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Despite the growing body of evidence evaluating the efficacy of vasoactive agents in the management of 
hemodynamic instability and circulatory shock, it appears no agent is superior. This is becoming increasingly 
accepted as current guidelines are moving away from detailed algorithms for the management of shock, 
and instead succinctly state that vasoactive agents should be individualized and guided by invasive 
hemodynamic monitoring. This extends to the perioperative period, where vasoactive agent selection and 
use may still be left to the discretion of the treating physician with a goal-directed approach, consisting of 
close hemodynamic monitoring and administration of the lowest effective dose to achieve the hemodynamic 
goals. Successful therapy depends on the ability to rapidly diagnose the etiology of circulatory shock and 
thoroughly understand its pathophysiology as well as the pharmacology of vasoactive agents. This review 
focuses on the physiology and resuscitation goals in perioperative shock, as well as the pharmacology and 
recent advances in vasoactive agent use in its management.
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Conventionally, these agents are used in 
a supportive context with the assumption 
that clinical recovery will be facilitated 
by their temporary use.[7,8] Despite using 
these drugs since the 1940s, their use today 

INTRODUCTION

Circulatory shock is defined as inadequate 
oxygen delivery to the tissues, typically in 
the setting of hypotension.[1] The current 
definition of hypotension varies, but a 
systolic arterial blood pressure <90 mmHg 
and/or a mean arterial blood pressure (MAP) 
<60–70 mmHg is generally accepted.[1‑3] If 
circulatory shock is not corrected rapidly, 
tissue hypoxia and cellular death ensue. The 
mortality associated with circulatory shock 
in the intensive care unit ranges from 16% in 
those with trauma/hypovolemic shock,[4] 48% 
in those with cardiogenic shock,[5] and up to 
60% in those with septic shock.[6] Inevitably, 
these patients will present perioperatively 
and will require ongoing management with 
vasoactive agents, a term collectively referring 
to vasopressor and inotrope medications. 
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remains guided largely by opinion.[8,9] In the general 
population of critically ill patients with circulatory 
shock, surveys have shown that agent selection is 
based on clinical experience and preference[10] and, 
interestingly, despite the growing body of evidence, 
this practice has recently been validated.[11] Similarly, 
perioperative studies have demonstrated significant 
variability in agent selection in cardiac surgery.[12‑14] In 
a recently published meta‑analysis of 23 randomized 
controlled trials comparing commonly used vasoactive 
agents (dopamine, norepinephrine, epinephrine, 
phenylephrine, vasopressin, and terlipressin), 
either alone or in combination with dobutamine or 
dopexamine for the management of hypotensive shock 
showed no difference in mortality based on agent use 
and concluded that currently, there is no sufficient 
evidence that any of the agents are clearly superior.[11] 
However, the presumption is that current vasoactive 
agent selection for the management of circulatory 
shock is based on correctly identifying the underlying 
physiologic deficit and choosing a drug with the optimal 
pharmacologic properties to manage it, thus a thorough 
understanding of these concepts is required.

PHYSIOLOGY

Most causes of circulatory shock are characterized 
by low cardiac output (CO). CO is the product of 
stroke volume (SV) and heart rate (HR) and is a major 
determinant of MAP and the delivery of oxygen (DO2):

CO = SV × HR.

MAP = CO × SVR.

DO2 = CaO2 × CO (in dL/min).

