
Abstract We have been developing FAMSBASE, a

protein homology-modeling database of whole ORFs

predicted from genome sequences. The latest update of

FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Fams-

base/), which is based on the protein three-dimensional

(3D) structures released by November 2003, contains

modeled 3D structures for 368,724 open reading

frames (ORFs) derived from genomes of 276 species,

namely 17 archaebacterial, 130 eubacterial, 18

eukaryotic and 111 phage genomes. Those 276

genomes are predicted to have 734,193 ORFs in total

and the current FAMSBASE contains protein 3D

structure of approximately 50% of the ORF products.

However, cases that a modeled 3D structure covers the

whole part of an ORF product are rare. When portion

of an ORF with 3D structure is compared in three

kingdoms of life, in archaebacteria and eubacteria,

approximately 60% of the ORFs have modeled 3D

structures covering almost the entire amino acid

sequences, however, the percentage falls to about 30%

in eukaryotes. When annual differences in the number

of ORFs with modeled 3D structure are calculated, the

fraction of modeled 3D structures of soluble protein

for archaebacteria is increased by 5%, and that for

eubacteria by 7% in the last 3 years. Assuming that

this rate would be maintained and that determination

of 3D structures for predicted disordered regions is

unattainable, whole soluble protein model structures of

prokaryotes without the putative disordered regions

will be in hand within 15 years. For eukaryotic pro-

teins, they will be in hand within 25 years. The 3D

structures we will have at those times are not the 3D

structure of the entire proteins encoded in single

ORFs, but the 3D structures of separate structural

domains. Measuring or predicting spatial arrangements

of structural domains in an ORF will then be a coming

issue of structural genomics.
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Introduction

Genome sequencing projects provided a huge number

of amino acid sequences without functional informa-

tion (Stein 2001). To discover biological functions of

those proteins, both computational predictions and

biochemical experiments are necessary (Tsoka and

Ouzounis 2000). Most of the proteins perform func-

tions after forming specific 3D structures, and there-

fore protein 3D structure is one of the most valuable

sources of information to predict protein function

(Domingues et al. 2000; Xie and Bourne 2005). Protein

function prediction based on 3D structures, especially

protein surface structures, with evolutionary and/or
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physicochemical characteristics have been extensively

studied (Lichtarge and Sowa 2002; Campbell et al.

2003; Kinoshita and Nakamura 2003; Laskowski et al.

2003; Ota et al. 2003; Pieper et al. 2006). However,

determining protein structures of all the function-un-

known proteins for applying these types of study is not

practical.

Proteins are classified into a large number of ‘fam-

ilies’ based on the amino acid sequence similarity

(Dayhoff 1972), and proteins with similar amino acid

sequences are known to have similar 3D structures

(Chothia and Lesk 1986), all because the proteins in a

family are evolutionary related (Doolittle 1995). Once

we have 3D structure of at least one of the proteins in a

family, then 3D structures of other proteins in the same

family can be computationally deduced by ‘homology

modeling’ (Burley 2000; Baker and Sali 2001). Based

on this logic, structural genomics (SG) projects, which

are to determine protein 3D structures of representa-

tives for each family have been proposed and launched

(Vitkup et al. 2001; Brenner 2000; Burley and Bon-

nano 2002). In homology modeling, corresponding

residues between an amino acid sequence of structure

unknown protein (target) and that of 3D structure

known protein (template) in the same family are

determined by sequence alignment and every residue

in a template protein is replaced by that in a target

protein (Marti-Renoma et al. 2000).

SG projects have been providing new protein

structures (Todd et al. 2005; Xie and Bourne 2005;

Chandonia and Brenner 2006). Protein Data Bank

(PDB) (Berman et al. 2000) now contains more than

390 3D structures for function unknown or hypotheti-

cal proteins (Stark et al. 2004). Protein function pre-

dictions based on 3D structures determined by SG

projects are also in progress (Goldsmith-Fischman and

Honig 2003; Liu et al. 2005; Petrey and Honig 2005).

There are some projects that focus on a specific species

and try to determine the 3D structures of whole pro-

teins encoded in the genome of the species (Kim 2000;

Yokoyama et al. 2000; Kim et al. 2003). Those projects

provide a considerable number of 3D structures in a

single protein family. This results in providing multiple

templates for a single protein family and it can improve

quality of homology modeling (Contreras-Moreira

et al. 2003).

We have developed FAMSBASE; a database for

homology modeling 3D structures of whole proteins

predicted on whole genome sequences, since 2001

(Yamaguchi et al. 2003; http://daisy.nagahama-i-

bio.ac.jp/Famsbase/). FAMSBASE contains results

of homology modeling by FAMS, a full automatic

modeling software (Ogata and Umeyama 2000).

Sequence alignments between whole ORFs and pro-

teins in PDB are based on GTOP (Kawabata et al.

2002).

We report here the update of the database including

differences in the amount of structural data from the

previous version, estimation of the time that whole

ORFs predicted out of genome sequences are covered

by homology modeling 3D structures and upcoming

issues for utilizing those modeled structures.

Methods

Data update of FAMSBASE

Correspondence between ORFs derived from whole

genome sequences and protein amino acid sequences

whose 3D structures are known is provided by GTOP

database (Kawabata et al. 2002). The update in May

2005 of FAMSBASE is based on February 2004 version

of GTOP. Protein 3D structures in PDB by November

2003 are used for homology modeling templates.

