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Abstract: The 2019 novel coronavirus disease (COVID-19) has become a severe public health and
social problem worldwide. A limitation of the existing literature is that multiple environmental
variables have not been frequently elaborated, which is why the overall effect of the environment
on COVID-19 has not been conclusive. In this study, we used generalized additive model (GAM)
to detect the relationship between meteorological and air pollution variables and COVID-19 in
four urban agglomerations in China and made comparisons among the urban agglomerations. The
four urban agglomerations are Beijing-Tianjin-Hebei (BTH), middle reaches of the Yangtze River
(MYR), Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The daily rates of average
precipitation, temperature, relative humidity, sunshine duration, and atmospheric pressure were
selected as meteorological variables. The PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2),
ozone (O3), and carbon monoxide (CO) contents were selected as air pollution variables. The
results indicated that meteorological and air pollution variables tended to be significantly correlated.
Moreover, the nature of the relationship between severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and meteorological and air pollution variables (i.e., linear or nonlinear) varied with
urban agglomerations. Among the variance explained by GAMs, BTH had the highest value (75.4%),
while MYR had the lowest value (35.2%). The values of the YRD and PRD were between the above
two, namely 45.6% and 62.2%, respectively. The findings showed that the association between SARS-
CoV-2 and meteorological and air pollution variables varied in regions, making it difficult to obtain a
relationship that is applicable to every region. Moreover, this study enriches our understanding of
SARS-CoV-2. It is required to create awareness within the government that anti-COVID-19 measures
should be adapted to the local meteorological and air pollution conditions.

Keywords: meteorological variables; air pollution; COVID-19; urban agglomeration; GAM

1. Introduction

The 2019 novel coronavirus disease (COVID-19) is an infectious disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1,2], and the pandemic
declared by the World Health Organization (WHO) is still an ongoing outbreak glob-
ally [3]. SARS-CoV-2 is highly transmissible and more than 258.85 million people have
been infected, with more than 5 million reported deaths worldwide (https://voice.baidu.
com/act/newpneumonia/newpneumonia/?from=osari_aladin_banner#tab4, accessed on
24 October 2021). Controlling the spread of SARS-CoV-2 via appropriate government inter-
vention is an effective method [4]. China adopted a series of measures, including locking
down cities [5], extending the Spring Festival holiday, and delaying the start of schools [6].
Even though China has passed several waves of the pandemic, the association between
meteorological and air pollution variables and SARS-CoV-2 remains unclear. From the first
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report to outbreak, the characteristics of SARS-CoV-2 in different regions need to be better
understood to provide valuable scientific support for global epidemic control and response.

Meteorological variables may affect the survival of viruses and epidemic transmission
affecting droplet stability in the environment [7]. Air pollutants are gases or particles
dispersed in the air, with different chemical and physical structures, and with heterogeneous
effects on air quality, airborne pollen, climate, and eventually human health [8,9]. Several
studies have examined the combined effects of meteorological variables and ecological
components such as air pollution on human health and mortality [10–12]. Scientists have
observed that the spread of SARS-CoV-2 is related to meteorological variables and air
pollution [13,14]. Roviello and Roviello [15] analyzed the impact of SARS-CoV-2 in different
Italian regions and their findings confirmed their hypothesis on the relationship between
the severity of the pandemic and certain environmental factors, such as air pollution and
scarcity of nondeciduous vegetation. Xie and Zhu [16] found that the mean temperature of
the last two weeks was positively associated with newly confirmed SARS-CoV-2 cases, and
a 1 ◦C increase in the mean temperature of the last week was associated with an almost 5%
increase in the daily confirmed cases. He, et al. [17] indicated that particulate matter with
an aerodynamic diameter ≤10 µm (PM10) concentrations decreased by 25% during the
lockdown time spanning a few weeks in Chinese cities. Another study reported that PM2.5
was reduced by 54% in the lockdown period during the same time of the previous year [18].
Furthermore, ecological research indicated that there were significant relationships between
influenza-like illness risk and air particulate matter in Beijing, China [19]. A global study
found that pollen, sometimes in synergy with humidity and temperature, explained, on
average, 44% of the infection rate variability [20]. No single environmental factor is directly
responsible for the outbreak of COVID-19. For this reason, there are some deficiencies in
the current research. Studies on the impact of a single environmental factor on SARS-CoV-2
may have inconsistent results. In addition, in the existing literature, multifactorial designs
of multiple environmental variables have not been frequently elaborated.

