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Abstract: The use of immune checkpoint inhibitors (ICI) in treating cancer has revolutionized the
approach to eradicate cancer cells by reactivating immune responses. However, only a subset of
patients benefits from this treatment; the majority remains unresponsive or develops resistance to
ICI therapy. Increasing evidence suggests that metabolic machinery in the tumor microenvironment
(TME) plays a role in the development of ICI resistance. Within the TME, nutrients and oxygen
are scarce, forcing immune cells to undergo metabolic reprogramming to adapt to harsh conditions.
Cancer-induced metabolic deregulation in immune cells can attenuate their anti-cancer properties,
but can also increase their immunosuppressive properties. Therefore, targeting metabolic pathways
of immune cells in the TME may strengthen the efficacy of ICIs and prevent ICI resistance. In this
review, we discuss the interactions of immune cells and metabolic alterations in the TME. We also
discuss current therapies targeting cellular metabolism in combination with ICIs for the treatment of
cancer, and provide possible mechanisms behind the cellular metabolic rewiring that may improve
clinical outcomes.

Keywords: metabolism; immuno-metabolism; metabolic reprogramming; immune checkpoint in-
hibitor; immunotherapy; resistance; tumor microenvironment; cancer niche

1. Introduction

The discovery of checkpoint proteins has provided novel targets for cancer therapies,
and the development of immune checkpoint inhibitors (ICI) has revolutionized clinical
approaches to cancer. To date, there are seven food and drug administration (FDA)-
approved ICIs for the treatment of different cancers [1]. Some patients with specific types
of tumors have demonstrated durable responses from ICI treatment [2–4]; however, clinical
outcomes for the majority of patients remain unsatisfactory. ICIs block co-inhibitory
signals, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed
cell death-1 and programmed death-ligand 1 (PD-1 and PD-L1) axis, to trigger immune
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responses and eradicate cancer cells [5]. Unfortunately, patients who received ICI treatment
can develop resistance, which attenuates the efficacy of ICIs [6]. Faced with this clinical
challenge, scientists are striving to understand the underlying mechanisms responsible for
the development of resistance to ICI therapy. As more discoveries are reported, it appears
that cellular metabolism plays a critical role in the development of ICI resistance [7–9].
In order to overcome resistance to ICI therapy, it is crucial to understand the metabolic
features in cancer niches and the interrelationship between immune cells and cancer cells.

Inflammation, one type of cancer niche, is often associated with the proliferation and
metastasis of cancer cells, leading to poor clinical outcomes [10]. Various interactions
between cancer cells, stromal cells and immune cells can form an inflammatory tumor
microenvironment (TME), which promotes cancer progression and metastasis [11]. Rapidly
proliferating cancer cells can consume large amounts of oxygen, which decreases the oxy-
gen availability and generates hypoxic regions [12]. With insufficient oxygen, immune
cells may encounter environmental stresses, forcing them to undergo metabolic reprogram-
ming [13,14]. In hypoxic regions, hypoxia-inducible factor (HIF) can become stabilized,
and engage in the metabolic reprogramming of immune cells [15], which may further pro-
mote immunosuppression [15,16]. Cells with a high glycolytic rate generate vast amounts
of lactic acid. Lactic acid has long been recognized as a waste product, however, it has
recently been found to be an oncometabolite, and may be associated with the acidification
of TMEs [17]. Several studies have found the acidity of TME to be an important factor in
tumorigenesis and immunosuppression [17,18].

Because of the excessive use of nutrients by cancer cells, nutrients are depleted in the
TME, leading to harsh conditions that induce immune cells to alter their metabolism of
glucose, amino acids and lipids to adapt to the nutrient-restricted conditions [19]. During
this cancer-induced metabolic reprogramming, some immune cells differentiate or polarize
into immunosuppressive phenotypes [8], while other immune cells lose their anti-tumor
functions [20,21]. Together, the dysfunctional metabolisms can impede immune responses
to cancer cells, and also create an immunosuppressive TME that allows cancer cells to
escape from immune surveillance.

Cellular metabolism has recently been found to be an important factor in developing
ICI resistance, and is regarded as a clinical barrier for ICI treatment [22]. In order to over-
come this clinical challenge, several ongoing clinical trials are targeting cellular metabolic
pathways in combination with ICIs to yield better clinical outcomes.

2. Cancer Niches
2.1. Inflammation

Inflammation is a hallmark of cancer and is associated with the growth and pro-
gression of cancer cells. Cancer cells, peripheral stromal and inflammatory cells can
together form an inflammatory TME, which in turn promotes proliferation, progression
and metastasis of cancer cells [11]. It has been reported that inflammatory cytokines such
as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the TME are able to
enhance PD-L1 expression in cancer cells [23,24], contributing to escape from T cell immune
surveillance. Tumor-associated macrophages (TAM) are abundant in the TME, and may
take part in regulating inflammation. It has been shown that inflammatory cytokines IL-23
produced by TAMs can induce inflammation and promote tumor growth and progres-
sion in a colorectal cancer mouse model [25]. Additionally, macrophage-derived TNF-α
can augment the PD-L1 expression in cancer cells [24], thus impeding T cells anti-tumor
functions. The presence of IL-6 in the TME enhances the glycolysis activities in cancer
associated fibroblasts (CAF), enabling them to generate metabolic intermediates to support
cancer cells [26,27]. Similarly, IL-6 also induces glycolytic enzyme expression in cancer
cells via signal transducers and activators of transcription 3 (STAT3)/c-Myc signaling [28],
and correlated with tumorigenesis, which together suggests that inflammation can induce
metabolic reprogramming and promote cancer progression (Figure 1).
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Figure 1. Immune cells undergo metabolic reprogramming within the immunosuppressive tumor microenvironment (TME).
Inflammation, hypoxia, and acidity are the three hallmarks in the TME, resulting in immunosuppression, cancer progression,
and metastasis. Cancer associated fibroblasts (CAFs) are key players in generation and regulation of extracellular matrix
(ECM). Stiffened ECM can promote glycolysis in CAFs and support cancer cells. Excessive production of lactate by CAFs
can be transported via monocarboxylate transporter-4 (MCT-4) and leads to the acidification of the microenvironment. The
expression of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO) in tumor associated macrophages (TAMs) can
contribute to the inhibition of effector T cells. TAMs can also accumulate lipid via scavenger receptor CD36 and serves
as a source of fatty acid oxidation (FAO) used for differentiation and tumor promotion. Similar to TAMs, ARG1 and IDO
expression are also upregulated in dendritic cells (DCs), which leads DCs toward a more immunosuppressive state. The
decreased expression of major histocompatibility complex class II (MHC-II) could also impede antigen presentation by DCs
and attenuate T cell-mediated immune responses in hypoxic conditions. The elevated activity and number in regulatory T
cells (Tregs) may impede CD8+ T cells effector functions. Anti-cancer immunity property of CD8+ T cells and natural killer
(NK) cells are attenuated by the dysregulation of metabolism in the TME. FASN, fatty acid synthase; mTOR, mammalian
target of rapamycin; GS, glutamine synthetase; IFN-γ, interferon-gamma.

