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Collaborative state recognition is a critical issue for physical human–robot

collaboration (PHRC). This paper proposes a contact dynamics-based state

recognition method to identify the human–robot collaborative grinding state.

The main idea of the proposed approach is to distinguish between the

human–robot contact and the robot–environment contact. To achieve this,

dynamic models of both these contacts are first established to identify the

di�erence in dynamics between the human–robot contact and the robot–

environment contact. Considering the reaction speed required for human–

robot collaborative state recognition, feature selections based on Spearman’s

correlation and random forest recursive feature elimination are conducted to

reduce data redundancy and computational burden. Long short-termmemory

(LSTM) is then used to construct a collaborative state classifier. Experimental

results illustrate that the proposedmethod can achieve a recognition accuracy

of 97% in a period of 5ms and 99% in a period of 40 ms.

KEYWORDS

contact dynamics, online classification, collaborative grinding, physical human–robot
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Introduction

Human–robot collaboration has attracted the attention of researchers (Golz et al.,

2015). Human–robot contact recognition is one of the critical issues for physical

human–robot collaboration (PHRC) (Cherubini et al., 2016; Labrecque et al., 2017).

Previous studies have mainly focused on the detection of a collision between humans

and a robot (Billard and Kragic, 2019). Many types of observers have been proposed,

including torque observer, energy observer, momentum observer, state observer based

on electromyography (EMG) or touch, etc. (Haddadin et al., 2017; Losey et al., 2018).

Different types of contact occur during human–robot collaboration (e.g., intentional

interaction and accidental interaction), and early collision detection is not able to identify

the different types of contact (Althoff et al., 2012). Intentional human interaction expects

an active robot collaboration, while accidental collision calls for an immediate halt of the

machine (Kang et al., 2019). In view of this, scholars attempt to identify the intention of

physical human–robot interaction (PHRI) (Olivares-Alarcos et al., 2019). Many studies
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focused on identifying the occurrence, position, and direction

of the interaction, without discussing the difference in

dynamics between the human–robot interaction and the robot–

environment contact. Without identifying the difference in

dynamics between the human–robot contact and the robot–

environment contact, it is difficult to precisely identify whether a

robot is in contact with the environment or a human, especially

when a robot is in contact with both the environment and a

human in a similar direction.

This paper proposes a dynamics-based approach to identify

the PHRC state. The main idea of the proposed approach is

to analyze the dynamics of PHRC and find out an appropriate

dynamic feature to classify the human–robot collaborative state.

For this purpose, robotic grinding is selected as an example of

PHRC and the corresponding dynamic model is established.

The inputs of a classifier are generated in accordance with

the dynamic model. A human–robot collaborative grinding

state classifier is constructed based on long short-term memory

(LSTM). To reduce data redundancy and increase reaction

speed, feature selections based on Spearman’s correlation and

random forest recursive feature elimination are performed. The

main contributions of this project are:

• Dynamic characteristics of the PHRC are used to generate

features for PHRC grinding state recognition.

• Feature selections based on Spearman’s correlation and

random forest recursive feature elimination are performed

to reduce data redundancy and increase reaction speed.

LSTM is used to design a collaborative state classifier.

This paper is organized as follows. Section Related works

presents related research. Section Human–robot collaborative

grinding model presents models of PHRC grinding. Section

Online collaborative state classifier presents an online

human–robot collaborative grinding state classifier. Section

Experimental validation illustrates experimental results. Section

Conclusion presents conclusions to this paper.