In analyzing the long- and short-term effects, a generalized additive model (GAM)
with spline fitting has been proposed to study the relationship between SARS-CoV-2 cases
and meteorological variables and air pollutants [6,8,10,16]. The GAM provides a flexible
specification of response by defining the model in terms of smooth function as a replacement
for the detailed parametric relationships on the covariates [10]. Based on previous studies,
we conclude a hypothesis that meteorological variables and air pollution jointly affect
SARS-CoV-2, and this effect is spatially heterogeneous. To be specific, the association
between SARS-CoV-2 and variables is not immutable and may be linear or nonlinear.

Urban agglomerations are key areas for population gathering [21]. Owing to high-
level medical facilities, these areas have received cases from surrounding areas, and are
thus key areas for prevention, control, and research. Cities in urban agglomerations tend
to have closer economic and social coordination, which will have an impact on medical
resources. In the context of the global spread of SARS-CoV-2, it remains unclear how
meteorological variables and air pollution are related to SARS-CoV-2 transmission in
urban agglomerations.

In this study, a time-series analysis of the cumulative daily number of confirmed cases
of SARS-CoV-2 based on GAM was conducted in China, aiming at (1) exploring changes
in meteorological variables, air pollution variables, and SARS-CoV-2 cases in different
urban agglomerations; (2) clarifying the types of relationships between single variable and
SARS-CoV-2; (3) quantifying the combined effects of multiple variables on SARS-CoV-2
transmission; and (4) comparing the effects of meteorological and air pollution variables on
the spread of SARS-CoV-2 in different urban agglomerations.

2. Materials and Methods
2.1. Study Design

To test our primary hypothesis that air pollution and meteorological variables together
influence SARS-CoV-2 infection and that the effects may vary in different regions, we
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performed a GAM with a quasi-Poisson link function based on previous studies [22]. The
entire study period was from the day of first patient diagnosis to 29 February, which is
basically from the first cases to the end of the first wave in 2020. Based on previous studies
and the convenience of data acquisition in the study area, representative air pollution
indicators and meteorological variables were selected. The daily dates of average precipi-
tation (PRE, mm), temperature (TEM, ◦C), relative humidity (RH, %), sunshine duration
(SD, h), and atmospheric pressure (AP, hPa) were selected as meteorological variables.
The PM2.5 (µg/m3), PM10 (µg/m3), sulfur dioxide (SO2, µg/m3), nitrogen dioxide (NO2,
µg/m3), ozone (O3, µg/m3), and carbon monoxide (CO, µg/m3) contents were selected
as air pollution variables. Particles resulting from combustion processes are generally less
than 2.5 µm and 10 µm, which are defined as PM2.5 and PM10, respectively.

2.2. Study Area

The middle reaches of the Yangtze River (MYR) are an urban agglomeration with the
most confirmed cases, including Wuhan city, the center of the COVID-19 outbreak in China.
As Wuhan is the worst-hit region and cases accounted for approximately 60% of cases in
China, the comparison among Wuhan and other cities might be biased. Therefore, we
omitted the cases in Wuhan in this study. In addition to MYR, there are three main urban
agglomerations in China, named Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD),
and Pearl River Delta (PRD) (Table S1). Four urban agglomeration locations in China and
their populations, areas, and GDPs are shown in Figure 1. Given that daily confirmed
SARS-CoV-2 cases are counted at a city level, cities without confirmed cases were excluded
from our analysis of urban agglomerations. As of 2019, the population of the four urban
agglomerations accounted for 35.23% of China’s population, of which the YRD had the
largest population (165 million) (Figure 1). The four urban agglomerations accounted for
9.41% of the total land area, with the smallest being the PRD area (110,300 km2). In terms of
gross domestic product (GDP), the total GDP of the four urban agglomerations accounted
for 42.78% of the national GDP, among which the YRD contributed 20.35 trillion RMB.