2.2. Hypoxia

Tumor cells consume large quantities of oxygen due to their high rate of proliferation;
this leads to the formation of hypoxic regions. Hypoxia is a hallmark of TME and a common
characteristic of solid tumors [29], where tumor cells proliferate rapidly to build up solid
tumor masses, and accompanied with abnormal formation of blood vessels that may not
function properly to supply oxygen into the tumor masses [30]. Tumor cells can adapt
to these hypoxic regions by activating HIF-1 transcription factor, enabling tumor cells to
shift their metabolic profile from oxidative phosphorylation (OXPHOS) to glycolysis [30].
HIF-1, a crucial factor in regulating angiogenic factors such as vascular endothelial growth
factor (VEGF) and vascular endothelial growth factor receptor (VEGFR), is overexpressed
in several cancers and correlated with metastasis and poor prognosis [31]. The expression
of HIF-2α is significantly enhanced in several cancers [32–34], and can increase cancer
stem-like properties by activating Wnt and Notch pathways and stem cell related markers
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such as c-Myc, octamer-binding transcription factor 4 (Oct4) and Nanog [35]. Interestingly,
HIF-2α is largely expressed and regulates Oct4 in embryonic development stage, which
controls division, differentiation and function of stem cells [36]. In line with this, the HIF-
2/Oct4 axis has been identified in regulating stemness of embryonic germ stem cells [37,38].
Additionally, HIF-2α can promote hypoxic cancer cells to proliferate via boosting c-Myc
transcriptional activity and cell-cycle progression, and together promote proliferation and
tumorigenesis [39]. Moreover, HIF-2α has also been reported to elevate the expression
Oct4 and Sox2, contributing to stemness and invasiveness characteristics [40].

Under hypoxic conditions, the decreased rate of proteolytic degradation causes HIF-1α
to accumulate. Elevated expression of HIF-1α in hypoxic regions may impair the ability of
natural killer (NK) cells to upregulate surface activating receptors such as NKp46, NKp30,
NKp44, and NKG2D [41]. Depletion of HIF-1α decreases the cytotoxicity in NK cells, but
significantly delays tumor growth via stimulating non-productive angiogenesis [42]. The
augmented production of adenosine through ectonucleotidases CD39 and CD73 in hypoxic
region impedes NK cells cytotoxic activity and cytokine production [43,44], and activation
of adenosine A2A receptor (A2AR) in NK cells suppress their maturation and proliferation
in the TME [45]. Additionally, cancer cells can activate autophagy under hypoxia, which
degrades NK-derived granzyme B, thereby impeding NK-mediated tumor lysis [46,47].

In hypoxic regions, TAMs are shaped into tumor promoting phenotype, and upreg-
ulate platelet-derived growth factor (PDGF) and VEGF to support the growth of cancer
cells [48]. It has been reported that TAMs reside in hypoxic tumor regions and significantly
upregulate the expression of regulated in development and DNA damage responses 1
(REDD1), which inhibits mammalian target of rapamycin (mTOR) activity [13]. The inhib-
ited mTOR may further impede glycolysis in TAMs, leading to the formation of abnormal
blood vessels and facilitating metastasis [13]. TAMs may also facilitate tumor hypoxia by
competing for available oxygen in the TME, impeding T cell infiltration [49].

Limited oxygen in hypoxic regions may lower expression levels of major histocompati-
bility complex II (MHC-II), CD80 and CD86, as well as levels of proinflammatory cytokines
such as IL-1β, IL-6, and TNF-α in dendritic cells (DC), thus impairing the maturation and
functions of DCs [50]. Additionally, differentiation of DCs under hypoxic conditions may
impede their antigen uptake and alter their chemokine expression [51], which may further
affect DCs ability for triggering immune responses.

A recent study has reported that hypoxia in the TME induces T cell mitochondria
dysfunction, which decreases the production of ATP and mitochondrial OXPHOS activities,
leading to T cell exhaustion [14]. T cell exhaustion may be associated with the down-
regulation of mitochondrial fusion protein mitofusin 1 and upregulation of miR-24 [14].
Additionally, the ability to proliferate and to produce interferon-gamma (IFN-γ) is attenu-
ated in CD8+ T cells under hypoxic conditions [52]. Reintroduction of oxygen can restore
the cytokine producing capacity of T cells [52]. It has been reported that under the hypoxic
region, HIF-2α downregulates Fas-ligand expression and induce the expression of A2AR
in natural killer T cells, leading to immunosuppression [53]. In addition, studies in a
colitis-associated colon cancer mouse model have demonstrated that hypoxic conditions
reduce differentiation of CD4+ effector T cells, while elevating the number and activity
of regulatory T cells (Tregs) [54]. These findings suggest that a hypoxic TME may have
detrimental effects on effector T cells, and may attenuate anti-tumor responses (Figure 1).

2.3. Acidity

Increased production of lactic acid by cancer cells can cause acidification of the
TME since lactate and H+ are transported outward by monocarboxylate transporter-4
(MCT-4) [55]. The decreased pH in acidic TMEs promotes tumor growth and metasta-
sis [56]. Recently, lactate has been suggested to be a key player in cancer; it has been
associated with the development of malignancies, immune escape, and regulation of
cytokine release [57] (Figure 1).
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It has been shown that when co-cultured with MCF7 breast cancer cells, CAFs are
induced to express MCT-4 [58]. The increased glycolysis in CAFs may produce excessive
lactate that is transported via MCT-4 leading to acidification of the TME.

Interestingly, a report by Colegio et al., sheds some light on the effect of lactic acid
on TAMs. They show that cancer-derived lactic acid induces the expression of VEGF
in TAMs, and skews TAMs toward a M2-like phenotype [59]. They also demonstrate
that lactate upregulates the expression of arginase 1 (ARG1) in TAMs [59]. ARG1 plays
a critical role in tumor promotion, as the ARG1-dependent pathway is responsible for
generating cell proliferating substrates. It was also shown that extracellular acidosis can
promote macrophage polarization toward a tumor-promoting phenotype in a prostate
cancer model [60]. Neutralizing the tumor-secreted acids could reduce the pro-tumor
phenotype of TAMs and impede tumor progression [60]. Interestingly, low extracellular
pH may also be involved in regulating inflammatory cytokines and phagocytic activity in
monocytes and macrophages [61].