FAMS (Ogata and Umeyama 2000) is applied by

Umeyama et al. to pair-wise alignments between a

predicted ORF sequence and an amino acid sequence

with known 3D structure, and a 3D structure is mod-

eled. All the results are stored in FAMSBASE.

Assessing annual difference of data in FASBASE

Based on the amount of data in FAMSBASE in 2001

and the amount of increase in the following years, a

due year for whole proteome 3D structure models is

estimated. Estimation is done residue-wise, not ORF-

wise, since modeled structures in FAMSBASE are

often limited to structural domains. In this report,

structural domains refer to SCOP domains (Andreeva

et al. 2004). All ORFs predicted out of genome se-

quences are divided into soluble and membrane pro-

teins. The division is carried out by SOSUI (Hirokawa

et al. 1998), and a protein with one or more trans-

membrane regions is classified into a membrane pro-

tein. The number of residues of whole soluble proteins

encoded in the genome sequence (G) of species i is

denoted as SGi, and the number of residues of whole

membrane proteins is denoted as MGi. The number of

residues included in modeled 3D structures of soluble

and membrane proteins are denoted as S3Gi and M3Gi,

respectively. For a certain genome Gi, the coverage of

modeled 3D structures in whole soluble proteins is

then S3Gi/SGi � 100 and the coverage for whole mem-

brane proteins is M3Gi/MGi � 100. The coverage is
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summarized in different kingdoms of life as in the

following equations;

coverage of soluble protein

¼
X

i 2 kingdom

S3Gi=
X

i 2 kingdom

SGi � 100;

coverage of membrane protein

¼
X

i 2 kingdom

M3Gi=
X

i 2 kingdom

MGi � 100:

Both figures are calculated based on the data at the

different times of FAMSBASE update, gradients in

figures are then calculated, and the figures are extrap-

olated up to the year that coverage reaches to 100.

It is getting to be known that not all ORFs assume

stable 3D structures. Some parts of ORFs are consid-

ered to be natively disordered (Oldfield et al. 2005;

Dyson and Wright 2005). Hence it is unlikely that

coverage by homology modeling reaches to 100. We,

therefore, estimate disordered regions in whole ORFs

by DisEMBL (Linding et al. 2003) and omit these

disordered regions from the calculation.

Non-overlap multiple model structures in single

ORFs

Modeled 3D structures in FAMSBASE are often

limited to structural domains. To find an ORF of which

most of the entire 3D structure is modeled in pieces of

structural domains, an ORF covered by non-overlap-

ping three or more modeled 3D structures in eukary-

otic genome is surveyed based on the following criteria;

(1) 70% or more residues in the ORF are included in

one of the modeled 3D structures, (2) the ORF con-

tains three or more non-overlapping modeled struc-

tures, and (3) the sequence identity between a template

protein and a target domain is no less than 25%. At the

time of FAMSBASE building, five model structures

are at most built for each ORF (Yamaguchi et al.

2003). Therefore, the expected number of modeled

structures in the above criteria is between three and

five.

Prediction of domain interfaces

The 3D structure in pieces for a single ORF needs to

be assembled to model the entire 3D structure. For this

procedure, a prediction of domain interfaces of each

3D structure is needed. A hydrophobicity index based

on protein 3D structures is built for domain interface

prediction. Hydrophobicity of amino acid residue is

measured by buriedness of a residue inside the protein

3D structures. A representative 4,529 chains in PDB

among which sequence identities are less than 30%

were selected and solvent accessibility of each residue

is calculated on a monomer state. For each amino acid

residue type i (i = 1,..., 20), the number of residue with

accessibility no less than b (=0.0 – 1.0) is counted (Sb,i).

Database derived hydrophobicity index (Ib,i) is

obtained by;

Ib;i ¼ � log2 Sb;i=
X

i

Sb;i

 !
= S0;i=

X

i

S0;i

 ! !
:

b is set to 0.15 to maximize the difference of Ib,i among

different residues. The index has good correlation with

Kyte and Doolittle hydrophobicity index (Kyte and

Doolittle 1982). The index I0.15,i is assigned to every

residue on the surface (accessibility no less than 0.15)

of a modeled 3D structure. The hydrophobicity of each

residue on a surface of a protein is then obtained by

averaging the assigned values of residues within 7.0 Å

from the residue in concern. A hydrophobic patch on

the surface of the modeled structure is found as a

cluster of surface residues with the hydrophobicity no

less than 0.0.

Results and discussion

Coverage of whole protein space by homology

modeling

The latest update of FAMSBASE at May 2005 uses

protein 3D structures deposited to PDB by the end of

Nov. 2003 and ORFs predicted from genome

sequences deposited by February 2004 (http://

daisy.nagahama-i-bio.ac.jp/Famsbase/). The latest

FAMSBASE contains 1,396,272 modeled 3D struc-

tures of 368,724 ORFs derived from 17 archaebacterial,

130 eubacterial, 18 eukaryotic and 111 phage genomes;

in total 276 genomes. Five models at maximum are

built for each ORF in FAMSBASE. Those five models

are the structure for the same or different regions in

the ORF. When multiple models are built for the same

region of ORF, we can evaluate the reliability of the

model. When the model based on different templates

have the similar 3D structures, then the 3D structure

would be reliable. When the structures are different,

the modeled structure would be less reliable. We fur-

ther test the quality of modeled 3D structure by Pro-

saII (Sippl 1993) and find that about 72% of the

modeled 3D structures are energetically ranked as
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number one and comparable to experimentally deter-

mined 3D structures. Some of the structures that fail

the test are structures of a part of a large protein,

mostly structural domains of large proteins. It is diffi-

cult to assess the quality of this type of domain struc-

tures, because interfaces of the domain for other parts

of the protein are exposed in the modeled structures.