Related works

Many approaches have been proposed to identify human

intentions during human–robot collaboration, including vision-

based classifiers, EMG-based classifiers, contact force-based

classifiers, and multimodal fusion-based classifiers (Ajoudani

et al., 2018). Some scholars attempted to design a state observer

to detect the collision between a human and a robot (Zhou

and Wachs, 2018; Zhang et al., 2021). These methods focused

on identifying the occurrence and position of the human–

robot contact. Cherubini et al. (2016) elucidated that the

alternation of active and passive behaviors occurs frequently

during human–robot collaboration, which requires a robot to

actively collaborate with humans. The premise of active robot

collaboration is the accurate and quick realization of human

intentions (Villani et al., 2018; Veselic et al., 2021). In view of

this, many scholars began to study the intention of a human–

robot interaction (Veselic et al., 2021). Lanini et al. (2018) used

the arm position and interaction force data during human–

human collaboration to develop a multiclass classifier, enabling

a robot to recognize human intentions during the collaborative

task of carrying an object. Golz et al. (2015) acquired a set of

human–robot contact features by analyzing the physical contact

model and the real impact process. Using these data, an SVM-

based classification system was constructed to identify intended

and unintended human–robot contact. However, their contact

model ignores damping, stiffness, and kinetic energy. Therefore,

their classifier is only suitable for static or low-speed robotic

tasks. Considering the difficulties in obtaining an accurate

human–robot interaction model, Li and Ge (2014) used a neural

network to construct an online intention estimation approach

to estimate human motion intentions. Relying on human force

and pose measurements, Cremer et al. (2020) proposed a

neural network-based estimation method to predict human

motion intentions. Yan et al. (2019) proposed an intentional

classification model based on the radial basis function neural

network, which can deduce human intentions, according to

the dynamic behaviors of humans and robots within previous

collaboration tasks.

Apart from the human–robot interaction, the robot–

environment contact may occur during PHRC. It is difficult to

recognize the human–robot contact when a robot is performing

a contacting task. To address this, Lippi and Marino (2020)

constructed a filter based on the robot–environment contact

model to filter out the robot–environment contact force and to

detect additional forces, e.g., human–robot contact force. The

advantage of their method is that even if the robot is in contact

with both the environment and humans in a similar direction,

the human–robot contact can be recognized. However, this

approach requires that the robot–environment contact force

should be known in advance and the force fluctuation should

be limited. Designing a human–robot collaboration dynamics-

based classifiermay be a viable way to obtain a universal human–

robot collaborative state classifier.

Human collaborators always change their limb impedance

or stiffness during human–robot collaboration. Upon this

knowledge, Yu et al. (2020) used the least squares method

to learn the impedance of the human body. Their study

only focused on the adjustment of robot impedance control

parameters to achieve collaboration compliance without

discussing the value of human body dynamics for PHRI

state recognition. Geravand et al. (2013) considered that an

unexpected collision between a human and a machine can

be defined as a hard contact between rigid bodies, while

the human–robot contact can be defined as a soft contact.

According to their analysis, a hard contact results in a high-

frequency signal and a soft contact results in a low frequency
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signal. Based on this, Geravand designed a high-low pass

filter to identify human–robot contact intention. Furthermore,

Losey et al. (2018) clarified that human intentions during the

human–robot contact are continuous and time-varying, which

result in a non-linear contact force.

FIGURE 1

Human–robot collaborative grinding.

Up to now, only a few studies have focused on distinguishing

between the human–robot and the robot–environment contact.

The main issue is the impact of the fluctuation of contact force

between the robot and the environment on the recognition

of the human–robot contact. To address this problem, this

paper proposed a dynamics-based approach for distinguishing

the human–robot contact and the robot–environment contact.

Experimental set-up is illustrated in Figure 1. The human–robot

contact and the robot–environment contact occur at the same

time in the similar direction.

Human–robot collaborative grinding
model

Robot grinding dynamic model

Robot grinding dynamic model can be expressed as,

MẌ + CẊ + KX = G(X, u)+ Fc + Fr (1)

where Fc is the grinding force; M, C, and K are the system

mass, damping and stiffness matrices; are the grinding depth and

FIGURE 2

Collaborative state labeling. (A) Robotic grinding states and (B) human–robot collaborative grinding states.

TABLE 1 Feature of each state.

State State feature

Tool idling No contact force; a periodic force fluctuation is caused by cutter eccentricity

Cutting-in Extrusion deformation and force between workpiece and cutter increase dramatically. Since contact is between rigid

workpiece and flexible grinding tool with constant stiffness, the force curve is linear.