Lactate, an oncometabolite in the TME, is a robust regulator of T cells [55]. It has
been reported that CAF-derived lactate decreases the population of anti-tumoral CD4+

T cells, while increasing the population of Tregs in a prostate cancer model [62]. This
reduction in anti-tumoral CD4+ T cells might result from lactate dependent SIRT1-mediated
T-bet deacetylation [62]. On the other hand, lactate might enhance the activity of NF-kB
and Foxp3 expression, which induces naïve T cells to polarize into Tregs and creates
an immunosuppressive TME to sustain cancer progression [62]. Additionally, a recent
study demonstrates that accumulation of lactate can upregulate the expression of lactate
transporter SLC5A12 in CD4+ T cells, increasing IL-17 production and fatty acid synthesis
(FAS) and reducing glycolysis [63]. Another study revealed that, an acidic environment
can significantly impede secretion of IFN-γ and TNF-α by T cells, preventing them from
generating proinflammatory cytokines [64]. The inhibition of glycolysis is also observed in
acidic conditions, abrogating the activation of T cells [64]. Administration of bicarbonate
can neutralize tumor acidity, increasing T cell infiltration and enhancing the efficacy of
immunotherapy [64].

Acidity and lactate in the TME have also been demonstrated to impede the cytotoxic
functions of NK cells. A recent report indicates that the activities of T cells and NK cells are
impaired via inhibition of nuclear factor of activated T cells (NFAT) mediated by lactate
dehydrogenase A (LDHA)-associated lactic acid production and intracellular acidification.
The inhibited NFAT in T cells and NK cells restricts their IFN-γ production [65], abrogating
their anti-tumor responses. Likewise, tumor-derived lactic acid causes intracellular acidi-
fication in liver-resident NK cells, leading to dysfunction of mitochondria, and inducing
apoptosis of NK cells in biopsies from colorectal liver metastasis patients [66].

2.4. Cancer Associated Fibroblasts (CAF)

CAFs are especially abundant in solid tumors, and have various functions in the TME,
such as promoting cancer growth and metastasis, as well as regulating the extracellular
matrix (ECM) [67]. CAFs can directly promote tumor growth by secreting stromal cell-
derived factor 1 (SDF-1), which mediates the recruitment of endothelial progenitor cells,
thereby promoting angiogenesis [68]. Additionally, CAFs play a role in the assembly of
fibronectin, which is involved in metastasis, and express other major ECM components
that promote tumor progression [69].

2.5. Extracellular Matrix (ECM)

ECM is a non-cellular component produced by the secretion of intracellular resident
cells that provides both biochemical and structural support. Alterations towards both
degradation and stiffness of ECM can promote tumor growth and progression [70]. In
solid tumors, tissue containing high amounts of ECM proteins may stiffen the stroma,
thus promoting further malignancy [71]. It was recently reported that stiffened ECM may
enhance glycolysis and glutamine metabolism in both cancer cells and CAFs, demonstrating
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the metabolic interplay between these cell types [72]. Aspartate secreted by CAFs is utilized
by cancer cells for nucleotide biosynthesis to maintain proliferation. While glutamate
secreted by cancer cells is utilized by CAFs in balancing redox state through the glutathione
pathway to remodel ECM [72].

2.6. Nutrients and Immune Cells Metabolic Reprogramming

Rapidly proliferating cancer cells have high biosynthetic demands and generate
nutrient-deficient TME [73]. The scarcity of nutrients, including glucose, amino acids and
fatty acids, may induce immune cells to undergo metabolic reprogramming that can affect
their fate and functions [73,74] (Figure 1).

2.6.1. Glucose Metabolism

Glucose is rapidly consumed by cancer cells, leading to low levels in the TME, and a
glucose-deficient TME decreases the anti-cancer immunity property of CD8+ T cells [20].
The metabolism of glucose is distinct in different subsets of T cells [75]. Naïve T cells
circulate throughout the body looking for antigen, requiring a small amount of glucose
to generate ATP via the tricarboxylic acid (TCA) cycle and OXPHOS in order to maintain
their functions [75]. mTOR appears to play central roles in regulating the quiescence
state of naïve T cells and in their activation [76]. mTORC1 induces transcription of Myc,
while mTORC2 increases the expression of glucose transporter 1 (GLUT1), which enhances
glucose uptake [76]. During the activation of naïve T cells to activated T cells, there is a
metabolic switch from OXPHOS to aerobic glycolysis [75–77]. Massive consumption of
glucose by cancer cells limits the availability of glucose in the TME, dampening mTOR
activity, glycolytic activity and IFN-γ production in T cells [20]. This glucose-deprived
TME, however, may be beneficial for developing Tregs, since they mainly fuel their energy
needs through OXPHOS, and only require a small amount of glucose [78,79]. Under the
stress of nutrient deprivation, autophagy activity is upregulated in order to maintain
survival [80]. Interestingly, a recent study demonstrated that autophagy related gene
Atg5 suppresses the expression of GLUT1, which impedes glucose metabolism and the
production of IFN-γ in CD8+ T cells [81].

Glucose is an essential fuel for cellular growth and cytokine production in NK cells.
Glucose is utilized through glycolysis and OXPHOS in activated NK cells, and is further
metabolized via the citrate–malate shuttle [82]. This distinct metabolic pathway is medi-
ated by the transcription factor Srebp, and also takes part in the production of IFN-γ and
granzyme B in NK cells [82]. Interestingly, the expression of fructose-1,6-bisphosphatase
(FBP1) is elevated in NK cells during lung cancer progression. The increased FBP1 expres-
sion attenuates NK cell cytotoxicity and cytokine production by inhibiting glycolysis [21].
As such, inhibition of glucose metabolism in NK cells may impede their effector functions,
thus promoting cancer growth and progression.

CAFs are the predominate type of stromal cells in the TME, and utilize aerobic gly-
colysis to generate nutrients that fuel cancer cells [83]. The reliance of CAFs on aerobic
glycolysis may be driven by oxygen availability in the tumor site, HIF-1α stabilization,
transforming growth factor-β (TGF-β), or PDGF signaling [84]. It has been shown that
TGF-β- or PDGF-stimulated CAFs can undergo a shift from OXPHOS to aerobic glycolysis
via downregulation of isocitrate dehydrogenase 3α, which stabilizes HIF-1α protein to
promote glycolysis [85]. Interestingly, exosomes secreted by CAFs inhibit mitochondrial
OXPHOS in cancer cells, while enhancing glycolysis and glutamine-dependent reductive
carboxylation [86]. CAF-derived exosomes may also contain metabolites such as amino
acids, lipids, and TCA cycle intermediates, and can be harnessed by cancer cells under
nutrient-deprived conditions [86].

It has been reported that the metabolic profile of macrophages can be altered during
polarization. While M1-like macrophages display characteristics of high glycolytic activity,
increased uptake of glucose drives macrophages toward a proinflammatory phenotype [87],
M2-like macrophages depend on OXPHOS [87], and exhibit immunosuppressive properties.
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M2-like TAMs are metabolically distinct from M2 macrophages, and utilize glycolysis [88],
while also secreting TNF-α to promote glycolysis in cancer cells [49], thus facilitating
tumor growth.

Interestingly, most cancer cells upregulate glycolysis, and downregulate OXPHOS.
However, researchers have recently discovered that OXPHOS is upregulated in sev-
eral kinds of cancers, such as leukemias, lymphomas, and pancreatic ductal adenocarci-
noma [89], and the elevated OXPHOS may promote cancer metastasis and progression [90].