Thus, optimizing SV and HR will improve CO, MAP, and 
DO2, keeping in mind that SV and overall myocardial 
performance is determined by five other factors in 
addition to inotropy (contractility) that requires 
consideration: (1) HR and rhythm (atrioventricular 
synchrony), (2) myocardial blood flow, (3) preload, 
(4) afterload, and (5) diastolic function. However, 
depending on the underlying cause of shock, the 
sympathetic nervous system compensation intended to 
restore normal organ perfusion pressure is manifested 
in different ways [Table 1].[15,16] In the example of 
distributive shock, the underlying pathophysiology 
prevents the compensatory increase in  SVR seen 
in most types of circulatory shock, resulting in 

refractory hypotension despite a normal or elevated 
CO and DO2. Although the CO and DO2 are normal, 
hypotension below the normal organ autoregulatory 
range (e.g. MAP <60–65 mmHg) still results in impaired 
organ blood flow.[17‑19] This occurs because the absolute 
organ perfusion pressure (or driving pressure) is too 
low, and the normal autoregulatory decrease in organ 
vascular resistance is insufficient to restore normal 
organ blood flow.[18] This relationship is expressed by 
relating Ohm’s law to fluid flow:[20]

Organ blood flow =  (Organ perfusion pressure)/(organ 
vascular resistance)

Organ perfusion pressure is the difference between 
organ arterial and venous pressure. Because normal 
organ venous pressure is typically negligible, the organ 
perfusion pressure is usually equal to the organ arterial 
pressure, which is the MAP, thus demonstrating the 
direct relationship between organ blood flow and MAP:

Organ blood flow = MAP/(organ vascular resistance)

The resuscitation goals intended to preserve organ 
oxygen delivery in all types of circulatory shock are:
•	 Primary	 resuscitation:	 Rapidly	 reestablish	

normal organ perfusion pressure with an 
MAP >60–65 mmHg[2,17,19]

•	 Secondary	 resuscitation:	 Rapidly	 reestablish	
adequate DO2.

[22]

An MAP >60–65 mmHg must be achieved in primary 
resuscitation to maintain vital cerebral and coronary 
perfusion.[17,19] Because CO is a determinant of both 
MAP and DO2, further resuscitation focused on 
augmenting CO is preferred.[23,24] However, MAP is 
the product of CO and SVR, therefore transiently 
increasing the SVR with vasopressors to achieve an 
MAP >60–65 mmHg is acceptable while secondary 
resuscitation is ongoing.[25,26] Achieving the MAP goal 
of 60–65 mmHg quickly has recently been underscored 
by a retrospective study of critically ill patients where 
an MAP <50 mmHg in a subset of comorbid patients 
was found to result rapidly in cardiac arrest, likely 
as a consequence of coronary hypoperfusion.[27] 
Following successful primary resuscitation, secondary 
resuscitation involves first ensuring adequate volume 
status (correcting hypovolemia) then, subsequently 
administering other vasoactive agents if necessary 
while monitoring the resuscitation endpoints proved 
in goal‑directed therapy (GDT).[22,28,29]
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PERIOPERATIVE GOAL‑DIRECTED THERAPY

GDT, initially brought to the forefront in the management 
of sepsis,[22] has continued to evolve[2,30] and is now 
being expanded to the perioperative period. Although 
the concept in septic shock has recently been called 
into question[31,32] and may not be superior to clinical 
judgment (“usual care”) and/or the utilization of 
other less invasive resuscitation endpoints (such 
as lactate),[33] it seems plausible that after years of 
integrating GDT protocols into physician education and 
practice that these methods now reflect “usual care,” 
thereby potentially biasing their results. The evolving 
concept of perioperative GDT currently includes 
the use of fluids and/or vasoactive agents to achieve 
hemodynamic endpoints and minimize postoperative 
complications and has recently been reviewed.[34] With 
emerging evidence demonstrating the adverse effects of 
aggressive fluid resuscitation perioperatively[35‑41] and 
meta‑analysis favoring goal‑directed versus liberal fluid 
therapy,[42] initiating perioperative GDT to optimize 
fluid status and hemodynamics, with the appropriate 
use of fluids as well as the use of earlier/preemptive 
inotropes and vasopressors, is likely the paradigm of 
the future. This is supported by recent meta‑analysis 
suggesting that although GDT does not improve 
mortality, it may reduce complications and hospital 
length of stay[43] and subsequent meta‑analysis found 
a reduction in cardiovascular complications with this 
practice.[44] However, a follow‑up large, randomized trial 
of perioperative GDT in high‑risk patients undergoing 
noncardiac surgery did not definitely support the 
practice but did demonstrate a nonsignificant trend 
supporting GDT.[45] Therefore, at this point, no 
consensus on the true benefit of perioperative GDT 
exits, but further prospective study is underway.