Deformation release Cutting begins and the deformation is still large. Extrusion force decreases as material of workpiece being removed

Stable cutting Contact force between workpiece and cutter is stable, as feed rate is equal to removal rate.

Human–robot collaborative grinding Human–robot interaction force occur, contact force changes non-linearly
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FIGURE 3

Schematic diagram of classification process.

FIGURE 4

Robotic grinding system.

its first and second derivatives; u is motor voltage; is the contact

force caused by motor voltage and grinding depth; Fr is external

disturbance force; and Fris robotic grinding force, which can be

expressed as (Chen et al., 2019).

Fc = Fd + Fg (2)

where Fd is the deformation force caused by compression

between a grinding tool and a workpiece; Fg is cutting force,

which is affected by the grinding depth, feed rate, and rotation

speed of a grinding tool. As frequent contacts between a grinding

tool and a workpiece occur during robotic grinding, it is not

efficient to construct a robot–environment contact model based

on the additional contact constraint method. Therefore, the

continuous contact force model based on the Hertz contact

theory is used in this paper, which can be expressed as (Zhang

et al., 2020).

Fg = Keσ
α(σ ≥ 1) (3)

where σ is normal embedding depth; α is exponential

coefficient of deformation; and Ke is equivalent stiffness.

Assuming that the main deformation is on a grinding tool. The

grinding tool deformation has a relationship with the removal

rate and feed rate, which can be expressed as,

σ =

∫

(Ẋ(t)− Ẋr)dt (4)

where Ẋ is the feed rate and Ẋr is the removal rate. The

cutting force produced by the revolution of a grinding tool can

be regarded as a periodic force:

Fd(t)=Fd(t + Tw) (5)

where Tw=
T
b

is the cutting period of a blade, Tw=
1
vw

is

the rotation period of a grinding tool, and vw is the rotation

speed of a grinding tool. According to the traditional grinding

force formula, grinding force is influenced by cutting depth,
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TABLE 2 Characteristics of each state.

State Force mean amplitude Force fluctuation Equivalent stiffness

Tool idling 0 Little No change

Cutting-in Dramatical and linear increase Large No change

Deformation release Considerable and non-linear decrease Large Regular change

Stable cutting Little fluctuation Little No change

Human–robot collaborative grinding Large fluctuation Large Irregular change

feed speed, tool rotation speed, and grinding area, which can be

expressed as,

Fd(t) = FpX
αẊβVw

γ Sδ = Fd(X, Ẋ,Vw, S). (6)

Combining Equations (1)–(6), the robotic grinding model

can be expressed as,

MẌ + CẊ + KX = G(X, u)+ Keσ
α + Fd(X, Ẋ,Tw, S)+ Fr (7)

A dynamic model of human–robot
collaborative grinding

Human collaborators always adjust theirmuscles and change

the stiffness or impedance of their body to control contact

force, achieving a compliance collaboration. The human–robot

collaborative grinding model can be expressed as,

MẌ + CẊ + KX = G(X, u)+ Keσ
α + Fd(X, Ẋ,Tw, S)

+Fr + Fh (8)

where Fh is an external force exerted by humans.

Considering the human arm as a spring-damping system and Fh
can be calculated by,

Fh = −Dh(t)ẋ(t)+ Kh(t)(xd(t)− x(t)) (9)

where xd is the desired location expected by a human

collaborator, Dh and Kh are the damper and stiffness matrices

of the human arm and may vary or fluctuate during human–

robot collaboration. Assuming that Dh and Kh non-linearly and

continuously fluctuate within a bounded range, the fluctuation

of Fh is also non-linear, continuous, and bounded. Therefore,

1Fh, 1Ḟh, and 1F̄h are used to identify the human–robot

interaction state.

1Fh = −1Dh(t)ẋ(t)+ 1Kh(t)(xd(t)− x(t)) (10)

1F̄h=
(

Mean1Fh
)

max −
(

Mean1Fh
)

min (11)

where represents the force slope caused by 1Dh1Kh, which

is non-linear and continuous and1F̄h represents themean value

range of slope fluctuation.