Tendency of amino acid residue appearance in the

interface is supposed to be different from that at the

surface as we discuss down below.

In the genome of 276 species, 734,193 ORFs are

predicted. Therefore, in FAMSBASE, 3D structure of

50% (368,724/734,193) of ORFs have been built and

stored (Table 1). These are about 47% of ORFs in

archaebacterial genomes, about 52% in eubacterial

genomes and about 49% of eukaryotic genomes.

When a modeled 3D structure is counted based on

the number of amino acid residues, not on the number

of ORFs, a different aspect emerges. Figure 1 shows

the percentage of amino acid residues per ORF in-

cluded in the modeled structures. ORFs without a

modeled structure are omitted. Of archaebacterial and

eubacterial genomes, in 60% of ORFs, more than 80%

of the residues are included in modeled 3D structures,

however, of eukaryotic genomes, only in 30% of ORFs,

more than 80% of the residues are included (red and

blue sections in Fig. 1). The proportion of residues in

modeled 3D structure can be measured by the number

of residues in a typical structural domain as shown in

SCOP (Andreeva et al. 2004). The average size of

protein domain is around 100–150 residues (Copley

et al. 2002). In ORFs with modeled structures, a con-

tinuous region of residues with one domain or more

remains as structure unknown in only about 18% of

ORFs of archaebacterial and eubacterial genomes,

whereas in about 60% of ORFs of eukaryotic genomes,

the regions with one domain or more remain as

structure unknown.

Annual difference of model structures

In FAMSBASE of 2001, 38% of amino acid residues in

all ORFs of archaebacterial and 40% of eubacterial

genomes were included in modeled 3D structures

(Yamaguchi et al. 2003). In the current update of

FAMSBASE based on data by around 2004, 42% of

amino acid residues in all ORFs in archaebacterial and

46% of eubacterial genomes are included in modeled

structures. In eukaryotic genomes, 24% of amino acid

residues in 2003, and 26% in 2004 are included in

modeled 3D structures. Those figures can be used to

estimate the time when modeled 3D structures of

whole proteins predicted from genomes are obtained.

The estimation for the time obtaining the whole solu-

ble and membrane proteins are treated separately,

because the speed of structure determination for sol-

uble and membrane proteins seems to differ. The

assumption for the estimation is that the speed for

structure determination would stay the same and no

new protein family would appear.

For eubacterial genomes, 72.6% of residues in whole

ORFs are predicted by SOSUI (Hirokawa et al. 1998)

to encode soluble proteins and 27.4% to encode

membrane proteins. This ratio is not so different from

the previous prediction by Krogh et al. (2001). Of

about 40% of whole eubacterial ORF that were with

modeled 3D structures in 2001, approximately 90%

were soluble proteins and 10% were membrane pro-

teins. Therefore, about 50% (=0.40 · 0.90/0.726) of the

whole soluble proteins were modeled. Of the whole

membrane proteins in eubacterial genome, about 15%

(=0.40 · 0.10/0.274) were modeled. In 2004, those fig-

ures are grown to 57% and 19%, respectively. In eu-

bacterial whole ORFs, about 19.9% of amino acid

residues are predicted to be included in disordered

region by DisEMBL (Linding et al. 2003). Some of

these regions are included in the modeled structures.

Fig. 1 Percentage of amino acid residues included in modeled
3D structures in each ORF is classified by 10% bins and shown in
pie charts. ORFs without a modeled structure are not included.
A number of ORFs with modeled structures and an average

length of the ORFs are shown at the center of each pie chart.
Sections bordered by thick black lines indicate that the
unmodeled region in the ORF is no less than the size of a
domain (about 150 residues)
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Table 1 Number of ORFs and those with modeled 3D structures
in 276 genomes