Figure 1. Four urban agglomeration locations in China and their populations, areas, and GDPs.

2.3. Data

Daily SARS-CoV-2 confirmed case data were obtained from the National Health
Commission of the People’s Republic of China, Beijing, China (http://www.nhc.gov.cn,

http://www.nhc.gov.cn
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accessed on 15 October 2020), and the study objective is cities in urban agglomerations of
BTH, MYR, YRD, and PRD. A total of 34,034 data points from 85 cities were selected for
analysis. After that, the cumulative daily number of confirmed cases of SARS-CoV-2 was
calculated. The study period was from the day of first patient diagnosis to 29 February
2020, which was basically from the first cases to the end of the first wave.

Meteorological data were obtained from the National Meteorological Information
Center, Beijing, China (http://data.cma.cn/, accessed on 12 March 2021), and air pollution
data were downloaded from the China National Environmental Monitoring Centre, Beijing,
China (http://www.cnemc.cn/, accessed on 12 March 2021). Social statistical data come
from statistical yearbooks of provinces and cities.

2.4. Methods

Spearman’s rank correlation was used to investigate the association between two
variables. The correlation coefficient was used to investigate the correlation between mete-
orological variables, air pollution, and SARS-CoV-2 cases. The GAM, as a semiparametric
extension of the generalized linear model (GLM), helps to explore the nonlinear relationship
between meteorological variables, air pollution, and SARS-CoV-2 cases [9,23]. GAM offers
an open-ended solution in the case of considerable noise in the predictor variables [10]. The
GAM was expressed as follows:

g(µ(Y)) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm) (1)

where g() is a link function; µ(Y) is the expectation of the response variable Y; β0 is the
intercept; and f i(), i = 1, 2, . . . , m are the smoothing functions of predictor variables, with a
specified parametric or nonparametric form.

The GAM allows a broad range of distributions for the response variable to be adopted
and link functions for measuring the effects of the predictor variables on the dependent
regressors [10]. Popularly used distributions in GAM modeling are normal, gamma, and
Poisson distributions. Considering the distribution of variables and the characteristics
of link functions, we choose the generalized additive quasi-Poisson model. Before GAM
analysis, collinearity among the influencing variables of SARS-CoV-2 was first determined
using the collinearity diagnosis function of SPSS (IBM SPSS Statistics 22). The results
revealed that PM2.5 and PM10 had collinearity challenges and we removed PM10 from the
GAM analysis. We judge the function form according to the value of degree of freedom in
the GAM model hypothesis test results. When the degree of freedom is 1, the function is a
linear equation, indicating that there is a linear relationship between the influencing factors
and the response variables. When the degree of freedom is greater than 1, the expression
function is a nonlinear curve equation, and there is a certain nonlinear relationship between
the influencing factors and the response variables. When the degree of freedom is larger,
the nonlinear relationship is more significant.

GAMs in our analysis were implemented via the “mgcv” package (version 1.8-28) of R
software, Auckland, New Zealand (version 4.0.3). The statistical tests were two-sided, and
p < 0.05 was considered statistically significant.