Problem description

According to Equation (10) and the human–robot

collaborative grinding process, five states can be defined,

namely, tool idle state, cutting-in state, deformation release

state, stable cutting state, and human–robot collaborative

cutting state. These states are shown in Figures 2A,B.

To precisely identify the human–robot collaborative state,

it is essential to analyze the characteristics of each state. The

first step is to clearly describe the signal characteristics of each

collaborative grinding state. According to the discussion above,

the definition of a feature of each state is presented in Table 1.

According to the features of each state as presented in

Table 1, the characteristics can be concluded.

After concluding the characteristics of each state, the

next step is to construct a framework for collaborative

state classification.

Online collaborative state classifier

Compared with offline classification, an online classifier is

required to achieve quick and accurate classification with the

least data and computation.More precisely, a collaborative robot

requires a reaction at the millisecond level. Therefore, the issues

need to be considered are classification accuracy, reacting speed,

and data amount.

Overall process and feature acquisition

In this section, an overall structure of the human–robot

collaborative grinding state classification is introduced. To

develop this scheme, two kinds of grinding data are collected

by the force sensor installed between the robot end effector and

a grinding tool, including robotic grinding data and human–

robotic collaborative grinding data.

Classification scheme

An overall structure of the proposed online human–robot

collaborative grinding scheme is shown in Figure 3. Robotic

grinding force and human–robot contacting force data are first
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FIGURE 5

Recursive feature elimination based on random forest (RF-RFE) algorithm flow.

FIGURE 6

Long short-term memory- (LSTM-) based human–robot collaborative grinding state classifier.

FIGURE 7

LSTM fully convolutional network (FCN-) based human–robot collaborative grinding state classifier.

collected, labeled, and divided into segments. The force data

segments are then used to extract the features of different

collaborative states. Feature selections are conducted after

feature extraction to reduce data redundancy and increase

reaction speed. The selected features are then put into an LSTM-

based classifier to train the classifier model. Model parameters

are later used to construct an online classifier of the PHRC

grinding state.
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TABLE 3 Long short-term memory- (LSTM-) based physical human–robot collaboration (PHRC) state recognition (Group 1 features; %).

Length (ms)/feature 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13

5 84.7 84.9 84.4 84.0 83.6 86.2 88.3 90.0 90.1 90.8 90.7 90.9

10 89.2 89.2 90.1 90.7 91.0 91.2 91.1 92.5 93.0 93.1 93.4 93.8

20 90.9 91.2 91.1 92.1 92.4 93.1 93.0 94.5 94.4 94.2 94.2 94.5

30 92.7 93.1 92.9 93.2 93.6 94.7 94.2 95.5 96.1 96.9 96.4 96.7

40 93.3 93.5 93.9 94.2 94.7 95.4 95.7 96.6 97.0 97.4 97.7 97.9

50 94.9 95.2 95.1 95.4 96.0 96.8 96.2 97.3 98.0 98.6 98.4 98.4

60 95.0 95.6 95.7 95.6 96.2 96.8 97.5 97.7 98.3 98.4 99.1 99.4

70 95.1 95.6 96.1 96.0 96.7 97.1 97.7 98.1 98.7 99.0 99.3 99.3

80 96.3 96.5 97.1 97.6 98.1 98.5 98.1 97.9 99.0 99.1 99.2 99.5

90 96.5 97.1 97.4 97.5 98.0 98.3 98.4 98.9 99.0 99.4 98.9 99.0

100 96.3 96.9 97.8 97.8 97.6 98.6 98.7 98.9 99.2 99.1 99.4 99.7

TABLE 4 LSTM-based PHRC state recognition (Group 2 features; %).