Species ORF Model %

Archaea
Archaeoglobus fulgidus DSM4304 2,407 1,233 51.2
Aeropyrum pernix K1 2,694 789 29.3
Halobacterium sp. NRC-1 2,605 1,195 45.9
Methanosarcina acetivorans C2A 4,544 2,124 46.7
Methanocaldococcus jannaschii DSM2661 1,770 875 49.4
Methanopyrus kandleri AV19 1,687 784 46.5
Methanosarcina mazei Goe1 3,371 1,634 48.5
Methanothermobacter thermautotrophicus 1,869 998 53.4
Nanoarchaeum equitans Kin4-M 536 264 49.3
Pyrococcus abyssi Orsay 1,784 942 52.8
Pyrobaculum aerophilum IM2 2,605 1,047 40.2
Pyrococcus furiosus DSM 3638 2,065 1,035 50.1
Pyrococcus horikoshii OT3 2,061 879 42.6
Sulfolobus solfataricus P2 2,994 1,365 45.6
Sulfolobus tokodaii 7 2,826 1,228 43.5
Thermoplasma acidophilum DSM1728 1,478 844 57.1
Thermoplasma volcaniumGSS1 1,526 839 55.0
sum 38,822 18,075 46.6
Eubacteria
Aquifex aeolicus VF5 1,553 929 59.8
Nostoc sp. PCC 7120 6,132 2,765 45.1
Agrobacterium tumefaciens C58 5,301 3,017 56.9
A. tumefaciens C58 (Dupont) 5,402 3,028 56.1
Bacillus anthracis str. Ames 5,311 2,463 46.4
Buchnera aphidicola Sg 552 410 74.3
B. aphidicola 507 385 75.9
Bordetella bronchiseptica RB50 4,994 2,934 58.8
Borrelia burgdorferi 1,639 535 32.6
Bacillus cereus ATCC 14579 5,255 2,534 48.2
Candidatus Blochmannia floridanus 583 447 76.7
Bacillus halodurans C-125 4,066 2,127 52.3
Bradyrhizobium japonicum 8,317 4,449 53.5
Bifidobacterium longum NCC2705 1,731 985 56.9
Brucella melitensis 16M 3,198 1,801 56.3
Bordetella parapertussis 4,185 2,525 60.3
B. pertussis Tohama I 3,447 2,179 63.2
Bacillus subtilis 168 4,106 2,153 52.4
Brucella suis 1330 3,264 1,677 51.4
Bacteroides thetaiotaomicron VPI-5482 4,816 2,462 51.1
Buchnera sp. APS 574 436 76.0
Clostridium acetobutylicum ATCC824 3,848 2,053 53.4
Coxiella burnetii RSA 493 2,045 925 45.2
Chlamydophila caviae GPIC 1,005 505 50.2
Caulobacter crescentus 3,737 2,084 55.8
Corynebacterium diphtheriae NCTC13129 2,272 1,165 51.3
Corynebacterium efficiens YS-314 2,998 1,513 50.5
Corynebacterium glutamicum ATCC 13032 3,099 1,554 50.1
Campylobacter jejuni 1,634 893 54.7
Chlamydia muridarum Nigg 911 483 53.0
Clostridium perfringens 13 2,723 1,470 54.0
Chlamydophila pneumoniae AR39 1,116 495 44.4
Chlamydophila pneumoniae CWL029 1,052 496 47.1
Chlamydophila pneumoniae J138 1,069 501 46.9
Chlamydophila pneumoniae TW-183 1,113 501 45.0
Chlorobium tepidum TLS 2,252 1,166 51.8
Clostridium tetani E88 2,432 1,306 53.7
Chlamydia trachomatis D/UW-3/CX 894 485 54.3
Chromobacterium violaceum ATCC 12472 4,385 2,343 53.4
Deinococcus radiodurans R1 3,102 1,579 50.9

Table 1 continued

Species ORF Model %

Escherichia coli K-12 MG1655 4,284 2,398 56.0
E. coli O157:H7 5,447 2,607 47.9
E. coli O157:H7 EDL933 5,449 2,629 48.2
E. coli CFT073 5,379 2,558 47.6
Enterococcus faecalis V583 3,265 1,568 48.0
Fusobacterium nucleatum ATCC 25586 2,067 1,011 48.9
Geobacter sulfurreducens PCA 3,445 1,902 55.2
Gloeobacter violaceus PCC 7421 4,430 2,208 49.8
Haemophilus ducreyi 35000HP 1,717 865 50.4
Helicobacter hepaticus ATCC 51449 1,875 902 48.1
Haemophilus influenzae Rd 1,709 1,038 60.7
Helicobacter pylori 26695 1,566 741 47.3
Helicobacter pylori J99 1,491 747 50.1
Listeria innocua Clip11262 3,043 1,641 53.9
Leptospira interrogans serovar 4,725 1,719 36.4
Lactococcus lactis IL1403 2,266 1,254 55.3
Listeria monocytogenes EGD-e 2,846 1,653 58.1
Lactobacillus plantarum WCFS1 3,009 1,647 54.7
Mycobacterium bovis subsp. 3,920 2,018 51.5
Mycoplasma gallisepticum R 726 371 51.1
Mycoplasma genitalium G37 480 305 63.5
Mycobacterium leprae TN 1,605 918 57.2
Mesorhizobium loti MAFF303099 7,281 3,829 52.6
Mycoplasma penetrans 1,037 472 45.5
Mycoplasma pneumoniae M129 688 333 48.4
Mycoplasma pulmonis UAB CTIP 782 398 50.9
Mycobacterium tuberculosis H37Rv 3,918 2,036 52.0
Mycobacterium tuberculosis CDC1551 4,187 1,990 47.5
Nitrosomonas europaea ATCC 19718 2,461 1,366 55.5
Neisseria meningitidis MC58 2,025 1,016 50.2
Neisseria meningitidis Z2491 2,065 1,025 49.6
Oceanobacillus iheyensis HTE831 3,496 1,892 54.1
Phytoplasma asteris, OY strain 754 423 56.1
Pseudomonas aeruginosa PAO1 5,566 3,206 57.6
Porphyromonas gingivalis W83 1,909 944 49.4
Photorhabdus luminescens laumondii 4,683 2,286 48.8
Prochlorococcus marinus MED4 1,712 933 54.5
Prochlorococcus marinus MIT9313 2,265 1,122 49.5
Prochlorococcus marinus marinus 1,882 939 49.9
Pasteurella multocida PM70 2,014 1,237 61.4
Pseudomonas putida KT2440 5,350 2,968 55.5
Pseudomonas syringae pv. tomato str. 5,608 2,938 52.4
Pirellula sp. 1 7,325 2,588 35.3
Rickettsia conorii Malish 7 1,374 572 41.6
Rhodopseudomonas palustris 4,814 2,739 56.9
Rickettsia prowazekii Madrid E 834 498 59.7
Ralstonia solanacearum GMI1000 5,116 2,698 52.7
Streptococcus agalactiae 2,124 1,159 54.6
Streptococcus agalactiae NEM316 2,094 1,174 56.1
Staphylococcus aureus Mu50 2,748 1,451 52.8
Staphylococcus aureus N315 2,624 1,447 55.1
Staphylococcus aureus MW2 2,659 1,410 53.0
Streptomyces avermitilis 7,671 4,001 52.2
Streptomyces coelicolor A3(2) 8,154 4,195 51.4
Staphylococcus epidermidis ATCC 12228 2,485 1,303 52.4
Shigella flexneri 2a 301 4,452 2,306 51.8
Shigella flexneri 2a str. 2457T 4,068 2,159 53.1
Sinorhizobium meliloti 1021 6,205 3,499 56.4
Streptococcus mutans UA159 1,960 1,136 58.0
Shewanella oneidensis MR-1 4,778 2,291 47.9
Streptococcus pneumoniae R6 2,094 1,101 52.6
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Table 1 continued