3. Results
3.1. Description of SARS-CoV-2 Daily Infection Cases and Meteorological and Air Pollution Variables

During the study period (from 18 January 2020 to 29 February 2020), the cumulative
number of SARS-CoV-2 confirmed cases in China (including Hong Kong, Macao, and
Taiwan Province) reached 79,824, including 50,340 in Wuhan city. The daily confirmed
cases in four urban agglomerations and the logarithm of the cumulative cases are shown in
Figure 2. In 2020, the daily confirmed cases of MYR increased rapidly from the beginning
until reaching a peak on 6 February. Then, it fluctuated and declined. The number of
daily confirmed cases was higher than that of BTH, YRD, and PRD in most cases. Before
17 February, the daily number of SARS-CoV-2 confirmed cases in the YRD was higher than
that in BTH and PRD. The number of confirmed cases of YRD reached its maximum (202) on

http://data.cma.cn/
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5 February. From 24 January to 29 February, the logarithm of cumulative confirmed cases in
MYR was consistently higher than in the other three agglomerations. After 6 February, this
value tends to be stable with little fluctuation. Overall, the confirmed cases in MYR, BTH,
YRD, and PRD were 69,930, accounting for 87% of the total cases in China. On 12 February,
15,152 newly confirmed cases in China were diagnosed (including 13,332 cumulative
clinically diagnosed cases in Hubei). On 18 February, the daily number of newly cured
and discharged coronavirus patients exceeded that of newly confirmed cases, and the
number of confirmed cases began to drop. On 21 February, most provinces and equivalent
administrative units in China started to downgrade their public health emergency response
level in light of the local situation, and gradually lifted traffic restrictions.

Figure 2. The daily confirmed cases and logarithm of the cumulative cases of SARS-CoV-2 in four
urban agglomerations.

During the study period, PRD had the highest temperature among the four urban
agglomerations, while BTH had the lowest temperature (Figure S1). Heavy precipitation
mainly occurred during 21–27 January, 3–8 February, and 10–17 February. In these three
periods, YRD, MYR, and PRD had the highest cumulative precipitation. In terms of air
pressure, YRD had the highest pressure most of the time, while BTH was relatively low. In
addition, there was a negative correlation between sunshine duration and precipitation.
During the study period, the relative humidity of PRD, YRD, and MYR was higher than
that of BTH, which was consistent with the latitudinal relationship among them. The PM2.5
and SO2 in the air of BTH tended to be significantly higher than those of the other three
urban agglomerations (Figure S2). There was an obvious downward trend for PM2.5 from
25 January to 10 February. The variation trend of PM10 is consistent with that of PM2.5, and
the variation range is relatively large. PRD tended to have lower PM2.5 and SO2 contents,
indicating better air quality. PRD had the highest ozone content in 45% of the study period,
while BTH had the highest in 31% of the period. For NO2 and CO, another indicator of air
pollution, BTH was highest for most of the period, followed by MYR, YRD, and PRD.
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3.2. Correlation between SARS-CoV-2 Cases and Meteorological Variables and Air Pollution Variables

Spearman’s correlation coefficients between the SARS-CoV-2 cases, meteorological
variables, and air pollution are shown in Figure 3. In BTH, the SARS-CoV-2 cases were
significantly positively correlated with TEM (0.39), but significantly negatively correlated
with O3 (−0.18), SO2 (−0.41), CO (−0.22), PM10 (−0.18), and PM2.5 (−0.13) (Figure 3a).
The results showed no significant correlation between SARS-CoV-2 and PRE, RH, AP, or
SD. Among the other meteorological variables and air pollution variables, PM2.5 and PM10
had the highest positive correlation coefficient (0.86).

Figure 3. Spearman’s correlation between SARS-CoV-2 cases and meteorological variables and air
pollution variables in BTH (a), MYR (b), YRD (c), and PRD (d). Notes: *, p < 0.05; **, p < 0.01.