Length (ms)/feature 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13

5 95.4 95.5 95.6 95.5 95.7 95.6 96.0 96.1 96.4 96.0 96.2 96.1

10 96.0 95.7 95.7 96.0 95.7 95.7 96.1 96.9 96.8 96.5 97.0 96.8

20 96.0 95.8 96.5 96.2 96.2 96.5 96.1 96.2 96.3 96.4 97.3 97.3

30 95.9 96.5 97.0 97.2 97.4 97.5 97.4 97.2 97.6 97.3 98.8 98.1

40 97.2 97.6 97.8 97.6 97.6 97.9 97.5 98.2 98.1 97.7 99.0 98.7

50 98.0 98.4 98.2 98.4 98.2 98.4 98.3 98.4 98.6 98.7 99.1 99.1

60 98.2 98.1 98.4 98.1 97.9 98.1 97.9 98.4 98.2 98.5 98.7 99.2

70 98.2 98.1 98.1 98.5 98.4 98.4 98.1 98.8 98.9 98.2 98.3 99.4

80 98.1 98.4 98.4 98.3 98.2 98.3 98.4 98.5 98.5 98.6 98.5 99.3

90 98.3 98.4 98.4 98.4 98.4 98.4 98.3 98.2 98.3 98.3 99.5 99.6

100 98.4 98.4 98.4 98.4 98.5 98.4 98.1 98.0 98.5 98.6 99.6 99.6

Data collection

To construct a human–robot collaborative grinding data

set, a six-degrees-of-freedom Yaskawa robot grinding system,

as shown in Figure 4, is constructed. A six-degree force sensor

is mounted between a grinding tool and the robot end effector

to collect contact force data during human–robot collaborative

grinding. The rotation speed of a grinding tool is 2,000 rpm.

During robotic grinding, an experimenter exerts intentional

contact on the clamping position of a grinding tool. Different

PHRC states are conducted to obtain the data set.

Signal segmentation and sample labeling

After collecting human–robot collaborative grinding force

signals, segmentation is performed to split force signals into

segments with a fixed length l. The segment should be long

enough to contain sufficient information to classify states and

short enough to achieve a fast reaction. Therefore, the demand

for reaction accuracy and speed influences the determination

of l. The classification of experiments with different values of

l is to explore the impact of l value on classification accuracy

and speed. According to grinding tool rotation speed and the

characteristics presented in Table 2, 11 values of l are set, which

are 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100ms. In the

segmentation process, invalid data caused due to the damage in

the storage or an unrecognizable PHRI signal are eliminated. To

avoid the deviation in results caused by uneven data distribution,

the data were homogenized. Finally, 14,300 data are obtained

and used for collaborative state classification experiments.

Feature extraction

Time-series signal features can be classified into time

domain and frequency domain features. Time domain features

include mean, variance, average amplitude, energy source, root

mean square, root square amplitude, standard deviation (SD),

peak coefficient, shape coefficient, skewness, pulse factor, margin

factor, kurtosis, etc. Peak coefficient, shape coefficient, skewness,

impulse factor, margin factor, and kurtosis are dimensionless

time domain characteristics. Common frequency domain

features include barycentric frequency, mean square frequency,
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TABLE 5 LSTM and LSTM-FCN-based PHRC state recognition (Group 3 features; %).

Length (ms) 5 10 20 30 40 50 60 70 80 90 100

LSTM 97.0 97.7 98.0 98.4 98.5 99.2 98.8 98.9 99.0 99.0 99.4

LSTM-FCN 94.7 96.4 96.2 96.6 96.4 96.7 96.7 98.3 98.7 98.7 99.1

LSTM (without feature extraction) 82.5 83.5 83.6 83.3 83.4 84.6 83.7 84.7 83.7 84.0 85.1

root mean square frequency, frequency variance, frequency SD,

etc. Considering the computing time required by frequency

domain feature generation, only 12 time domain features are

preselected for human–robot collaborative state classification,

which are mean value, variance, average amplitude, energy

source, root mean square, root amplitude, SD, shape parameter,

skewness, pulse factor, margin factor, and kurtosis. Apart from

these features, the contact force slope, slope fluctuation range,

and force slope change speed are also considered.

Feature selection

To reduce feature redundancy and select the critical features

for state classification, Spearman’s correlation and recursive

feature elimination based on random forest (RF-RFE) are used

to evaluate the preselected features.