Regarding the end points of resuscitation used in GDT, 
right‑sided filling pressures poorly predict preload[46,47] 
and although minimally invasive hemodynamic monitors 
are becoming widely available, most of these indirectly 
monitor endpoints and require further study. In contrast, 
intraoperative transesophageal echocardiography (IOTEE) 
in high‑risk patients can quickly and accurately diagnose 
the etiology of intraoperative hypotension and allows 
the clinician to rapidly assess the results of intervention 
by monitoring cardiac volume/preload and function 
as well as utilizing Doppler to quantitate SV and CO. 
Although conclusive study demonstrating the efficacy 
of IOTEE in perioperative GDT is currently lacking, the 
early use of ITOEE in septic shock has been shown to 
change management by limiting fluid administration 
and initiating early inotropic support in patients with 
left ventricular (LV) systolic dysfunction, who otherwise 
would not have met Surviving Sepsis Campaign criteria 
for inotropic therapy.[48] Furthermore, IOTEE is considered 
by many as the gold standard to assess intraoperative 
hemodynamic instability and monitor preload,[47,49] 
therefore its use in perioperative GDT is plausible.

OVERVIEW OF VASOACTIVE AGENTS

Vasopressors
Vasopressors are primarily used in cardiopulmonary 
resuscitation (CPR) and in the treatment of circulatory 
shock, where the main clinical benefit of raising the 
MAP is to restore rapidly organ perfusion pressure. 
However, some vasopressors have inotropic properties 
as well, and the predominant effect is usually 
dose‑dependent. In CPR, vasopressors cause profound 
systemic vasoconstriction that preferentially increases 
coronary perfusion pressure in an attempt to restore 
myocardial blood flow, oxygen delivery, and the return 

Table 1: Types of circulatory shock and their clinical picture
Type of 
shock

MAP CO DO2 CVP MPAP PCWP SVR Common clinical 
examples

Treatmentb

Hypovolemic ↓→ ↓ ↓ ↓ ↓ ↓ ↑ Hemorrhage
Capillary leak

Volume 
resuscitation

Obstructive ↓ ↓ ↓ ↑ ↑ ↑→ ↑→ Pulmonary embolus
Tension pneumothorax

Inotropes

Cardiogenic ↓→ ↓ ↓ ↑ ↑ ↑ ↑ Myocardial infarction
Arrhythmia

Inotropes

Distributive ↓ ↑ ↑ ↓ ↓ ↓ ↓ Systemic inflammatory 
response syndromea

Anaphylaxis

Vasopressors

aSepsis and trauma, bTreatment of the underlying cause of circulatory shock is the primary objective and pharmacologic therapy with 
vasopressors and/or inotropes is used as a temporizing measure to maintain organ perfusion pressure (MAP >65 mmHg) and CO while the 
underlying process is corrected. MAP: Mean arterial pressure, CO: Cardiac output, CVP: Central venous pressure, MPAP: Mean pulmonary 
artery pressure, PCWP: Pulmonary capillary wedge pressure, SVR: Systemic vascular resistance, DO2: Delivery of oxygen, ↑: Increased, 
↓: Decreased, →: No change. Hadian M, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care 2007;13:318-23
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of spontaneous circulation.[50,51] In circulatory shock 
characterized by refractory hypotension, vasopressors 
are used in a supportive context until definitive therapy 
can be initiated, with the assumption that clinical 
recovery will be facilitated by temporarily restoring 
and maintaining normal organ perfusion pressure.[7,8]