Species ORF Model %

Streptococcus pneumoniae TIGR4 2,043 1,135 55.6
Streptococcus pyogenes SF370 1,696 956 56.4
Streptococcus pyogenes MGAS8232 1,845 996 54.0
Streptococcus pyogenes MGAS315 1,865 986 52.9
Streptococcus pyogenes SSI-1 1,861 976 52.4
Salmonella typhi CT18 4,767 2,347 49.2
Salmonella typhimurium LT2 4,554 2,457 54.0
Salmonella enterica subsp. enterica 4,323 2,263 52.3
Synechocystis sp. PCC 6803 3,167 1,679 53.0
Synechococcus sp. WH 8102 2,517 1,243 49.4
Thermosynechococcus elongatus BP-1 2,475 1,303 52.6
Thermotoga maritima MSB8 1,846 1,051 56.9
Treponema pallidum subsp. 1,031 517 50.1
Thermoanaerobacter tengcongensis MB4T 2,588 1,403 54.2
Tropheryma whipplei TW08/27 783 494 63.1
Tropheryma whipplei str. Twist 808 499 61.8
Ureaplasma urealyticum 611 303 49.6
Vibrio cholerae N16961 3,828 1,971 51.5
Vibrio parahaemolyticus RIMD 2210633 4,832 2,461 50.9
Vibrio vulnificus CMCP6 4,537 2,461 54.2
Vibrio vulnificus YJ016 5,028 2,499 49.7
Wigglesworthia brevipalpis 611 441 72.2
Wolinella succinogenes DSMZ 1740 2,044 1,208 59.1
Xanthomonas axonopodis pv. citri 306 4,427 2,374 53.6
Xanthomonas campestris pv. campestris 4,181 2,287 54.7
Xylella fastidiosa 9a5c 2,832 1,158 40.9
Xylella fastidiosa Temecula1 2,036 1,066 52.4
Yersinia pestis CO92 4,083 2,116 51.8
Yersinia pestis KIM 4,281 2,123 49.6
sum 396,126 206,311 52.1
Eukaryotes
Arabidopsis thaliana 28,723 14,394 50.1
Caenorhabditis briggsae 14,713 7,063 48.0
Caenorhabditis elegans 22,220 8,841 39.8
Ciona intestinalis 15,865 7,994 50.4
Drosophila melanogaster 18,302 9,541 52.1
Danio rerio 26,587 16,443 61.8
Encephalitozoon cuniculi 1,996 887 44.4
Guillardia theta Nucleomorph 632 307 48.6
Homo sapiens (ENSEMBLE) 28,063 15,467 55.1
Leishmania major Friedlin 173 62 35.8
Mus musculus 24,928 14,382 57.7
Neurospora crassa 10,088 3,800 37.7
Oryza sativa 16,724 4,517 27.0
Plasmodium falciparum 3D7 5,268 1,905 36.2
Rattus norvegicus 28,682 16,740 58.4
Saccharomyces cerevisiae 5,869 2,913 49.6
Schizosaccharomyces pombe 5,261 2,807 53.4
Takifugu rubripes rubripes 37,452 15,202 40.6
sum 291,546 143,265 49.1
Phages/Viruses
186 46 8 17.4
44AHJD 21 1 4.8
44RR2.8t 252 51 20.2
933W 80 9 11.3
A118 72 9 12.5
A511 11 0 0.0
Aeh1 331 51 15.4
APSE-1 54 6 11.1
B1 11 1 9.1

Table 1 continued

Species ORF Model %

B103 17 4 23.5
Bcep781 61 5 8.2
BF23 8 1 12.5
bIL170 64 2 3.1
bIL285 62 5 8.1
bIL286 61 7 11.5
bIL309 56 6 10.7
bIL310 29 4 13.8
bIL311 22 6 27.3
bIL312 27 3 11.1
BK5-T 63 6 9.5
Bxb1 86 12 14.0
C2 39 2 5.1
Cp-1 28 2 7.1
/CTX 47 4 8.5
D29 79 15 19.0
D3 94 11 11.7
Rb15 49 6 12.2
/g1e 49 6 12.2
GA-1 35 3 8.6
Gh-1 42 12 28.6
H-19B 22 4 18.2
HF2 114 11 9.6
HK022 57 8 14.0
HK620 58 6 10.3
HK97 61 10 16.4
HP1 41 3 7.3
HP2 36 3 8.3
K139 44 4 9.1
KVP40 381 57 15.0
2,389 57 7 12.3
L-413C 40 4 10.0
L5 85 12 14.1
k 66 18 27.3
A2 61 8 13.1
Mu 53 6 11.3
N15 60 13 21.7
Mycoplasma virus P1 11 0 0.0
Enterobacteria phage P1 11 0 0.0
P2 42 5 11.9
P22 36 9 25.0
P27 58 9 15.5
P335 49 6 12.2
P4 12 2 16.7
P60 80 13 16.3
PA01 34 5 14.7
PaP3 69 8 11.6
/KZ 306 25 8.2
/Ch1 98 9 9.2
/YeO3-12 59 13 22.0
/105 51 8 15.7
/C31 55 8 14.5
/3626 50 10 20.0
/E125 71 12 16.9
/ETA 66 8 12.1
/NIH1.1 55 6 10.9
/PV83 65 9 13.8
/SLT 62 12 19.4
/adh 63 8 12.7
/BT1 55 9 16.4
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These regions are either incorrectly predicted regions

