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A Commentary on

Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How

P. aeruginosa Can Escape Antibiotics

by Ciofu, O., and Tolker-Nielsen, T. (2019). Front. Microbiol. 10:913. doi: 10.3389/fmicb.2019.00913

In a recent article published in Frontiers in Microbiology, Ciofu and Tolker-Nielsen (2019), offered
a comprehensive and didactic review on how Pseudomonas aeruginosa escapes antibiotic therapy
in biofilms through tolerance and resistance mechanisms. Though their paper provided a wide
panorama of the current knowledge in this field, we assume that the role of small colony variants
(SCV) regarding antibiotic failure could have been discussed.

SCV are a phenotypic subset of the bacterial population surviving in biofilms. They have
been described in chronic, persistent and recurrent biofilm-based infections, particularly in cystic
fibrosis but also in chronic wound or device-related infections (Häussler et al., 2003; Proctor et al.,
2006; Tielen et al., 2014; Johns et al., 2015). They were particularly well-described in Staphylococcus
aureus (Proctor et al., 1995, 2006; von Eiff et al., 2006; Masoud-Landgraf et al., 2016), but were also
identified in other species such as Pseudomonas aeruginosa (Häussler, 2004). P. aeruginosa SCV
have a high biofilm-forming capacity and reduced swimming, swarming and twitching motilities
(Déziel et al., 2001). They also have an increased expression of the psl and pel loci, encoding for Psl
and Pel exopolysaccharides, that together with extracellular DNA form the biofilm matrix (Kirisits
et al., 2005). Other studies reported that SCV emerged in biofilm cultures before any antibiotic
exposure, and were not the sole bacterial population surviving antibiotic treatment (Déziel et al.,
2001; Drenkard and Ausubel, 2002; Gloag et al., 2019). Because SCV constitute an adaptation of
the parental strain to biofilm growth, contribute to biofilm production, and are encountered in
situations where P. aeruginosa escapes antibiotics, their role in antibiotic failure through resistance
mechanisms, tolerance mechanisms, or both can be questioned.

Recently, Balaban et al. (2019) recalled the definitions of antibiotic resistance and antibiotic
tolerance in a consensus statement. Resistance is the ability of bacteria to replicate in the presence
of antibiotic, whereas tolerance is the capability of a population to survive exposure to a bactericidal
antibiotic without an increase in the MIC. The combination of both mechanisms in biofilms, has
been named “recalcitrance” by Lebeaux et al. (2014).
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In specific situations, the biofilm growth might favor the
selection of resistant mutants. As a fact, the exopolysaccharide
matrix might reduce the diffusion in the deepest layers of the
biofilm of some antibiotics such as aminoglycosides (Tseng et al.,
2013). Bacterial cells entrapped into the matrix might hence be
exposed to sub-inhibitory antibiotic concentrations, and resistant
mutants might emerge (Kohanski et al., 2010; Jørgensen et al.,
2013). In a study by Drenkard and Ausubel (2002), P. aeruginosa
SCV with higher MICs toward aminoglycosides were recovered
in sputum samples of cystic fibrosis patients treated with
aminoglycoside-based antibiotic regimen. The mechanism of
such increase in the MIC for SCV was not elucidated. As
compared to the parent strain, the reduced susceptibility of
SCV to aminoglycosides might result from increased interactions
between positively charged aminoglycosides and negatively
charged matrix components such as extracellular DNA (Chiang
et al., 2013). But in this study as well as in others, the MICs
increased only for aminoglycosides and not for fluoroquinolones
or β-lactams (Singh et al., 2009; Wei et al., 2011).

However, the environmental conditions associated with
biofilm growth (oxygen and nutrients limitations) mostly favor
the expression of tolerance mechanisms (Walters et al., 2003;
Borriello et al., 2004). Among the tolerant cells encountered in
biofilms, persister cells are of particular interest (Lewis, 2010;
Fauvart et al., 2011; Lebeaux et al., 2014). In various time-
kill assays in P. aeruginosa biofilm models, a biphasic killing
curve, the hallmark of persistence, was observed after antibiotic
exposure (Mulcahy et al., 2010; Benthall et al., 2015; Rojo-
Molinero et al., 2016). Despite prolonged exposure at high
antibiotic doses, viable, and culturable cells were still present
in the biofilm while no resistant mutant was detected. Using
high doses of antibiotic known to diffuse in the depth of the
biofilm, such as ciprofloxacin (Walters et al., 2003; Rodríguez-
Martínez et al., 2007), it is likely that antibiotic concentrations
rapidly exceeded the mutation prevention concentration, so that
pre-existing spontaneous resistant mutants might be eradicated.
Regarding tolerance, the role of SCV in biofilm has not been
specifically studied even for S. aureus. Singh et al. (2009), in
a membrane-supported biofilm model, observed the emergence
of S. aureus SCV among persister cells after treatment with
ciprofloxacin, but not after treatment with amikacin, cefotaxime,

oxacillin, or vancomycin. To what extent SCV contribute to
biofilm persistence remains unelucidated.

From this analysis of the literature, we assume, in accordance
with Ciofu and Tolker-Nielsen (2019) that resistance and
tolerance mechanisms can both be expressed in biofilm
infections. Those two ways for P. aeruginosa to escape
antibiotics depend on different triggers. Sub-inhibitory antibiotic
concentrations and active cell division favor the selection
of genetically divergent resistant mutants. Conversely, lethal
antibiotic concentrations trigger tolerance mechanisms, through
a phenotypic adaptation, toward what could be called the “last
hope bacterial response for survival” (Fajardo and Martínez,
2008; Andersson and Hughes, 2014). This phenotypic adaptation
combines stress response activation depending on starvation
strategies such as stringent response, SOS response or other
metabolic pathways (Harms et al., 2016). SCV are part of

these antibiotic-recalcitrant biofilm and for sure have specific
metabolic characteristics, the increased exopolysaccharidematrix
production being at the forefront (Harmsen et al., 2010; Moradali
et al., 2017). Whether SCV behave differently than their parental
strain regarding resistant mutants or persister cells emergence
can to date not be ensured and needs further investigation.
However, SCV might play a key role in the expression of
persistence mechanisms, through their part in the biofilm
structure, and may largely contribute to the environmental
conditions associated with antibiotic recalcitrance.

In a daily practice, P. aeruginosa SCV can be detected on plate
cultures. In most cases, they attest the presence of biofilm-related
infection. SCV testing with usual antimicrobial susceptibility
testing methods is also feasible, but little difference is expected
regarding antimicrobial susceptibility between SCV and other
bacterial populations entrapped in the biofilm. Nevertheless,
informing clinicians of the presence of SCV seems crucial,
as a signal that conditions are gathered for P. aeruginosa to
escape antibiotics.
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