In the example of distributive shock, vasopressors 
correct the underlying deficit in SVR, thus restoring 
organ perfusion pressure.[52,53] The importance of organ 
perfusion pressure has recently been emphasized as 
vasopressors are now being recommended as secondary 
agents where the indication is less obvious – Circulatory 
shock characterized by low CO and persistent 
hypotension that is refractory to conventional treatment. 
Historically, vasopressors have been used with extreme 
caution in this setting to avoid the complications 
associated with excessive vasoconstriction (increasing 
systemic and organ vascular resistance beyond normal 
physiologic values) such as further impairment of CO, 
DO2, and organ blood flow, together possibly increasing 
mortality.[23,24] However, excessive vasoconstriction 
primarily occurs when these agents are given in the 
setting of inadequate volume resuscitation with or 
without preexisting low CO.[54] Considering this, 
patients receiving vasoactive agents require careful 
monitoring and frequent reevaluation, so these agents 
can be titrated to the minimal effective dose.

Vasopressor agents are broadly classified below by 
their clinical effect as: (1) Pure vasoconstrictors or 
(2) inoconstrictors (vasoconstrictors with inotropic 

properties). Further classification of these agents is 
illustrated in Figure 1 and their standard dosing, 
receptor binding, and adverse effects are listed in 
Table 2.[8] Although some adrenergic agents stimulate 
many receptors producing various cardiovascular 
effects, their vasopressor actions are mediated via 
alpha‑1 receptors resulting in arterial and venous 
vascular smooth muscle contraction and an increase 
in systemic and pulmonary vascular resistance and 
venous return.[8,55,56] The nonadrenergic agents such 
as vasopressin, exerts its vasopressor effects through 
V1 receptor stimulation resulting in vascular smooth 
muscle contraction,[8] and methylene blue scavenges 
nitric oxide and inhibits nitric oxide synthesis, thus 
reversing the vasodilatory effects of nitric oxide on the 
endothelium and vascular smooth muscle.

Inotropes
Inotropy (contractility) refers to the force and velocity 
of cardiac muscle contraction, and the term inotrope 
generally refers to a drug that produces positive 
inotropy (increased contractility). Inotropes differ from 
vasopressors, which primarily produce vasoconstriction 
and a subsequent rise in MAP. As with vasopressors, 
some inotropes have vasopressor properties as well, 
and the predominant effect is usually dose‑dependent. 
In circulatory shock characterized by low CO 
(e.g., cardiogenic and obstructive shock), the main 
clinical benefit of increasing contractility with inotropes 
is to increase SV and CO to restore adequate DO2 to 
vital organs until definitive therapy can be initiated.[7,8]

All inotropes increase CO by increasing the force 
of contraction of cardiac muscle, but the other 
determinants of myocardial performance are variably 
affected. For example, some inotropes directly increase 
HR, some indirectly decrease HR (reflex), while others 
have no effect, some inotropes increase venous tone 
(venoconstriction) and arterial tone (afterload) while 
others decrease these through vasodilation, and some 
improve diastolic function. Therefore, any given agent 
may have multiple and dose‑dependent effects to be 
considered. In cardiogenic shock, the failing ventricle 
is very sensitive to afterload, so inotropes that produce 
systemic vasodilation (inodilators) should be first‑line 
agents as long as systemic hypotension does not occur. 
Although supraphysiologic goals for CO have not shown 
benefit and may cause harm,[23,57,58] maximal doses of a 
first agent are inadequate to meet goals, then a second 
drug should be added, with consideration given to agents 
with different mechanisms of action to maximize effects.