In the MYR, SARS-CoV-2 was positively correlated with SD (0.18), O3(0.25), SO2 (0.26),
temperature (0.13), CO (0.16), and PM10 (0.07), and negatively correlated with RH (−0.15)
and PRE (−0.14) (Figure 3b). In addition, PRE had no significant correlation with CO, but
had a significant correlation with other variables (p < 0.01). PM2.5 and PM10 had the highest
positive correlation coefficient (0.83). The positive correlation coefficient between O3 and
SD reached 0.47.

In the YRD, SARS-CoV-2 was positively correlated with TEM (0.31), NO2 (0.08), SD
(0.16), and O3 (0.14), but negatively correlated with PRE (−0.13), RH (−0.2), CO (−0.27),
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PM2.5 (−0.13), PM10 (−0.12), and SO2 (−0.11) (Figure 3c). PM2.5 and PM10 had the highest
positive correlation coefficient (0.79). The lowest negative correlation coefficient was
observed between PRE and SD (−0.67).

In the PRD, SARS-CoV-2 was positively correlated with NO2 (0.34), TEM (0.11), and
O3 (0.11), but the correlation coefficients were small, while it was negatively correlated with
CO (−0.25) and SO2 (−0.38) (Figure 3d). In addition, there was no significant correlation
between SARS-CoV-2 and PM10, PM2.5, SD, AP, RH, or PRE. Among meteorological vari-
ables and air pollution variables, PM2.5 had a very significant correlation with PM10, and
the correlation coefficient reached 0.82. At the same time, the negative correlation between
RH and SD was very significant (−0.63).

3.3. The Response of SARS-CoV-2 to Meteorological and Air Pollution Variables

GAM was used to simulate the response of SARS-CoV-2 cumulative confirmed cases
to meteorological and air pollution variables in the four urban agglomerations, and the
results are shown in Table 1. In BTH, the deviance explanatory rate of meteorological and
air pollution variables to the SARS-CoV-2 cases was 75.4%, and the significantly related
factors were O3, AP, RH, SD, SO2, CO, and NO2. In the MYR, the deviance explained was
35.2%, which was the lowest value among the four urban agglomerations. The significantly
related variables in MYR were PRE, O3, AP, PM2.5, SO2, CO, and NO2. In YRD, the deviance
explained was 45.6%, and the significantly related factors were PRE, TEM, AP, RH, PM2.5,
SO2, NO2, and CO. In PRD, the deviance explained was 62.2%, and the significantly related
variables were O3, AP, RH, SD, PM2.5, SO2, CO, and NO2.

Table 1. GAM model hypothesis test results of SARS-CoV-2 and multiple variables in four
urban agglomerations.

AP RH SD PRE TEM SO2 CO NO2 O3 PM2.5

Deviance
Explained

(%)

BTH
edf 5.08 8.24 5.99 1.78 1 7.14 5.65 5.83 5.07 5.53

75.4p <0.001 <0.001 <0.001 0.06 0.08 <0.001 <0.01 <0.001 <0.001 0.07

MYR
edf 5.34 1.68 6.02 3.81 4.74 4.5 4.27 2.26 5.33 3.18

35.2p 0.02 0.4 0.48 <0.01 0.04 <0.001 <0.001 <0.001 <0.001 <0.001

YRD
edf 1 1.57 6.93 5.73 7.47 4.92 3.31 4.94 5.82 3.13

45.6p <0.001 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.17 0.3

PRD
edf 8.4 1 8.27 1 - 6.59 5.48 4.58 6.49 1

62.2p <0.001 <0.001 <0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: edf, equivalent degrees of freedom.