2.6.2. Amino Acid Metabolism

Tryptophan, an essential amino acid in humans, plays a key role in regulating the
function of immune cells and may be metabolized into kynurenine by the enzyme in-
doleamine 2,3-dioxygenase (IDO), which is often associated with immunosuppressive
properties [91–93]. Myeloid-derived suppressor cells (MDSC) isolated from breast cancer
tissues display elevated IDO expression and are correlated with increased infiltration of
Tregs [94]. The enhanced IDO-expressing MDSCs as well as Tregs suppress T cell anti-tumor
activity. It has been found that ectopic IDO increases M2 macrophage related markers such
as IL-10 and CXC chemokine receptor 4 (CXCR4), and decreases CCR7 and IL-12p35 M1
related markers [95]. It has also been reported that hypoxic hepatoma cells induce IDO
expression in macrophages, thereby suppressing T cell proliferation and promoting the ex-
pansion of Tregs [96]. Additionally, elevated expression of IDO in DCs stimulated by IFN-γ
or TGF-β can lead to T cell suppression [97,98]. Similarly, augmented IDO expression in
CAFs is observed in human esophageal cancers [99], and CAFs can also recruit and convert
DCs into IDO-producing regulatory DCs [100], depleting tryptophan bioavailability, which
consequently impedes effector T cell activation and proliferation [99,100]. Interestingly, it
has been reported that higher levels of kynurenine, a tryptophan metabolite, are found
in different types of cancers compared with normal tissues [101], and correlate with the
suppression of T cell proliferation [102]. Kynurenine, may also inhibit NK cell proliferation
and cytotoxicity and inducing NK cells apoptosis [103–105]. In line with this, expression of
either IDO or IDO-derived catabolite, kynurenine, can exert immunosuppression.

Arginine has also been found to engage in the metabolic profile of immune cells [106].
Arginine is a key player in regulating T cell proliferation, differentiation, and survival [107].
Elevated levels of arginine induce a shift from glycolysis to OXPHOS in activated T cells
to generate memory T cells, and enhance the capacity of T cells to eradicate tumors [107].
Arginine is also crucial in NK cells, as low concentrations of arginine impair proliferation
as well as IFN-γ production in NK cells [108]. The enzyme ARG1, expressed by immuno-
suppressive cells such as TAMs and MDSCs can deplete arginine [109,110] by converting
it into urea and ornithine, thus limiting the arginine available for T cell activation and
anti-cancer activities [111]. Interestingly, nitric oxide synthase (NOS), an enzyme catalyz-
ing the production of nitric oxide (NO) from arginine, is also considered to contribute to
tumorigenesis [112,113]. A recent study has shown that NOS activity increases as cancer
progresses, while a decrease in NOS is observed after chemotherapy [114]. It is well known
that TGF-β takes part in regulating cellular proliferation and differentiation, however,
its aberrant expression is often observed in TME [115]. Interestingly, after stimulation of
TGF-β, the expression of ARG1 and IDO-1 is upregulated in DCs, and the activation of
IDO-1 signaling is dependent on prior expression of ARG1 [97]. The dual expression of
ARG1 and IDO-1 leads DCs toward a more immunosuppressive state. In line with this, the
expression of ARG1 in the TME may limit the availability of arginine, which can inhibit the
anti-tumor response of NK cells and T cells.

Glutamine is another element necessary for cellular proliferation and differentia-
tion [116], and can promote proliferation in cancer cells [117,118]. Glutaminase (GLS) and
glutamine synthetase (GS) are the two major enzymes involved in glutamine metabolism.
GLS can regulate different subsets of T cells differently. Deficiency in GLS can deregulate T
cell initial activation, proliferation and differentiation of Th17 cells, but it can also increase
T-box expressed in T cells (Tbet) to promote differentiation and effector functions of CD4+
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T cells and CD8+ T cells [119]. This distinct regulation of T cell by GLS may associated with
T cell-mediated anti-tumor responses. It has been reported that cancer cells are induced to
express GLS, converting glutamine into glutamate to fuel their rapid proliferation, resulting
in invasion and metastasis in hypoxic conditions [120]. A recent study demonstrated that
cancer cells could secrete exosomes to activate the glutamine and glutamate axis in CAFs,
which indirectly supported the survival and proliferation of cancer cells [121]. GS also
promotes Foxp3 expression in T cells as well as regulatory features in Tregs [122]. In addi-
tion, GS is a key regulator in macrophage polarization; significant expression of GS protein
drives macrophages toward a M2-like phenotype [123], and high levels of GLS are found
in M2 macrophages to sustain immunosuppressive phenotype [124]. M2-like TAMs are
associated with a protumoral phenotype, however, administration of GS inhibitor causes a
shift toward a M1-like phenotype [123]. In line with this, the glutamine and glutamate axis
can reinforce immunosuppressive activities in immune cells, but also impede effector T
cell functions, which in turn helps cancer cells to escape from immune surveillance.

2.6.3. Lipid Metabolism

FAS and fatty acid oxidation (FAO) have both been reported to play central roles in
lipid metabolism and the regulation of immune cells [125,126]. Lipid metabolism plays a
role in the activation of both M1 and M2 macrophages. While fatty acid synthase (FASN)
is a key enzyme for fatty acid biosynthesis, and plays an essential role in the induction of
M1 macrophages [127], M2 macrophages mainly depend on FAO by oxidizing fatty acids
to fuel OXPHOS [127]. Interestingly, M2 macrophages uptake triacylglycerol substrates
via the scavenger receptor CD36 [128]. Triacylglycerol substrates undergo lipolysis by
lysosomal acid lipase to support the elevated OXPHOS necessary for activation of M2
macrophages [128]. Recently, it has become clear that TAMs accumulate lipids through
CD36 and serve as a source of FAO used for differentiation and tumor promotion [129].

Lipid metabolism has a distinct difference in subsets of T cells. FAS is harnessed to
support effector T cell proliferation and differentiation [130], while the development of
CD8+ memory T cells is depended on FAO [131]. Additionally, Tregs meet their energy
demand primarily by FAO [132], and CD36 is also reported to be upregulated in intra-
tumoral Tregs and to control their immunosuppressive functions [133]. Recently, a study
reported that inhibition of CD8+ T cells can result from activation of STAT3 signaling,
which can enhance FAO and promote obesity-associated breast cancer progression [134].
The study also showed that PD-1 ligation induces STAT3 signaling, enhancing FAO in
CD8+ T cells, while inhibiting glycolysis and effector functions [134]. In line with this,
lipid metabolism plays a critical role in regulating T cells. It may promote Tregs to generate
an immunosuppressive TME, while dampening the capacity of CD8+ T cells to eradicate
cancer cells.