Figure 1: Vasopressor classification[8,91] a: Adrenergic agents 
mimic sympathetic nervous system stimulation and are also 
termed “sympathomimetics;” b: Catecholamines structurally 
contain a catechol group and are rapidly metabolized by 
catechol-O-methyltransferase and monoamine oxidase 
corresponding to their short duration of action (1–2 min), making 
them ideal agents for titration; c: Noncatecholamines have 
longer durations of action (approximately 5–15 min) since they 
are not metabolized by catechol-O-methyltransferase
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Inotropes are broadly classified below by their 
clinical effects as: (1) Inodilators agents that produce 
inotropy and vasodilation or[2] inoconstrictors agents 
that produce inotropy and vasoconstriction. Further 
classification of these agents is illustrated in Figure 2.[8] 
The commonly used adrenergic agents stimulate the 
adrenergic receptors as listed in Table 3 to produce 
their cardiovascular effects.[8] The standard dosing of 
inotropes, their receptor binding (or mechanism of 
action), and adverse effects are listed in Table 2.[8,21]

COMMON VASOACTIVE AGENTS AND LITERATURE REVIEW

Pure vasoconstrictors
•	 Phenylephrine	 stimulates	 only	 alpha	 receptors	

resulting in arterial and venous vasoconstriction, 
clinically producing an increase in SVR, MAP, 
venous return, and baroreceptor‑mediated reflex 
bradycardia. The increase in SVR (afterload) 
and reflex bradycardia may decrease CO, so 
phenylephrine should only be used transiently in 
general and with caution in patients with preexisting 
cardiac dysfunction (low CO).[59,60] Perioperatively, 
phenylephrine is used to correct hypotension, 
improve venous return, and decrease the HR in 
patients with various cardiac conditions (e.g. aortic 
stenosis and hypertrophic cardiomyopathy).[8] In 

addition, the use of phenylephrine to maintain 
hemodynamic stability during liver transplantation 
has demonstrated less blood loss and lower 
lactate levels compared to inotropes, an effect 
attributable to its ability to increase vascular 
resistance and thus reduce portal blood flow.[61] 
Phenylephrine is considered a first‑line agent in 
hyperdynamic (normal CO) septic shock as it 
restores SVR and organ perfusion pressure.[2,52] Also, 
phenylephrine’s reflex bradycardia may prove 

Figure 2: Inotrope classification.[8,91] a: Adrenergic agents 
mimic sympathetic nervous system stimulation and are also 
termed “sympathomimetics;” b: Catecholamines structurally 
contain a catechol group and are rapidly metabolized by 
catechol-O-methyltransferase and monoamine oxidase 
corresponding to their short duration of action (1–2 min), making 
them ideal agents for titration; c: Noncatecholamines have 
longer durations of action (approximately 5–15 min) since they 
are not metabolized by catechol-O-methyltransferase

Table 2: Standard dosing of vasoactive agents, their receptor binding (or mechanism of action), and 
major adverse effects

Drug IV infusion dose* Receptor activity or mechanism 
of action

Adverse effects

Alpha‑1 Beta‑1 Beta‑2 Dopamine
Isoproterenol >0.15 mcg/kg/min 0 ++ ++ 0 Arrhythmias, myocardial ischemia, 

hypotension
Milrinone Load 20-50 mcg/kg then 

0.25-0.75 mcg/kg/min
Phosphodiesterase inhibitor Hypotension

Levosimendan 12-24 mcg/kg then 
0.05-0.2 mcg/kg/min

Calcium-sensitizer Hypotension

Dobutamine 2-20 mcg/kg/min − ++ + 0 Arrhythmias, tachycardia, myocardial 
ischemia, hypotension

Dopamine 1-5 mcg/kg/min − − − ++ Arrhythmias, myocardial ischemia, 
hypertension, tissue ischemia5-10 mcg/kg/min + ++ + ++

10-20 mcg/kg/min ++ ++ + ++
Epinephrine 0.01-0.03 mcg/kg/min − ++ + 0 Arrhythmias, myocardial ischemia, 

hypertension, hyperglycemia, 
hypermetabolism/lactic acidosis

0.03-0.1 mcg/kg/min + ++ + 0
>0.1 mcg/kg/min ++ ++ + 0

Norepinephrine Start 0.01 mcg/kg/min and titrate 
to effect (max 30 mcg/min)

++ ++ − 0 Arrhythmias, hypertension, tissue 
ischemia

Phenylephrine 0.15-0.75 mcg/kg/min ++ 0 0 0 Bradycardia, hypertension, excessive 
vasoconstriction