The exposure–response curves in Figures 4–7 and the values of edf in Table 1 suggested
that meteorological variables (PRE, TEM, AP, RH, and SD), air pollution variables (PM2.5,
SO2, NO2, O3, and CO), and daily cumulative confirmed SARS-CoV-2 cases have either
linear or nonlinear relationships. Specifically, in BTH, the relationship was approximately
linear between SARS-CoV-2 and TEM (Figure 4 and Table 1). The edf value of PRE was
close to 1, indicating that it has an approximately linear relationship with SARS-CoV-2. O3,
CO, and NO2 were significantly positively linked with SARS-CoV-2. The SARS-CoV-2–air
pressure curve initially showed a negative slope, but its trend changed when the air pressure
was more than 970 hpa. In addition, the association between SARS-CoV-2 and RH and SO2
showed a negative direction. Although PRE, AP, and PM2.5 had a nonlinear relationship
with SARS-CoV-2, they failed to pass the significance test (p > 0.05).
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Figure 4. Exposure–response curves among meteorological variables, air pollution variables, and
SARS-CoV-2 cases in BTH.

Figure 5. Exposure–response curves among meteorological variables, air pollution variables, and
SARS-CoV-2 cases in MYR.
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Figure 6. Exposure–response curves among meteorological variables, air pollution variables, and
SARS-CoV-2 cases in YRD.

Figure 7. Exposure–response curves among meteorological variables, air pollution variables, and
SARS-CoV-2 cases in PRD.
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In the MYR, Table 1 showed that the relationship between each variable and SARS-
CoV-2 was nonlinear (edf >1). Figure 5 showed that the changes in meteorological variables
and air pollution variables have little impact on the propagation of SARS-CoV-2, which is
consistent with the small interpretation rate of SARS-CoV-2 variations in the GAM model
(35.2%). SARS-CoV-2 was significantly negatively linked with PRE, TEM, PM2.5, SO2, and
NO2. The curve of each pair of relationships showed a relatively flatter shape. There was
an inverse link between the SARS-CoV-2 and O3. In MYR, SD and RH had no significant
effect on SARS-CoV-2 (p > 0.05).

In the YRD, the relationship between SARS-CoV-2 and AP was linear (edf = 1), while
other variables had a nonlinear relationship with SARS-CoV-2 (edf >1). The association
between SARS-CoV-2 and PRE was only positive when the precipitation was below 10 mm
and negative in other cases (Figure 6). In the temperature range of 0–15 ◦C, the SARS-
CoV-2 cases increased gradually, but in other cases, the SARS-CoV-2 cases decreased as
the temperature increased. The curves between SARS-CoV-2, AP, and PM2.5 showed a
positive slope. The curve between SARS-CoV-2 and SD seems to be a flat curve. The SARS-
CoV-2 -NO2 curve showed a decreasing shape initially, but the curve changed positively
when the NO2 concentration was between 15 and 50 µg/m3. Additionally, the curve was
downward sloped between SARS-CoV-2 and RH, CO, and SO2. In YRD, O3 and PM2.5 had
no significant effect on SARS-CoV-2 (p > 0.05).

In the PRD, the SARS-CoV-2 variations were linear with PRE, PM2.5, and RH (edf = 1)
(Table 1). The association between SARS-CoV-2 and CO indicated a positive slope between
0 and 0.6 µg/m3, but showed an inverse trend in other cases. The curve between SARS-
CoV-2 and PRE and NO2 appeared to be an increasing curve. The curves of SARS-CoV-2
and O3 showed a fluctuating upward trend, while the curves with AP and SO2 showed
a fluctuating downward trend. SARS-CoV-2 showed a clear negative linkage with RH
and PM2.5.