Interestingly, a colorectal cancer (CRC) cell model showed that CAFs undergo a lipid
metabolic reprogramming that leads them to accumulate more fatty acids and phospho-
lipids [135]. The key enzyme FASN is significantly elevated in CAFs, releasing lipid
metabolites that promote migration of CRC cells [135]. This CAF-induced CRC cell migra-
tion can be blocked by knocking down FASN in CAFs in vitro or by impeding fatty acid
uptake by CRC cells using a CD36 monoclonal antibody in vivo [135].

A recent study showed that melanoma-derived Wnt5 can trigger β-catenin signaling
in DCs, inducing the activation of peroxisome proliferator-activated receptor (PPAR) [136].
This Wnt5 signaling enhances FAO in DCs, but also increases IDO activity, which in
turn promotes Tregs [136]. Additionally, the enhanced FAO suppresses the expression of
proinflammatory cytokines IL-6 and IL-12 in DCs [136]. Together, the enhanced FAO leads
DCs toward a more immunosuppressive state. Interestingly, prostaglandin E2 (PGE2) has
been shown to be a crucial mediator in immune responses [137,138]. PGE2 upregulates IL-
10 production in DCs [139], while downregulating MHC-II expression [140]. The decreased
expression of MHC-II could impede antigen presentation by DCs and attenuate T cell-
mediated immune responses.
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3. FDA-Approved Immune Checkpoint Inhibitors and Metabolic Interventions
3.1. Immune Checkpoint Proteins in Neoplastic Development

Immune checkpoint proteins are mediators of the immune system, and are mainly
two types of signals: co-stimulatory signals and co-inhibitory signals. These immune
checkpoints are crucial for balancing self-tolerance and autoimmunity and work by sending
signals to regulate immune cells [141]. Cancer cells, however, can utilize this regulatory
mechanism to escape from immune surveillance. During the activation of T cells, co-
inhibitory CTLA-4 is significantly upregulated and impedes T-cell receptor (TCR) signaling
by competing with the co-stimulatory receptor CD28 for B7 ligands B7-1 (CD80) and B7-2
(CD86) that expressed by antigen presenting cells (APCs) [5]. It has been reported that Tregs
express high levels of CTLA-4, and that these high-expressing CTLA-4 Tregs can be activated
by binding to B7 ligands on APCs to exert immunosuppression [142], and also limit the
availability of B7 ligands that are necessary for T cell activation. PD-1 is another important
co-inhibitory checkpoint for balancing immune responses to chronic pathogens and cancer
cells [143]. Upon activation, PD-1 expression in T cells is significantly upregulated and
delivers inhibitory signals via binding to PD-1 ligands (PD-L1 and PD-L2) expressed by
APCs or cancer cells [143], leading to dampened immune responses. It has become clearer
that several neoplasms evade the immune surveillance by upregulating PD-L1 expressions
that can bind to PD-1 expressed by T cells, contributing to T cell exhaustion [144]. The
activation of PD-1 signaling in T cells may regulate their cytokines production such as
IFN-γ, TNF-α, and IL-2, and also proliferation and cellular differentiation [145–147]. By
utilizing this negative regulating pathway, cancer cells are able to survive and proliferate
to sustain the neoplastic formation.

3.2. Immune Checkpoint Inhibitors

Since the discovery of immune checkpoint proteins, immune checkpoint inhibitors
have revolutionized the approach to cancer treatment. Antibodies that block the PD-1
and PD-L1 axis or CTLA-4 have been developed and are able to produce durable clinical
responses and prolong overall survival in cancer patients [148,149]. There are currently
7 immune checkpoint inhibitors approved by the FDA, including the CTLA-4 inhibitor
ipilimumab; PD-1 inhibitors nivolumab, pembrolizumab, and cemiplimab; and PD-L1
inhibitors avelumab, durvalumab, and atezolizumab [1]. Patients with certain specific
types of tumors may have durable clinical responses [2–4], however, the majority of clinical
responses to ICIs remain unsatisfactory since some proportion of patients who received
ICIs might have developed resistance to checkpoint therapy. One possible explanation is
that cancer cells have been shown to disable antigen presentation naturally or induced by
therapeutic strategies with the robust T cell immune surveillance, enabling cancer cells to
evade from immuno-recognition [150–152]. Gene mutation in antigen-presenting protein
beta-2-microglobulin (B2M) leads to the loss of MHC I presentation in cancer cells [150,152],
contributing to escape from CD8+ T cell immune surveillance. Another possible explana-
tion is that cancer cells exert genetic mutation in IFN-γ related signaling pathways Janus
kinase 1 (JAK1) or Janus kinase 2 (JAK2), which make cancer cells less susceptible to T
cell-mediated IFN-γ tumor suppression [150,153]. Another current possible explanation
is the deregulation of immune-metabolism. Cancer cells and immunosuppressive cells
in the TME can secrete a variety of cytokines or metabolites that may directly or indi-
rectly impede anti-cancer immunity via altering their metabolic profiles [22,154,155]. It
is promising that recent studies have identified several additional immune checkpoint
targets including inhibitory pathway targets LAG-3 (lymphocyte activating gene-3), TIM-3
(T-cell immunoglobulin and mucin domain-3), TIGIT (T-cell immunoglobulin and ITIM
domain), and VISTA (V-domain Ig-containing suppressor of T cell activation); and stim-
ulatory pathway targets OX40 (CD134), ICOS (inducible T-cell co-stimulator), and GITR
(glucocorticoid-induced tumor necrosis factor receptor-related protein) [156,157]. These
novel targets may possibly lead to improved clinical outcomes with the use of immune
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checkpoint therapy, however, these novel targets will not be further discussed since this
review mainly focus on the current FDA-approved ICIs.

3.3. Metabolic Interventions Combined with Immune Checkpoint Inhibitors

The application of ICIs that block the PD-1 and PD-L1 axis or CTLA-4 has yielded re-
markable clinical responses for a subset of patients. However, some patients do not respond
to this immunotherapy, which may be the result of either primary (de-novo) resistance or ac-
quired resistance [154]. Recently, a growing number of studies have shed light on acquired
resistance that may be a result of deregulation of immuno-metabolism [22,154,155]. The
efficacy of ICI monotherapy may be limited by the immunosuppressive TME. Therefore,
several ongoing clinical trials have emphasized targeting metabolic circuits in combination
with ICIs to enhance anti-tumor responses.

An ongoing phase III clinical trial in head and neck squamous cell carcinoma (NCT03358472)
has demonstrated that treatment with combination IDO-1 inhibitor epacadostat and anti-
PD-1 antibody pembrolizumab resulted in a lower mortality rate than treatment with
pembrolizumab alone (17.14 vs. 21.05%). Combination epacadostat and pembrolizumab
also resulted in a lower rate of serious adverse events compared with pembrolizumab
alone (35.29 vs. 42.11%). Similarly, in a phase II complete trial (NCT03322540) the same
combination resulted in a lower mortality rate compared with pembrolizumab alone
(17.33 vs. 22.08%). However, a completed phase III trial in unresectable or metastatic
melanoma found that combination pembrolizumab and epacadostat failed to yield better
clinical outcomes compared to pembrolizumab alone, as they observed no significant
differences in progression-free survival or overall survival [158].