Vasopressin 0.01–0.04 units/min V1 receptor agonist Hypertension, excessive vasoconstriction

*Doses are guidelines and the actual administered dose should be determined by patient response; ++: Potent, +: Moderate, 
−: Minimal, 0: None, IV: Intravenous. Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is 
a determinant of critical O2 delivery. J Appl Physiol 1991;70:169-78
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useful in the treatment of hypotension caused by 
tachyarrhythmias or when tachyarrhythmias occur 
in response to other vasoactive agents used in the 
treatment of circulatory shock[2]

•	 Vasopressin	 (antidiuretic	 hormone)	 levels	 are	
increased in response to early shock to maintain 
organ perfusion,[62] but levels fall dramatically as 
shock progresses.[63,64] Unlike the adrenergic agents, 
vasopressin does not stimulate adrenergic receptors 
and is not associated with their adverse effects,[65] 
and its vasopressor effects are relatively preserved 
during hypoxemic and acidemic conditions, 
making it useful in refractory circulatory shock and 
CPR,[65‑72] specifically asystole.[73] Vasopressin, due to 
its alternate mechanism of action, not only improves 
hemodynamics but also improves the vascular 
response to adrenergic agents, allowing a reduction 
in their dosing[67,70,74] which may reduce the 
adverse effects seen with adrenergic agents, this is 
commonly referred to as an adrenergic sparing effect. 

Vasopressin is primarily indicated in distributive 
shock, usually as a secondary agent,[2] but its 
ability to increase MAP and not adversely impact 
CO has recently been demonstrated in refractory 
cardiogenic shock,[75] underscoring the physiologic 
importance of maintaining organ (myocardial) 
perfusion pressure.[8] Considering this, the use of 
vasopressin has shown utility perioperatively, where 
its preemptive use in high‑risk patients undergoing 
cardiac surgery has demonstrated hemodynamic 
stability after cardiopulmonary bypass and an 
adrenergic agent sparing effect.[76] Moreover, recent 
in vitro study[55] supports the emerging clinical 
observations[77] that compared to adrenergic agents 
such as norepinephrine, vasopressin produces 
selective systemic vasoconstriction, with minimal 
effect on the pulmonary vasculature. This has 
significant application, particularly in cardiac 
surgery, where vasopressin would improve right 
ventricular (RV) function by increasing coronary 
perfusion without altering RV afterload, suggesting 
it may be the drug of choice to improve MAP in 
the setting of RV failure. Its 30–60 min duration 
of action is much longer than adrenergic agents, 
making titration more challenging

•	 Methylene	 blue	 inhibits	 the	 vasodilatory	 effects	
of nitric oxide on the endothelium and vascular 
smooth muscle. Historically, methylene blue has 
not been considered a vasoactive agent, but its 
expanding use in vasoplegic syndrome prompted 
its inclusion here. Vasoplegic syndrome is generally 
defined as an MAP <50 mmHg with a low SVR 
(<600–800 dynes/s/cm5) despite vasoactive agent 
administration.[78,79] The syndrome is also typically 
accompanied by low filling pressures (central 
venous pressure <5–10 mmHg, pulmonary capillary 
wedge pressure <10 mmHg).[78,79] The incidence 
of vasoplegic syndrome in cardiac surgery varies 
but has been reported as high as 42% in comorbid 
patients undergoing ventricular assist device 
placement[80] and the mortality may be as high as 
25%.[81] Methylene blue has been used as a rescue 
agent for perioperative vasoplegic syndrome in 
multiple clinical scenarios including cardiac surgery, 
protamine reaction, sepsis, and anaphylaxis.[81‑84] It 
has even been used prophylactically in high‑risk 
patients undergoing cardiac surgery.[79] Suggested 
risk factors for perioperative vasoplegic syndrome 
in cardiac surgery have been reviewed, and include 
preoperative LV ejection fraction <35%, ventricular 
assist device implantation, prolonged CPB, and 