4. Discussion
4.1. Effects of Meteorological and Air Pollution Variables on SARS-CoV-2 in Urban Agglomerations

At present, the COVID-19 outbreak is still severe worldwide, bringing a huge med-
ical and economic burden to many countries globally. It is worth recognizing that the
spread of SARS-CoV-2 is affected by many variables. Previous studies have quantified
the impact of meteorological and air pollution variables on SARS-CoV-2, but the results
are inconsistent [7,8,13,23]. Available evidence demonstrates that air pollution and mete-
orological variables might negatively impact several physiological systems and organs
of individuals of all ages [8,24]. A study carried out in seven metropolitan cities and
nine provinces of Korea supported the link of SARS-CoV-2 cases with air pollution vari-
ables [24]. In this study, we assumed that meteorological and air pollution variables
affected SARS-CoV-2, and different regions might cause different impact laws. Our results
showed that meteorological and air pollution variables jointly affected SARS-CoV-2. In
the four urban agglomerations, the increase in relative humidity and SO2 reduced the
risk of SARS-CoV-2 transmission, while the curves of O3 and SARS-CoV-2 showed the
opposite trend (Figures 4–7). Some findings were consistent with a study in Lombardy,
Italy [25]. The association between other variables and SARS-CoV-2 might show different
trends with different urban agglomerations (Figures 4–7, Table 1). In BTH, meteorological
and air pollution variables could explain more than 75% of the SARS-CoV-2 variations
(Table 1). Additionally, in YRD and PRD, multiple variables explained 45.6% and 62.2% of
the SARS-CoV-2 variations, respectively, while the MYR value was only 35.2%. This result
indicated that SARS-CoV-2 might have a complex transmission mechanism [8,26], and the
research results in a single region were difficult to apply to other regions.

Analyzing the relationship between SARS-CoV-2 cases and the influencing factors,
most studies rely on data from a certain region [2,18,27], which may be limited. In MYR
and PRD, PM2.5 was negatively correlated with SARS-CoV-2, which was inconsistent with
previous studies in Italian province capitals [28]. This might be because people take stricter
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protective measures when PM2.5 is higher, which reduces human-to-human transmission of
SARS-CoV-2. For meteorological variables, in BTH, the relationship between SARS-CoV-2
and temperature was linear (Table 1 and Figure 4). However, in either MYR or YRD, the
curve showed a nonlinear relationship (Figures 5 and 6). Previous studies indicated that
an elevated temperature was harmful to the virus [29,30]. Research also showed that
temperature conditions were beneficial to the coronavirus [31,32]. There are some places
where the epidemic is still severe despite hot weather, such as parts of India. In our study,
precipitation and SARS-CoV-2 had different curves in urban agglomerations. However,
the association between SARS-CoV-2 and precipitation in different studies also varies in
time and space [8,33]. Therefore, the relationship between meteorological and air pollution
variables and SARS-CoV-2 is complex and variable, and virus mutation and other variables
may affect the relationship. Our results also indicated that the meteorological variables and
the air pollution variables were significantly correlated in many cases (Figure 3). Previous
studies have shown that meteorological variables can affect the diffusion of atmospheric
pollutants [10,34], so the two are related. The relationship between variables may also
contribute to the difficulty of clarifying the drivers of SARS-CoV-2.

In this study, the four urban agglomerations have different ecosystem, climatic, terrain,
social, and economic characteristics, which may be the reason for the spatial heterogeneity
of the relationship between the SARS-CoV-2 cases and influencing variables. A previous
study indicated that the SARS-CoV-2 epidemic harmed mental health and verified the
positive effects of the residential tree canopy on psychological distress in Beijing, China [22].
Additionally, Roviello and Roviello [15] concluded that the lowest SARS-CoV-2 impact in
Italy in terms of mortality was observed in three Mediterranean regions endowed with high
rates of forest area per capita, sustaining the hypothesis that the abundance of evergreen
Mediterranean vegetation could have played a role in the milder outcome of the virus. From
another perspective, these finds may also be caused by the health system. Furthermore,
higher population densities have proven to contribute to the greater spread of SARS-CoV-2
in previous studies [16]. Other variables, such as pollen and ultraviolet radiation, have
also been proven to be factors affecting SARS-CoV-2 transmission [20,35]. Therefore, in
subsequent research, we may include more variables in the analysis.

4.2. Implications for the SARS-CoV-2 Control and Prevention

Cities in urban agglomerations often have some similarities in economic, social devel-
opment, and geographical characteristics. This study takes urban agglomerations as the
research object, which can better reflect the close connection between cities. It also aims to
call on the government and the public to recognize this connection and strengthen research
on epidemic prevention and control in urban agglomerations.