Spearman’s correlation analysis can identify the dependency

between any two features. It is not only suitable for linear

correlation cases but also suitable for non-linear cases. Suppose

there are two sums of eigenvalues:

X = {X1,X2, ...,Xm}

Y = {Y1,Y2, ...,Ym}

where m is the data set size. Spearman’s correlation

coefficient can be calculated by,

ρX,Y =

∑m
i=1 (xi − x̄)

(

yi − ȳ
)

(

∑m
i=1 (xi − x̄)2

∑m
i=1

(

yi − ȳ
)2

)1/2

where . represents the mean value. ρX,Y is the coefficient

describing the dependency of X on Y.

Random forest-based recursive feature elimination

Recursive feature elimination based on random forest is

used to calculate the importance of features and selected

features. The RF-RFE algorithm flow is shown in Figure 5

(Shang et al., 2021). Firstly, random forest model is established,

and feature samples are randomly extracted based on the

Bootstrap sampling technique. The impact of feature samples

on classification accuracy is then evaluated to identify the

importance of the selected feature to state classification. The

least important features are removed, and the evaluation is

reconducted by random forest with the remaining features.

After that, the abovementioned steps are reconducted until the

ranking of state features is obtained.

Deep learning-based classifier

LSTM-based classifier

The structure of an LSTM classifier used in this paper is

shown in Figure 6 and is composed of one LSTM layer and two

sense layers. The LSTM classifier is used to study the relationship

between inputs and collaborative states. Therefore, the inputs of

an LSTM classifier are the selected features mentioned above,

and the output is a label of collaborative states.

LSTM fully convolutional network based
classifier

For a comparison, long short-term memory FCN-based

classifier is also evaluated. The performance of LSTM-FCN has

been verified on public time series data sets (Karim et al., 2018).

Its structure is shown in Figure 7, which is formed by paralleling

LSTM and time convolution models. The selected features are

first input to LSTM and CNNmodels. The LSTMmodel consists

of a dimension transformation layer, an attention layer, a single-

layer LSTM, and a dropout layer, while the CNN model consists

of three time convolution networks with a filter size of 128, 256,

and 128, respectively. Each convolution layer is normalized and

followed by the Relu activation function. Finally, global pooling

is carried out after the final convolution block.

Experimental validation

To verify the validity of the proposed approach, experiments

of collaborative state classification are conducted. The first

step is to extract 15 kinds of features. All the samples are

randomly shuffled and split into a training set and a test set with

the partition ratio 3:1. For classifier training, cross entropy is

selected as loss function when the number of iterations is 2,000.

The learning rate is set to 1e-2, and the reduction speed is 1e-4.

To facilitate discussion, three groups of features are defined:

• Group 1 has domain features only, including contact force

mean, variance, average amplitude, energy source, root

mean square, root square amplitude, SD, peak coefficient,

shape coefficient, skewness, pulse factor, margin factor,

and kurtosis.

• Group 2 consists of the features in Group 1 and contact

dynamic features 1Fh, 1Ḟh, and 1 F̄h.
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FIGURE 8

Confusion matrix (LSTM-based classification; (A) 5ms and (B) 100ms).

• Group 3 consists of the features selected from Group 2.

Collaborative state classification based
on time domain features

Time domain features included in Group 1 are used

as inputs to classify the human–robot collaborative grinding

state without considering the human–robot contact dynamics.

The impact of segment length l and feature numbers

on the performance of collaborative state recognition is

explored. For a convenient discussion, time domain features

are labeled with numbers 1–13 corresponding to contact

force mean, variance, average amplitude, energy source, root

mean square, root square amplitude, SD, peak coefficient,

shape coefficient, skewness, pulse factor, margin factor, and

kurtosis in the time domain features. Experimental results

are presented in Table 3. The vertical axis of a table is

segment length, while the horizontal axis is the time domain

feature number.