Table 3: Adrenergic receptors with 
cardiovascular effects

Adrenergic 
receptor

Location Cardiovascular 
effects

Beta-1 Myocardium Inotropy 
(increased contractility)
Chronotropy 
(increased heart rate)
Dromotropy 
(increased conduction)

Beta-2 Systemic arterioles
Pulmonary arterioles
Veins

Vasodilation

Alpha-1 Systemic arterioles 
(receptor density)*

Skin (high)
Skeletal muscle (high)
Abdominal viscera/
splanchnic (moderate)
Kidney (moderate)
Myocardium (minimal)
Brain (minimal)

Pulmonary arterioles
Veins

Vasoconstriction

*Vasoconstriction of vascular beds with moderate and high 
alpha-1 receptor density allows the redistribution of blood 
flow to vital organs with minimal receptor density (brain and 
myocardium), and is the basis for adrenergic vasopressor 
use in cardiopulmonary resuscitation. During progressive 
hemorrhage, the fraction of CO distributed to the dermal/
skin, splanchnic, and renal vascular beds declines while 
the fraction of CO distributed to the brain and myocardium 
increases.a,b CO: Cardiac output. Kaihara S, Rutherford RB, 
Schwentker EP, Wagner HN, Jr. Distribution of cardiac output 
in experimental hemorrhagic shock in dogs. J Appl Physiol 
1969;27:218-22. bSchlichtig R, Kramer DJ, Pinsky MR. Flow 
redistribution during progressive hemorrhage is a determinant 
of critical O2 delivery. J Appl Physiol 1991;70:169-78
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the preoperative use of intravenous heparin, 
angiotensin‑converting enzyme inhibitors, calcium 
channel blockers, and beta‑blockers.[81] The dose 
of methylene blue varies in the literature but in 
cardiac surgery, a dose of 1.5–2.0 mg/kg IV infused 
over 1 h is generally acceptable.[85,86] In some cases, 
this initial bolus is followed by a continuous 
infusion. Methylene blue has a rapid onset, but 
unlike most vasoactive agents, it has a long half‑life 
of approximately 5.25 h.[87] It is eliminated by the 
kidney and is contraindicated in renal failure 
and should be avoided in patients with known 
glucose‑6‑phosphate dehydrogenase deficiency.[81] 
Adverse effects have been reviewed and include 
transient color change of the skin and urine to 
greenish‑blue, cardiac arrhythmias (transient 
nodal rhythm and ventricular ectopy), coronary 
vasoconstriction, decreased CO, increased PVR, 
and decreased renal and mesenteric blood 
flow; however, these effects were transient and 
dose dependent (usually at doses >2 mg/kg).[81] 
Although the use of perioperative methylene blue 
is currently controversial,[88] a recent meta‑analysis 
of randomized controlled trials in hypotensive 
patients demonstrated no harm.[89] Therefore, due 
to the high mortality associated with perioperative 
vasoplegic syndrome, the use of methylene blue as 
a rescue agent should be considered in the setting 
of refractory hypotension.

Inoconstrictors
•	 Epinephrine,	 in	 low	 doses,	 increases	 CO	

because beta‑1 inotropic and chronotropic 
effects predominate, while the minimal alpha‑1 
vasoconstriction is offset by beta‑2 vasodilation, 
resulting in increased CO with decreased SVR and 
variable effects on the MAP.[90] At higher doses, 
alpha‑1 vasoconstrictive effects predominate, 
producing increased SVR, MAP, and CO.[8] Thus, in 
the acutely failing ventricle (e.g., low CO syndrome 
after cardiac surgery), epinephrine maintains 
coronary perfusion pressure and CO. Epinephrine is 
used in CPR to restore coronary perfusion pressure 
and in the management of symptomatic bradycardia 
unresponsive to atropine or a temporizing measure 
while awaiting the availability of a pacemaker.[92] 
It is a second‑line agent in septic[2] or refractory 
circulatory shock and is the drug of choice in 
anaphylaxis because of its efficacy to maintain 
MAP, partly due to its superior recruitment of 
splanchnic reserve (about 800 mL), compared to 
other vasoactive agents, which helps to restore 

