in-hospital settings commonly deal with 12-lead devi-
ces. Moreover, multiple cardiac arrhythmias can be present
within the same ECG recording. Incorporating this multi-input,
multi-output information into our deep-learning system would
more reliably reflect clinical settings and medical conditions. This
could also be investigated in future work.

Our results demonstrated the utility of a continual deep-
learning system focused on cardiac arrhythmia classification
based on single-lead ECGs. Prospective validation of such a sys-
tem would still be required before any potential deployment
amongst human patients. Looking forward, our approach can be
extended to investigate further notions of task similarity20,21. The
exploration of more robust definitions of task similarity, their
validation through medical domain knowledge and exploitation
for generalization are extensions that can add significant value to
the intepretability of decisions made by deep-learning systems.
An additional extension revolves around predicting destructive
interference. At present, destructive interference is often dealt
with in a reactive manner. By predicting the degree of forgetting
that a system may experience once trained sequentially, we can
begin to more proactively alleviate this phenomenon.

Methods
The two ideas underlying our proposal are the storage of instances into, and the
acquisition of instances from, a buffer such that destructive interference is miti-
gated. We describe these in more detail below.

Importance-guided buffer storage. We aim to populate a buffer, DB , of finite
size, M, with instances from the current task that are considered important. To
quantify importance, we learn parameters, entitled task-instance parameters, βik,
associated with each instance, xik, in each task, k. These parameters play a dual role.

Loss-weighting mechanism. For the current task, k, and its associated data, Dk , we
incorporate β as a coefficient of the loss, Lik , incurred for each instance, xik 2 Dk .
For a mini-batch of size, B, that consists of Bk instances from the current task, the
objective function is shown in Eq. (2). We can learn the values of βik via gradient
descent, with some learning rate, η, as shown in Eq. (3).

L ¼ 1
Bk

∑
Bk

i¼1
βikLik ð2Þ

βik  βik � η
∂L
∂βik

ð3Þ

Note that ∂L
∂βik
¼ Lik > 0. This suggests that instances that are hard to classify (" Lik)

will exhibit ↓βik. From this perspective, βik can be viewed as a proxy for instance
difficulty. However, as presented, βik→ 0 as training progresses, an observation we
confirmed empirically. Since βik is the coefficient of the loss, Lik , this implies that
the network will quickly be unable to learn from the data. To avoid this behavior,
we initialize βik= 1 in order to emulate a standard loss function and introduce a
regularization term to penalize its undesirable and rapid decay toward zero. As a
result, our modified objective function is:

Lcurrent ¼
1
Bk

∑
Bk

i¼1
βikLik þ λðβik � 1Þ2 ð4Þ

When k > 1, we replay instances from previous tasks by using a replay buffer (see
section on buffer acquisition for replay mechanism). These replayed instances
incur a loss Lij 8 j 2 ½1¼ k� 1�. We decide to not weight these instances, in
contrast to what we perform to instances from the current task (see Supplementary
Table 6).

Lreplay ¼
1

B� Bk
∑
k�1

j¼1
∑
Bj

i
Lij ð5Þ

L ¼ Lcurrent þ Lreplay ð6Þ

Buffer-storage mechanism. We leverage β, as a proxy for instance difficulty, to store
instances into the buffer. To describe the intuition behind this process, we illus-
trate, in Fig. 6, the trajectory of β1k and β2k associated with two instances, x1k and
x2k, while training on the current task, k, for τ= 20 epochs. In selecting instances
for storage into the buffer, we can (1) retrieve their corresponding β values at the
conclusion of the task, i.e., at β(t= 20), (2) rank all instances based on these β
values, and (3) acquire the top b fraction of instances. This approach, however, can
lead to erroneous estimates of the relative difficulty of instances, as explained next.

In Fig. 6, we see that β2k > β1k for the majority of the training process, indicating
that x2k had been easier to classify than x1k. The swap in the ranking of these β
values that occurs toward the end of training in addition to myopically looking at β
(t= 20) would erroneously make us believe that the opposite was true. Such
convergence or swapping of β values has also been observed by22. As a result, the
reliability of β as a proxy of instance difficulty is eroded.

To maintain the reliability of this proxy, we propose to track the β values after
each training epoch, t, until the final epoch, τ, for the task at hand and calculate the
area under these tracked values. We do so by using the trapezoidal rule as shown in
Eq. (7). We explored several variants of the storage function and found the
proposed form to work best (see Supplementary Fig. 7). At t= τ, we rank the
instances in descending order of sik (easy to hard) as we found this preferable to the
opposite order (see Supplementary Fig. 8), select the top b fraction, and store them
into the buffer, in which each task is allotted a fixed portion. The higher the value
of the storage fraction, b, the more likely it is that the buffer will contain
representative instances and thus mitigate forgetting; however, this comes at an
increased computational cost.

sik ¼
Z τ

0
βikðtÞdt � ∑

τ

t¼0
βikðt þ ΔtÞ þ βikðtÞ

2

� �
Δt ð7Þ

Uncertainty-based buffer acquisition. During the learning process, a learning
system is more likely to benefit from instances that are closer to the decision
boundary than those that are farther away23, an observation primarily established
in the active-learning literature. By definition, instances that are close to the
decision boundary are those that confuse the system, and which the system might
be uncertain about how to classify them. Therefore, to identify instances close to
the decision boundary, one can leverage uncertainty-based acquisition functions,
such as Bayesian Active Learning by Disagreement (BALD) alongside Monte Carlo
Dropout (MCD)24,25, that quantify a system’s uncertainty about a particular
instance. We adapt BALD, and experiment with other acquisition functions (see
Supplementary Table 8), for use as a buffer-acquisition mechanism in the
context of CL.