Interestingly, a phase I clinical trial in renal cell carcinoma patients (NCT02655822)
demonstrated that administration of A2AR antagonist combined with atezolizumab pro-
vided positive clinical outcomes. More than 72% of patients in this trial were resistant or
refractory to anti-PD-1 and PD-L1 therapy, and the majority of patients had PD-L1-negative
tumors, which makes monotherapy with anti-PD-1 and PD-L1 unlikely to provide sig-
nificant benefit [159]. This study showed that the combination of anti-PD-L1 antibody
atezolizumab with the A2AR antagonist ciforadenant increased recruitment of cytotoxic
T cells to tumor regions, and increased the diversity of T-cell receptors, which together
prolonged overall survival of patients [159].

An ongoing phase I/II trial (NCT02903914) is targeting the arginine pathway with
arginase inhibitor CB-1158 alone or in combination with anti-PD-1 antibody pembrolizumab.
Since arginine is required for the activation and proliferation of T cells, treatment with
arginase inhibitor is a potential strategy to provide bioavailable arginine for T cells. The
preliminary results show that >90% of arginase is inhibited and arginine levels increase
up to 4-fold [160]. The increased arginine levels are able to trigger immune responses
and might synergize with ICIs. Several other trials are also testing the efficacy of various
metabolic interventions in combination with ICIs (Table 1).
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Table 1. Ongoing clinical trials targeting metabolic circuits in combination with immune checkpoint inhibitors.

Metabolic Targets Immune Checkpoint
Inhibitors Cancer Types Phase Status Clinical Trial

Identifier

Arginine pathway inhibitors

L-NMMA
(NO synthase inhibitor) Pembrolizumab TNBC II Not yet recruiting NCT04095689

CB-1158
(Arginase inhibitor) Pembrolizumab Solid tumors I/II Active, not recruiting NCT02903914

IDO inhibitors

Epacadostat
(INCB024360;

IDO-1 inhibitor)

Pembrolizumab HNSCC III Active, not recruiting NCT03358472

Pembrolizumab RCC III Active, not recruiting NCT03260894

Pembrolizumab GIST II Active, not recruiting NCT03291054

Pembrolizumab MIBC II Not yet recruiting NCT03832673

Pembrolizumab Thymic cancer II Active, not recruiting NCT02364076

Pembrolizumab Metastatic pancreatic cancer II Recruiting NCT03006302

Pembrolizumab Sarcoma II Active, not recruiting NCT03414229

Ipilimumab +
Nivolumab Solid tumors I/II Active, not recruiting NCT03347123

Linrodostat
(BMS-986205;

IDO-1 inhibitor)

Nivolumab Melanoma III Active, not recruiting NCT03329846

Nivolumab Endometrial cancer II Recruiting NCT04106414

Nivolumab HNSCC II Recruiting NCT03854032

Nivolumab HCC I/II Recruiting NCT03695250

Nivolumab NSCLC I/II Recruiting NCT02658890

Nivolumab Solid tumors I/II Active, not recruiting NCT03792750

PD-L1/IDO peptide vaccine Nivolumab Melanoma I/II Recruiting NCT03047928

KHK2455
(IDO-1 inhibitor) Avelumab Bladder cancer I Recruiting NCT03915405

Inhibitors of COX enzymes

Aspirin
(COX-1 and COX-2 inhibitor)

Atezolizumab Ovarian cancer II Active, not recruiting NCT02659384

Avelumab TNBC II Not yet recruiting NCT04188119

Ipilimumab +
Pembrolizumab Melanoma II Active, not recruiting NCT03396952

Pembrolizumab CRC II Recruiting NCT03638297

Pembrolizumab Cervical/Uterine cancer II Recruiting NCT03192059

Celecoxib
(COX-2 inhibitor)

Pembrolizumab Brain metastasis from TNBC
or HER2+ breast cancer II Not yet recruiting NCT04348747

Nivolumab Solid tumors II Not yet recruiting NCT03864575

Grapiprant
(EP4 antagonist)

Pembrolizumab NSCLC I/II Recruiting NCT03696212

Pembrolizumab Microsatellite stable CRC I Recruiting NCT03658772

Glutamine and glutamate pathway inhibitors

Telaglenastat
(CB-839;

glutaminase inhibitor)

Pembrolizumab NSCLC II Recruiting NCT04265534

Nivolumab Melanoma or NSCLC I/II Active, not recruiting NCT02771626

DRP-104
(glutamine antagonist) Atezolizumab Solid tumors I/II Recruiting NCT04471415

IPN60090
(glutaminase inhibitor) Pembrolizumab Solid tumors I Recruiting NCT03894540
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Table 1. Cont.

Metabolic Targets Immune Checkpoint
Inhibitors Cancer Types Phase Status Clinical Trial

Identifier

Adenosine pathway inhibitors

Oleclumab
(MEDI9447;

anti-CD73 antibody)

Durvalumab Luminal B breast cancer II Active, not recruiting NCT03875573

Durvalumab TNBC I/II Recruiting NCT03616886

AB928
(A2AR and A2BR antagonist) Atezolizumab CRC I/II Recruiting NCT03555149

Ciforadenant
(CPI-444;

A2AR antagonist)
Atezolizumab RCC I Recruiting NCT02655822

AZD4635
(A2AR antagonist) Durvalumab NSCLC or CRC I Active, not recruiting NCT02740985

IPH5201
(Anti-CD39 antibody) Durvalumab Solid tumors I Recruiting NCT04261075

LY3475070
(CD73 inhibitor) Pembrolizumab Advanced cancers I Recruiting NCT04148937

CPI-006
(Anti-CD73 antibody) Pembrolizumab Advanced cancers I Recruiting NCT03454451

EOS100850
(A2AR antagonist) Pembrolizumab Solid tumors I Recruiting NCT03873883

Inhibitors of glucose metabolism

Metformin
(Multiple effects of
glucose metabolism)

Pembrolizumab HNSCC II Recruiting NCT04414540

Nivolumab NSCLC II Active, not recruiting NCT03048500

Durvalumab HNSCC I Recruiting NCT03618654

Pembrolizumab Melanoma I Recruiting NCT03311308

Inhibitors of lipid metabolism

TPST-1120
(PPARα antagonist) Nivolumab Advanced cancers I Recruiting NCT03829436

TNBC, triple-negative breast cancer; HNSCC, head and neck squamous cell carcinoma; RCC, renal cell carcinoma; GIST, gastrointestinal
stromal tumor; NSCLC, non-small cell lung cancer; MIBC, muscle-invasive bladder cancer; HCC, hepatocellular carcinoma; CRC,
colorectal cancer.