It can be observed from Table 3 that, while the segment

length is 5ms, the recognition accuracy of the collaborative

state increases roughly as the number of features increases, from

84.7% at 1–2 to 90.9% at 1–13. It should be noticed that obvious

improvements in accuracy occur at 1–7 and 1–9. Starting with

1–9, although the number of features increases, the accuracy

does not change significantly, which means that features 9–

13 may have a little impact on recognition accuracy. In other

words, some features can be eliminated to reduce feature

redundancy and computing burden. In general, recognition

accuracy increases as the segment length and the feature number

increase, and the earliest 99% occur at 60ms and features 1–12.

Collaborative state classification based
on time domain features and contact
dynamics

Features contained in Group 2 are then used as classifier

inputs for collaborative state recognition. It can be seen that the

highest recognition accuracy at the 5-ms stage is 96.4%, which

is 5% higher than the one presented in Table 4. The highest

recognition accuracy is 99.6% appearing at 100ms and features

1–13, which is almost the same as the one presented in Table 4.

However, the earliest 99% appear at 40ms and 1–12 features,

which is 20ms earlier than the one presented in Table 4. The

contact dynamics features can increase the recognition accuracy

of classifier in the early stage. In other words, contact dynamics-

based classifier can achieve a quick and precise classification

of the human–robot collaborative grinding state with little

computational burden.

Collaborative state classification based
on feature selection

To further reduce computational burden, feature selections

are then conducted based on the Spearman’s correlation
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analysis and recursive feature elimination method. According to

the Spearman’s correlation analysis, the correlation coefficient

between average amplitude and root square amplitude, root

mean square, energy source, and peak coefficient is more

than 0.9. Therefore, the root square amplitude, root mean

square, energy source, and peak coefficient are represented

by the average amplitude. The recursive feature elimination

method based on random forest is also conducted. The

remaining features include mean, variance, average amplitude,

SD, and human–robot contact dynamics. Therefore, the

selected features are mean value, variance, average amplitude,

SD, and human–robot contact dynamic features 1Fh, 1Ḟh,

and 1F̄h. As presented in Table 5, although some features

are removed, an LSTM-based state classifier can achieve

a recognition accuracy of 97.0% in 5ms and 99.4% in

100ms. Compared with the ones presented in Table 5, there

is no considerable decrease in recognition accuracy, which

illustrates that feature selections can reduce computational

burden while ensuring recognition accuracy. The confusion

matrix, as shown in Figure 8, indicates that misclassifications

occur in the distinction of cutting-in and human–robot

contact states.

LSTM-FCN-based state recognition is also carried out

to evaluate the performance of LSTM-based recognition.

Compared with an LSTM-based classifier, the recognition

accuracy obtained by an LSTM-FCN-based classifier is 2%

lower on average from 5 to 60ms. However, the structure

of an LSTM-based classifier is simpler than one of the

LSTM-FCN-based classifiers, which can be observed from

Figures 6, 7. In other words, the number of parameters

is less in an LSTM-based classifier than in LSTM-FCN-

based classifiers. Therefore, while performing online

recognition, an LSTM-based classifier can achieve lower

computing time and cost compared with an LSTM-FCN-

based classifier. Finally, LSTM-based state recognition

experiments without feature extraction are conducted.

As presented in Table 5, the highest recognition accuracy

of the LSTM-based state without feature extraction

is only 85%, which is 14% lower than one of the

proposed approaches.

Conclusion

In this paper, a contact dynamics-based collaborative

state recognition approach for human–robot collaborative

grinding is proposed. Human–robot and robot–environment

contact dynamics are analyzed. The result is used to extract

human–robot collaborative grinding state features. Considering

the computational burden and reaction speed required for

online collaborative state recognition, feature selections based

on the Spearman’s correlation analysis and the recursive

feature elimination method are performed. LSTM is finally

used to construct a collaborative state classifier. Experimental

results illustrate that the proposed approach can achieve a

classification accuracy of 96.7% in 5ms and 99.4% in 100ms.

The limitation of this paper is that the environment and a

workpiece are assumed to be rigid. While a workpiece is

flexible or soft, contact dynamics will be different and difficult

to describe.
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