To quantify the uncertainty of an instance with MCD, the following steps are
taken. First, the system receives an instance as an input and, in that process, applies
a stochastic binary mask to one or more of its intermediate representations. This
generates a posterior probability distribution over a set of classes (cardiac

Fig. 6 Trajectory of β1k and β2k on task k. Ranking instances based on β (t
= 20) leads to erroneous estimates of their relative difficulty. We propose
to rank instances based on the area under the trajectory of β, denoted as sik.
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arrhythmias, in our case). Such a process is repeated T times, applying a different
stochastic binary mask each time. These stochastic binary masks can be thought of
as perturbations of the parameter space of the network. An instance for which
parameter perturbations result in drastic changes to the corresponding posterior
probability distribution is likely to be in proximity to the decision boundary.
Quantifying these changes is exactly what BALD attempts to do. We explain this
more formally next.

At epoch number, τMC, which we refer to as Monte Carlo (MC) epochs, each of
the M instances, x � DB, in the buffer is passed through the network and exposed
to a stochastic binary dropout mask to generate a posterior probability distribution,
pðyjx;ωÞ 2 RC . This is repeated T times to form a matrix, G 2 RM ´ T ´ C . An
acquisition function, such as BALDMCD, is thus a function F : RM ´T ´C ! RM . It
involves calculating the Jensen–Shannon Divergence of the T probability
distributions, fpigTi¼1, as shown below.

BALDMCD ¼ JSDðp1; p2; ¼ ; pT Þ
¼H pðyjxÞ� ��EpðωjDtrainÞ H pðyjx; ω̂Þ� �� 	 ð8Þ

where H(p(y∣x)) represents the entropy of the network posterior probability
distributions averaged across the MC samples, and ω̂ � pðωjDtrainÞ is defined as in
Gal et al.25. At sample epochs, τS, we rank instances in descending order of
BALDMCD and acquire the top a fraction from each task in the buffer. A higher
value of this acquisition fraction, a, implies more instances are acquired. Although
this may not guarantee improvement in performance, it does guarantee increased
training overhead. Nonetheless, the intuition is that by acquiring instances, from
previous tasks, to which a network is most confused, it can be nudged to avoid
destructive interference in a data-efficient manner. We outline the entire training
procedure in Algorithms 1–4 in Supplementary Note 1.

Baseline methods. We compare our proposed method to the following. MTL26 is
a strategy whereby all datasets are assumed to be available at the same time and
thus can be simultaneously used for training. Although this assumption may not
hold in clinical settings due to the nature of data collection, privacy or memory
constraints, it is nonetheless a strong baseline. Fine-tuning is a strategy that
involves updating all parameters when training on subsequent tasks as they arrive
without explicitly dealing with catastrophic forgetting. We also adapt two replay-
based methods for our scenarios. GEM1 solves a quadratic programming problem
to generate parameter gradients that do not increase the loss incurred by replayed
instances. MIR2 replays instances from a buffer that incur the greatest change in
loss given a parameter pseudo-update. Details on how these methods were adapted
are found in Supplementary Note 3.

Evaluation metrics. To evaluate our methods, we exploit metrics suggested by1

such as average AUC and BWT. We also propose two additional evaluation metrics
that provide us with a more fine-grained analysis of learning strategies.

t-Step backward transfer. To determine how performance changes “t-steps into the
future,” we propose BWTt that evaluates the performance of the network on a pre-
viously seen task (for a total of N tasks), after having trained on t subsequent tasks.

BWTt ¼
1

N � t
∑
N�t

j¼1
Rjþt
j � R j

j ð9Þ
Lambda backward transfer. We extend BWTt to all time-steps, t, to generate BWTλ.
As a result, we can identify improvements in methodology at the task level.

BWTλ ¼
1

N � 1
∑
N�1

j¼1
1

N � j
∑
N�j

t¼1
Rjþt
j � R j

j


 �
ð10Þ

Hyperparameters. Depending on the CL scenario, we chose τ= 20 or 40, as we
found that to achieve strong performance on the respective validation sets. We
chose τMC= 40+ n and the sample epochs τS= 41+ n where n 2Nþ in order to
sample data from the buffer at every epoch following the first task. The values must
satisfy τS ≥ τMC > τ. For computational reasons, we chose the storage fraction b=
0.25 of the size of the training dataset and the acquisition fraction a= 0.50 of the
number of samples per task in the buffer. To calculate the acquisition function, we
chose the number of MC samples, T= 20. We chose the regularization coefficient,
λ= 10. We also explore the effect of changing these values on performance (see
Supplementary Note 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are freely and publicly available. The Cardiology dataset can
be accessed at https://irhythm.github.io/cardiol_test_set/. The Chapman dataset can be
accessed at https://figshare.com/collections/ChapmanECG/4560497/2. The PhysioNet
2020 dataset can be accessed at https://physionetchallenges.org/2020/. The PhysioNet
2017 dataset can be accessed at https://physionet.org/content/challenge-2017/1.0.0/.

Code availability
All models were developed using Python and standard deep-learning frameworks such as
PyTorch27. Code for pre-processing the data can be found at https://github.com/
danikiyasseh/loading-physiological-data. The code for running the experiments can be
found at https://github.com/danikiyasseh/CLOPS.
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