or incorrectly modeled regions. Assuming that the

disordered regions without modeled 3D structures are

correctly predicted, 10.8% of amino acid residues in

soluble proteins were disordered and we would never

obtain 3D structures of those regions. Then, by

extrapolating the coverage of soluble proteins up to

89.2% (100–10.8) with the current growth rate, we can

estimate that, by the year 2017, whole soluble proteins

encoded in eubacterial genomes can be modeled

(Fig. 2). Whole soluble proteins of archaebacterial

genome can be modeled by 2021 and those of

eukaryotic genomes, by 2031.

Orengo et al. (1999) showed percentage of ORFs

with protein 3D structures as between 30 and 46% in

1999. The genome sequences known by 1999 were

mostly derived from prokaryotic species and the

known protein 3D structures were mostly soluble

proteins. Therefore, the figures they presented in 1999

should correspond to the figures of archaebacterial and

eubacterial soluble proteins. When we extrapolate the

figures of archaebacterial and eubacterial soluble pro-

teins to the past in Fig. 2, the figures are around 40% in

1999, indicating that their figures approximately lie on

the extrapolated lines.

The current estimation indicates that we will obtain

3D structures of whole soluble proteins of eubacteria

in 11 years and archaebacteria in 15 years. This

estimation does not take into account the acceleration

of structure determination speed by automation

(McPherson 2004; DeLucas et al. 2005), which makes

the due days closer to the present. For membrane

proteins, speed of structure determination has been

drastically accelerated by recent technical innovations

(Kyogoku et al. 2003; Lundstrom 2004; Walian et al.

2004; Dobrovetsky et al. 2005), and therefore we will

not linearly extrapolate the present status to estimate

the due day for membrane proteins.

Frequency of template structure in use

When the template 3D structures used in FAMSBASE

are classified by SCOP superfamily, which is a group of

Table 1 continued

Species ORF Model %

/A1122 50 10 20.0
P68 22 2 9.1
/KMV 48 11 22.9
PM2 22 1 4.5
PRD1 22 4 18.2
YM2 31 1 3.2
YM100 37 4 10.8
PY54 67 10 14.9
PZA 27 4 14.8
R1t 50 6 12.0
RB69 256 56 21.9
RB49 272 49 18.0
Rd 47 6 12.8
RM378 146 17 11.6
PVL 62 8 12.9
Sfi11 25 1 4.0
V 53 7 13.2
SIO1 34 6 17.6
Sk1 54 1 1.9
SP6 20 6 30.0
SP bc2 185 33 17.8
SPP1 106 7 6.6
MM1 53 6 11.3
ST64B 56 8 14.3
ST64T 65 9 13.8
7201 46 8 17.4
DT1 47 7 14.9
O1205 57 4 7.0
Sfi19 45 6 13.3
Sfi21 50 9 18.0
Stx2 165 11 6.7
T3 44 10 22.7
T4 278 58 20.9
T7 58 10 17.2
TM4 89 5 5.6
TP901-1 56 7 12.5
Tuc2009 56 7 12.5
Ul36 58 5 8.6
VHML 57 8 14.0
VpV262 67 4 6.0
VT2-Sa 82 11 13.4
W/ 44 4 9.1
Sum 7,699 1073 13.9
Total 734,193 368,724 50.2

Fig. 2 Annual differences of modeled structures classified by
kingdoms of life. The percentage is the number of amino acid
residues included in modeled structures over the whole number
of residues in predicted sequences for soluble and membrane
proteins in each kingdom. (S) stands for soluble proteins and (M)
stands for membrane proteins. Some of the residues are
predicted to be in a disordered region. The percentage of
residues in disordered regions is shown at the top
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proteins that have low sequence identities but whose

structural and functional features suggest that a com-

mon evolutionary origin is probable (Lo Conte et al.

2002), and frequencies of superfamilies in use are

counted, ‘P-loop containing nucleoside triphosphate

hydrolases’ superfamily is found to be the most fre-

quent one; 7,532 times (about 12%) in whole archae-

bacterial model structures, 77,806 (about 10%) in

eubacterial structures and 35,468 times (about 6%)

in eukaryotic structures. The templates that follow in

frequency in archaebacterial and eubacterial protein

structures are ‘NAD(P)-binding Rossmann fold do-

mains’, ‘4Fe–4S ferredxin’, and ‘PLP-dependent

transferases’ superfamilies. In eukaryotic protein

structures, ‘protein-kinase’, ‘immunoglobulin’ and

‘C2H2 and C2HC zinc fingers’ superfamilies, which

appear specifically in eukaryotic genomes, follow the

top.