Even though the dispersal of SARS-CoV-2 cases is affected by many countermeasures
and medical conditions, our results indicated that meteorological and air pollution vari-
ables were associated with SARS-CoV-2. The COVID-19 pandemic uncovers the fragility
and weakness of our ecosystem, and lacks knowledge of controlling and preventing the
pandemic [8]. In this study, the transmission of SARS-CoV-2 in different urban agglomera-
tions was significantly correlated with a variety of factors, but the relationship was spatially
differentiated. These findings indicated that SARS-CoV-2 prevention policies in different
regions should be formulated according to local, meteorological, and air pollution condi-
tions. Specifically, more attention should be given to variables that showed a significant
trend in the relationship curve with SARS-CoV-2. From the exposure–response curves,
when atmospheric pressure is above 980 hPa, relative humidity is low, and the content of
CO and NO2 in the air is high, the awareness of SARS-CoV-2 transmission risk should be
strengthened in BTH (Figure 4). Meteorological and air pollution variables had less impact
on SARS-CoV-2 in MYR, so other measures are needed to combat the pandemic (Table 1
and Figure 5). In YRD, when there is drought and little rain, the atmospheric pressure is
high and the temperature is 8–15 ◦C, the risk of epidemic transmission may increase, and
more attention is needed (Figure 6). The PRD had a higher risk of SARS-CoV-2 transmission
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when relative humidity was low. As O3 and NO2 were the main air pollutants in PRD
(Figure S2), SARS-CoV-2 prevention and control measures should be strengthened when
the two values increase (Figure 7). Of course, it is not enough to rely on these alone. The
government should continue to strictly implement SARS-CoV-2 prevention policies and
adopt innovative, specialized, and advanced systems, including empowered moving and
internet hospitals, as well as high technologies. Moreover, the establishment of a rational
and efficient global health care system is essential not only for SARS-CoV-2, but also for
unknown infections in the future [36].

4.3. Limitations of the Present Study

However, there are many limitations in the study. First, the air pollution data measured
at the monitoring points were used for the study, which might lead to certain exposure
measurement errors. Other variables, such as the use of air purifiers, the ventilation of the
building, and the time and location of a person’s activities, can affect exposure levels [3–5].
These anthropogenic activities or measures are difficult to measure, and thus may have an
impact on air pollution exposure, which in turn affects the results of the study. Second,
the research time was selected from the first wave of COVID-19 in China, and the limited
research time may reduce the statistical effect.

5. Conclusions

In this study, the impacts of meteorological and air pollution variables on SARS-CoV-2
cases were evaluated using a GAM analysis based on data from four urban agglomerations.
The four urban agglomerations were all located in the Northern Hemisphere, and their
meteorological variables had certain regional differentiation characteristics. Air pollution
and meteorological variables tended to be strongly correlated. The nature of the relation-
ship between SARS-CoV-2 and meteorological and air pollution variables (i.e., linear or
nonlinear) varied with urban agglomerations. Four GAM models of urban agglomeration
were constructed. The deviance explained by meteorological and air pollution variables
on the SARS-CoV-2 variations was 75.4%, 35.2%, 45.6%, and 62.2% for BTH, MYR, YRD,
and PRD, respectively. Our results showed that SARS-CoV-2 responses to meteorological
and air pollution variables varied in different regions, making it difficult to use a single
conclusion to support the formulation of epidemic prevention and control measures in all
regions. Therefore, follow-up measures based on local meteorological and air pollution
conditions may be a more effective approach to preventing and controlling SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijerph19010531/s1, Figure S1: Temporal variations of meteorolog-
ical variables; Figure S2: Temporal variations of air pollution variables; Table S1: The cities involved
in 4 main urban agglomerations in the study.
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