4. Targeting Metabolic Pathways in Combination with FDA-Approved ICIs and Its
Underlying Mechanisms

Under harsh conditions of the TME nutrients are limited and cancer cells and immuno-
suppressive cells secrete cytokines and metabolites that can modulate the metabolic and
functional activities of immune cells. The immunosuppressive TME imposes metabolic
stresses on immune cells, dampening their capacity to eradicate cancer cells [161]. To
date, only a small proportion of patients have shown durable responses to ICI therapy,
which may partly result from the dysregulation of immune-metabolism [154]. In order
to improve the response rate to ICIs, potential therapies aim to block the suppressive
signals from immunosuppressive cells or to reactivate immune cells so that they regain
anti-tumor functions [161]. Below, we discuss metabolic pathways that have been targeted
in combination with FDA-approved ICIs, and propose potential underlying mechanisms in
cellular metabolic rewiring. We attempt to provide a better understanding of the metabolic
targets that may have synergistic effects with ICIs (Figure 2).
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Figure 2. Targeting immuno-metabolic pathways to enhance the efficacy of immune checkpoint inhibitors. IDO-1, in-
doleamine 2,3-dioxygenase 1; COX, cyclooxygenase; ARG1, arginase 1; PPARα, proliferator-activated receptor α; A2AR,
adenosine A2A receptor; B7, B7-1 (CD80) and B7-2 (CD86) (not shown in Figure 2); PD-1, programmed cell death-1; PD-L1,
programmed death-ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; MHC-I, major histocompatibility com-
plex class I; MHC-II, major histocompatibility complex class II; TCR, T cell receptor; GLS, glutaminase; OXPHOS, oxidative
phosphorylation; Treg, regulatory T cell; DC, dendritic cell; NK, natural killer cell; TAM, tumor associated macrophage.

4.1. Targeting the Arginine Pathway

The metabolism of arginine plays a crucial role in the activation of T cells and regulates
immune responses [97,106]. Arginase inhibitors may prevent arginine from degradation
via inhibiting ARG1 that expressed mainly by DCs, TAMs, and MDSCs, leaving adequate
amounts of arginine for T cell activation. It has recently been shown that CB-1158 (arginase
inhibitor) can rescue the suppressed proliferation of T cells mediated by myeloid cells
in vitro [162], and can increase the number of tumor-infiltrating CD8+ T cells and NK
cells, reducing tumor growth, in vivo [162]. CB-1158 is currently under investigation in
combination with pembrolizumab for the treatment of solid tumors (NCT02903914), and a
possible underlying mechanism is that bioavailable arginine is scarce in the TME, limiting
the efficacy of ICIs. With the use of CB-1158, it may provide bioavailable arginine for T cell
activation, and the combination use of pembrolizumab can block PD-1 and PD-L1 ligation,
thus abrogating inhibitory signals, which together may enhance T cell-mediated anti-cancer
activities. Additionally, the inhibition of NOS may block the immunosuppressive activities
in MDSCs and enhances anti-tumoral effects [163], indicating a NOS inhibitor may impede
the production of NO in MDSCs, and might enhance the efficacy of ICIs since T cell is less
suppressed and can exert effector functions. Currently, a NOS inhibitor, NG-Monomethyl-
L-Arginine (L-NMMA), in combination with pembrolizumab, is being explored for the
treatment of triple-negative breast cancer (NCT04095689).
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4.2. Targeting the Tryptophan Pathway

Tryptophan can be metabolized into kynurenine by the enzyme IDO, and correlates
with immunosuppressive properties [91–93]. A study has demonstrated that silencing
IDO in DCs by small interfering RNA (siRNA) increases T cell proliferation and CD8+ T
cell activity, while decreasing the number of Tregs [164]. The immunosuppressive effects
on T cells exerted by TAMs are blocked via pre-treating IDO inhibitors to TAMs [165].
Importantly, a recent study demonstrated that with the administration of IDO inhibitors in
combination with ICIs, CD8+ T cells were able to produce IL-2, TNF-α, and IFN-γ signif-
icantly comparing to either ICIs or IDO inhibitor alone, indicating that the combination
treatment of IDO inhibitor with ICIs may enhance polyfunctional T cells in the TME [166].
The combination use of IDO inhibitor with ICIs significantly attenuates tumor growth,
mainly via reactivation of T cells, while also increasing IL-2 production and proliferation of
CD8+ T cells [166]. Therefore, targeting tryptophan metabolism with IDO inhibitors may
reduce suppressive signals from immunosuppressive cells, and restore T cell-mediated
anti-tumor responses. Several ongoing trials are targeting tryptophan metabolism with
ICIs for the treatment of certain cancers (Table 1).

4.3. Targeting the Cyclooxygenase and PGE2 Pathway

Arachidonic acid is oxidized into PGE2 by the cyclooxygenase (COX) enzymes, and
can regulate both innate and adaptive immunity [137]. COX-2 has been found to be
overexpressed in many types of cancers, and to correlate with the promotion of carcinogen-
esis [167]. It has been reported that high levels of COX-2 in TAMs is crucial in maintaining
M2-like phenotype, and can induce COX-2 expression in cancer cells, which promotes
proliferation and survival of cancer cells [168]. In addition, cancer-derived PGE2 can
suppress the cytotoxicity and differentiation of NK cells [169], while also dampening NK-
mediated recruitment of DCs [170]. Moreover, the presence of COX-2 in TME can increase
the accumulation of Tregs [171], while Tregs can also express COX-2 and produce PGE2,
which is required to induce Foxp3 expression in Tregs and further inhibit T cell-mediated
responses [172]. Together, the COX-2 and PGE2 pathway can promote immunosuppressive
signals in TME and boost tumor promotion. Thus, inhibition of the COX-2 and PGE2 axis
is a potential therapeutic target (Figure 2).

COX enzyme inhibitors such as aspirin and celecoxib may serve as anti-inflammatory
agents that interfere with COX-2 mediated inflammatory responses in cancer [173]. It has
been reported that administration of selective COX-2 inhibitor, celecoxib, can suppress
macrophage infiltration and tumorigenesis [174]. They also found out that administration
of celecoxib significantly decrease CXC chemokine ligand 2 (CXCL2) and N-cadherin
expression in gastric tumor mouse model [174], indicating the use of COX enzyme inhibitor
may suppress tumor engraftment and metastasis. Additionally, it has been shown that
COX enzyme inhibitors in combination with anti-PD-1 treatment exhibit a synergistic effect
in reducing tumor growth compared with either COX enzyme inhibitors or anti-PD-1
antibodies alone [175]. Taken together, these findings suggest that the combination of COX
enzyme inhibitors with ICIs could be a therapeutic strategy for cancer treatment. Currently,
these combination therapies are under examination in several clinical trials (Table 1).