Differences in distribution of frequency of templates

in different kingdoms of life are evident, when fre-

quencies in use of template are plotted in descending

order (Fig. 3). In any kingdoms of life, the frequencies

of the most and the second most used templates exceed

those of the remaining templates. The frequencies of

templates in use drops first in archaebacterial protein

structures and then in eubacterial protein structures.

The descending curve of eukaryotic template fre-

quency is less steep compared with the others, indi-

cating that one template can produce a large number of

domain 3D structures in eukaryotic ORFs. In other

words, a significant number of proteins encoded in

eukaryotic genomes are originated by domain dupli-

cation, as Koonin et al. (2000) demonstrated. Super-

families with the 3D structures and with many copies in

eukaryotic genomes, but seldom in prokaryotic ge-

nomes are ‘protein kinase-like’, ‘immunoglobin’,

‘RNA-binding domain’, ‘C2H2 and C2HC zinc fingers’,

‘WD40-repeat’, ‘glucocorticoid receptor-like’, ‘home-

odomain-like’, ‘PH domain-like’, ‘RING-box’, ‘L

domain’, ‘ankyrin repeat’, ‘ARM repeat’, ‘cytochrome

P-450’ and ‘EF-hand’ superfamilies. These superfami-

lies are transcription factors, protein–protein interac-

tion mediators and response factor for toxic

substances, mostly known to be unique to eukaryotes.

The ‘P-loop containing nucleoside triphosphate

hydrolases’ superfamily outnumbering other super-

family in template frequency corresponds to the previ-

ous finding that the enzyme is highly frequently used in

every kingdom of life (Leipe et al. 2003). When bio-

logical functions of these ORFs with the 3D structure of

‘P-loop containing nucleoside triphosphate hydrolases’

superfamily are classified, about half of the proteins are

ABC transporters in archaebacterial and eubacterial

proteomes, but numbers of G-proteins and motor pro-

teins in eukaryotic proteomes are noticeable (Fig. 4).

In the last two years, new protein structures were

determined and contributed to an increase in the

number of templates for homology modeling. A part of

those template structures are listed in Table 2. Those

top 15 templates contributed a lot for the growth of

Fig. 3 Frequency of template usage in descending order.
Horizontal axis is a template and the vertical axis is a frequency
of templates in use. Red line is a template usage in archaebac-
teria, blue line is eubacteria and green line is eukaryotes

Fig. 4 Protein family distribution of ‘P-loop containing nucleo-
side triphosphate hydrolases’ superfamily in each kingdom. In
the three pie charts, the section with the same color is a category
of the same family except for the white section
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modeled 3D structure database. In Table 2, 3D struc-

ture derived from SG projects is rare. The ratio of SG

products in Table 2 is the same as that in PDB

(Editorial Board, Nature Structural & Molecular

Biology 2004). As the SG projects in US and Europe

have proceeded to phase 2 (Service 2005), SG products

are expected to contribute to increase in the number of

templates in the near future. The qualities of protein

3D structures, namely, size, resolution, R-factors and

so forth, derived from SG projects were compared with

those in PDB and no obvious compromise in quality of

SG products were found (Todd et al. 2005). The

quality of homology modeling based on products of SG

projects in the future, therefore, will be expected to be

no less than the current quality.

Whole structure and function of proteins from

homology modeling of domain structures

Protein function prediction, especially studies on en-

zyme specificity, based on homology modeling struc-

tures is intensively carried out in the field of drug

design and related fields (Goldsmith-Fischman and

Honig 2003; Kopp and Schwede 2004). Those studies

are mostly based on homology modeling of domain

structures. As mentioned above, most of the eukaryotic

protein structures in FAMSBASE are 3D structures of

structural domains, not the entire coding regions

(Fig. 1). Protein functional sites are often located at a

cleft of domains (Laskowski et al. 1996), and therefore

understanding relative location of domains will be a

critical issue. Xie and Bourne (2005) and O’Toole et al.

(2003) also pointed out this problem and mentioned,

‘‘even if all the domains of a multiple-domain query

sequence have determined structures, the individual

structures will not enable accurate modeling of how

they associate together in the structure of the entire

proteins (O’Toole et al. 2003).’’

Figure 5 shows all eukaryotic ORFs whose 3D

structures are mostly modeled in pieces. There are

three types of enzymes and four types of cell surface

receptors. A protein structure of ENSP00000264705

which is an ORF found in human genome can be

modeled based on Escherichia coli carbamoylphos-

phate synthetase (CPS) and Pyrococcus abyssi aspar-

atate transcarbamoylase (ATC). E. coli CPS is

composed of a large subunit and a small subunit. CPS

and ATC are the first and the second enzymes,

respectively, in pyrimidine biosynthesis pathway. In

mammalian genomes, those proteins are coded by a

single gene and active in a hexamer form (Serre et al.

2004). Interactions between the large subunit domain

and the small subunit domain of human CPS are

conjectured to be the same as those between the large

and the small subunits of E. coli CPS. N-terminal

residues of the large subunit and the C-terminal

residues of the small subunit are spatially located

close in E. coli CPS, which permits the two chains to

be chemically connected without disrupting subunit

interfaces. To be active, human CPS should form a

hexamer supramolecule and the interfaces for the

supramolecule formation should be predicted from

the modeled 3D structures. At the moment, the

interfaces are unknown.