4.4. Targeting the Glutamine and Glutamate Pathway

Glutamine can be converted to glutamate by GLS, and can be harnessed by can-
cer cells to promote proliferation [117,118]. A recent study in a tumor-bearing mouse
model showed that restriction of glutamine could efficiently eradicate tumors and pro-
long survival via increasing CD8+ T cell activity [176]. GLS inhibitors including BPTES
(bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide) and CB-839 have also been
demonstrated to suppress tumor growth in liver and breast cancer mouse models [177,178].
Additionally, GLS inhibitor BPTES can impeded M2-related gene expression in IL-4-treated
macrophages [124]. Another study showed that combination treatment of GLS inhibitors
with ICIs significantly decreased tumor volume in an ICI-resistant-tumor mouse model,
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and the possible underlying mechanism may via enhancing CD8+ T cell activities and by
decreasing ARG1-expressing myeloid cells [179]. This study suggests that GLS inhibitors
can enhance the efficacy of ICIs, by reinforcing the cytotoxic activities of CD8+ T cells
and reshaping the immunosuppressive TME. There are several ongoing clinical trials that
are investigating GLS inhibitors combined with ICIs for the treatment of solid tumors or
advanced tumors (Table 1).

4.5. Targeting the Adenosine Pathway

Ectonucleotidases CD39 and CD73 both engage in the adenosinergic pathway [180],
and have been used as prognostic biomarkers in several types of cancers [181]. Tregs,
macrophages and DCs are found to co-express CD39 and CD73 [182,183], enabling them
to generate adenosine. It has been reported that extracellular levels of adenosine in the
tumor environment are able to suppress anti-tumor immune responses [184]. In addition,
the generation of adenosine via CD39 and CD73 in cancer cells may contribute to the
recruitment of TAMs, and since TAMs also express elevated CD39 and CD73 this results in
amplifying the immunosuppressive adenosine level [185]. The activation of A2AR or A2BR
may also result in immunosuppression [186]. Together, the adenosinergic pathway appears
to regulate immune responses and create an immunosuppressive TME [181,184–186].
Therefore, inhibiting the adenosine pathway might result in a less immunosuppressive
TME and may boost immune responses (Figure 2).

It was recently shown that inhibition of CD39 enhances the activity of NK cells
and inhibits cancer cell metastasis [187]. Likewise, co-inhibition of CD73 and A2AR in
leukocytes was shown to limit tumor initiation, growth, and metastasis in a tumor-bearing
mouse model [188]. Another study has demonstrated potential therapeutic effects of
combining CD39 inhibitors with ICIs, showing a significant decrease in tumor size and
prolonged survival in a melanoma mouse model [189]. Similarly, ICI treatment showed
a positive therapeutic response in a CD39-deficient tumor-bearing mouse model [190].
Recently, the A2AR antagonist, ciforadenant (CPI-444), was administrated in combination
with ICIs to different types of tumor mouse models [191]. The combination treatment of
ciforadenant with anti-PD-1 improved tumor regression compared to treatment with anti-
PD-1 alone [191], and one possible mechanism may due to a decrease in PD-1 expression
in A2AR antagonist treated CD8+ T cells since decreasing PD-1 expression in CD8+ T cells
may lower the threshold and increase the sensitivity of anti-PD-1 therapy [192]. A clinical
trial combining ciforadenant with atezolizumab is now ongoing (NCT02655822). Many
other adenosine-associated inhibitors combined with ICIs are also being tested (Table 1).

4.6. Targeting Glucose Metabolism

Glucose is largely consumed by cancer cells and may impede T cell-mediated anti-
cancer activities [20]. Recently, researchers have discovered some types of cancers may
upregulate OXPHOS to promote metastasis and progression [89,90]. Metformin, a widely
prescribed drug for type II diabetes, is also considered as an OXPHOS inhibitor [193]
that can stimulate the AMP activated protein kinase (AMPK) signaling pathway while
inhibiting mTOR, and consequently exhibiting anti-tumorigenic effects [194,195]. Met-
formin inhibited tumor growth in a colorectal cancer patient-derived xenograft mouse
model [196], via an increase in apoptotic Bax levels and a decrease in anti-apoptotic Bcl-2
levels [197]. Interestingly, metformin also inhibits oxygen consumption by cancer cells,
thereby increasing the availability of oxygen in cancer regions and reducing intratumoral
hypoxia [198]. The capacity of CD8+ T cells to secrete effector cytokines is enhanced by
administration of metformin with anti-PD-1 compared with either metformin or anti-PD-1
alone [198]. Therefore, metformin combined with ICIs may have synergistic effects in
stimulating T cell functions and eradicating cancer cells. Several clinical trials are now
testing metformin in combination with ICIs to see if this can yield better clinical outcomes
than monotherapy (Table 1).
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4.7. Targeting Lipid Metabolism

FAS and FAO are both important factors that engage in the lipid metabolism and
may exert regulation of immune cells [125,126]. Inhibition of FASN has been observed to
upregulate expression of CD36, which can compensate for the anti-tumor effects of FASN
inhibition [199]. Therefore, inhibiting CD36 should improve the efficacy of FASN-targeted
therapy. A recent study shows that genetic deletion of CD36 in Tregs can shift their metabolic
profile from OXPHOS to glycolysis, and can induce apoptosis of intratumoral Tregs [133].
They also demonstrate that in a melanoma-bearing mouse model combination treatment
of anti-CD36 antibody combined with anti-PD-1 shows a stronger capability to restrict
cancer growth compared with either anti-CD36 or anti-PD-1 alone [133]. Administration
of anti-CD36 with ICIs has not yet been studied in clinical trials. Importantly, the ligand-
activated nuclear transcription factor PPARα has been shown to regulate lipid metabolism
and FAO [200], thus, a selective PPARα antagonist may be effective in shifting intracellular
metabolism from FAO to glycolysis [201], skewing FAO-dependent M2 macrophages
toward an M1 phenotype [127]. The PPARα antagonist TPST-1120 in combination with
nivolumab is being studied for the treatment of advanced cancers (NCT03829436).

5. Conclusions

The application of ICIs has revolutionized clinical treatments for cancer patients,
however only a subset of recipients has shown durable responses to ICIs, and some
patients develop resistance. The lack of response to ICI treatment may be the result of
dysfunction of cellular metabolism, as more and more researches have demonstrated
correlation between cellular metabolism and resistance. As shown in Figure 1, immune
cells are forced to undergo metabolic reprogramming due to environmental stresses. These
metabolic alterations may further create an immunosuppressive TME, but could also
impede anti-tumor responses. In order to block cancer-induced metabolic reprogramming,
several ongoing clinical trials are targeting different metabolic pathways in combination
with ICIs (Table 1). As more findings suggest that metabolic intervention could be an
effective strategy for improving the efficacy of ICIs, it has become increasingly important
to better understand cellular metabolism in the TME in order to overcome ICI resistance.
In this review, we discuss the metabolic features of immune cells within the TME (Figure 1),
and list several ongoing clinical trials of ICIs in combination with metabolic interventions
(Table 1). We also propose possible underlying mechanisms of metabolic inhibitors to
reprogram the immunosuppressive TME (Figure 2). With the map of cellular metabolic
interactions in immune cells and cancer cells, we have attempted to provide a better
understanding of the metabolic crosstalk in the TME, with the hope that this will aid in
overcoming ICI resistance.
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