Table 2 Top 15 modeling
templates in the newly
determined 3D structures
between 2002 and 2003

a PDB entry seemingly
derived from the SG projects
judged by description in PDB
file is tagged Y, and the
remaining entry is tagged N

PDBID Chain Number of
uses as
a template

SGa Protein name

1q12 A 7,031 N Maltose/maltodextrin transport
ATP-binding protein MalK

1l2t A 6,529 N Hypothetical ABC transporter
ATP-binding protein Mj0796

1oxx K 3,948 N ABC transporter ATP-binding protein GlcV
1pf4 A 3,202 N Transport ATP-Binding Protein MsbA
1nr0 A 2,640 Y Actin interacting protein 1 Aip1
1ixc A 2,495 N LysR-type regulatory protein CbnR
1ld8 A 2,410 N Farnesyltransferase a subunit
1ji0 A 2,331 Y ABC transporter
1oyw A 2,251 N ATP-dependent DNA helicase; RecQ helicase
1kt1 A 2,198 N Fk506-binding protein FKBP51
1mt0 A 1,961 N Haemolysin secretion ATP-binding protein;

ATP-binding domain
1mdb A 1,745 N 2,3-dihydroxybenzoate-AMP ligase DhbE
1nnm A 1,730 N Acetyl-CoA synthetase
1gxr A 1,715 N Transducin-like enhancer protein 1 Esg1
1uoh A 1,706 N 26S proteasome non-ATPase

regulatory subunit 10
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ENSMUSP00000019416 is an ORF found in mouse

genome and encodes a putative cell surface receptor.

The protein is predicted to consist of six consecutive

Ig-fold domains. There is a putative transmembrane

helix at the C-terminal region of the protein. Two

consecutive Ig-fold domains are modeled without

overlap, and no pieces of information for relative

orientation of three modeled structures have been

found. Information of interaction sites of those do-

mains is required to build the entire structure of the

protein and to predict a target molecule of this

receptor. Computational analyses of domain inter-

faces and of protein–protein interfaces have been

targets for extensive study for a long time, and some

general characteristics have been found. One of them

is the hydrophobicity of the interfaces (Wodak and

Janin 2002). Hydrophobic clusters on the surface of

modeled structures of ENSMUSP00000019416 are

shown in right side of Fig. 5. One of the template

structures, Nkp46 ectodomain, has hydrophilic sur-

face (green) around the C-terminal residues of the

domain, however the modeled structure has a

hydrophobic surface (orange) at the corresponding

area. The other template structure, LIR-1 D1D2, has

a hydrophilic surface around the N-terminal residues

of the domain, however the modeled structure has a

hydrophobic surface at the corresponding area. The

surfaces uniquely turned into hydrophobic in mod-

eled structures are close to the residues that are

chemically bonded in the target protein, and there-

fore both of the areas likely form interfaces of the

two domains. The modeled structure based on LIR-1

D1D2 domain has another hydrophobic surface

around the C-terminal residues, which may interact

with CD158j-like domain located at the C-terminal

side of the domain.

Fig. 5 Eukaryotic ORFs with multiple model structures cover-
ing more than 70% of entire protein. In each of the bar
representation of proteins, a black box is a region with 3D
structure. A name and PDB ID of a template structure and
amino acid sequence identity between template and target
domains are given below the black box. A yellow box is a

putative signal peptide and green box is a putative transmem-
brane region. Template and modeled structures of ENS-
MUSP00000019416 were shown on the right side of the figure.
Each domain is colored by hydrophobicity. A hydrophilic
residue is in green and a hydrophobic residue is in red. A buried
residue is in deep blue
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Accuracy of homology modeling

There are at least three major issues that affect

accuracy in homology modeling; the best template

selection, accuracy of an amino acid sequence

alignment between template and target protein se-

quences and the accuracy of structure building pro-

cedure itself (Contreras-Moreira et al. 2005).

Accuracy of the alignment is high, when sequence

identity of template and target proteins is higher

than 30%, and alignment of proteins with identity

less than 30% is known to be less reliable, thereby

accuracy of homology modeling deteriorates (Kopp

and Schwede 2004). FAMS has been shown to

construct relatively accurate model structures, even

with low sequence identity between template and

target sequences in CAFASP2, the homology mod-

eling competition (Iwadate et al. 2001; Yamaguchi

et al. 2003). A distribution of sequence identity be-

tween amino acid sequences of template and target

proteins in FAMSBASE is shown in Fig. 6. Half of

the model structures in FAMSBASE rely on align-

ments of sequence identity less than 20%. Figure 6

suggests that the current 3D structure database does

not contain good enough structures for high quality

homology modeling. SG projects will eventually

provide better template structures, and improvement

in target selection, alignment and modeling methods

are also in pursuit to overcome the difficulties in

homology modeling (John and Sali 2003; Wallace

et al. 2005).

Conclusion

Construction of database of whole genome homology

modeling clarified that protein 3D structures of about

50% of the protein coding regions in whole genome can

now be modeled. Maintaining the current speed of 3D

structure determination, it will take, at most, 11 years

to have enough templates to cover whole soluble pro-

teins of eubacterial genomes, and 25 years to cover

those of eukaryotic genomes. The current advancement

in technologies of protein structure determination is

expected to make these due times closer to the present.

What we obtain at those times are not the 3D structures

of entire proteins, but domain structures in pieces. A

homology modeled domain structure is now in use of

predicting domain functions, but predicting spatial

arrangement of domains in a protein will be an

important issue for function prediction.
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