venous return and CO.[93] Consequently, the degree 
of splanchnic vasoconstriction appears to be greater 
than with equipotent doses of norepinephrine or 
dopamine in patients with severe shock,[94] thus 
limiting its liberal use among clinicians. However, 
recent prospective study in critically ill patients 
demonstrated no difference in 28 and 90 days 
mortality compared to norepinephrine when using 
MAP as the sole endpoint, thus tempering the 
theoretical safety concerns held by many[95]

•	 Norepinephrine	has	potent	alpha‑1,	modest	beta‑1,	
and minimal beta‑2 activity.[8] Thus, norepinephrine 
produces powerful vasoconstriction and a reliable 
increase in SVR and MAP, but a less pronounced 
increase in HR and CO, compared to epinephrine.[96] 
Therefore, caution must be used in the setting of 
the failing ventricle. Reflex bradycardia usually 
occurs in response to the increased MAP, such that 
its modest beta‑1 chronotropic effect is mitigated, 
and the HR remains relatively unchanged. Because 
norepinephrine is the predominant endogenous 
adrenergic agent and sepsis can lead to its 
depletion, its use as the first‑line agent in septic 
shock has been argued as intuitive.[97,98] Current 
Surviving Sepsis Campaign guidelines support 
its use as the first‑line agent,[2] especially in 
hyperdynamic (normal CO) septic shock because of 
its ability to increase SVR and MAP, thus correcting 
the physiologic deficit in organ perfusion pressure, 
compared to other agents that instead increase 
MAP by increasing CO (e.g., dopamine).[23,58,99] 
Although its recommendation in cardiogenic shock 
no longer formally exists, it may still be useful in 
the presence of severe hypotension (systolic blood 
pressure <70 mmHg) in the setting of LV systolic 
dysfunction due to its ability to improve MAP, 
thereby restoring coronary and organ perfusion 
pressure[100]

•	 Dopamine	 is	 the	 immediate	 precursor	 to	
norepinephrine and is  characterized by 
dose‑dependent effects that are due to both direct 
receptor stimulation and indirect effects[8] due to 
norepinephrine conversion and release.[101] Doses 
<5 mcg/kg/min stimulate dopamine receptors 
and have minimal cardiovascular effects. At 
moderate doses between 5 and 10 mcg/kg/min, 
dopamine weakly binds to beta‑1 receptors, 
promotes norepinephrine release, and inhibits 
norepinephrine reuptake in presynaptic sympathetic 
nerve terminals, resulting in increased inotropy and 
chronotropy, and a mild increase in SVR via alpha‑1 
adrenergic receptor stimulation.[8] At higher doses 
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of 10–20 mcg/kg/min, alpha‑1 receptor‑mediated 
vasoconstriction dominates.[8] Dopamine remains 
the treatment for symptomatic bradycardia 
unresponsive to atropine or as a temporizing 
measure while awaiting the availability of 
a pacemaker.[92] Otherwise, the clinical use 
of dopamine continues to decline due to its 
indirect effects, significant variations in plasma 
concentrations in patients receiving the same dose, 
and recent study demonstrating a higher incidence 
of arrhythmia and higher mortality in cardiogenic[102] 
and septic shock.[103] Consequently, previous 
recommendations for its use in cardiogenic shock 
with SBP 70–100 mmHg with signs or symptoms 
of end‑organ compromise,[100] based on its alpha‑1 
activity to correct the deficit in organ perfusion 
pressure, have been removed.[104] Also citing 
this evidence, dopamine is no longer a first‑line 
treatment for septic shock, but may be reserved 
for select patients with a low risk of arrhythmia 
who present with hypodynamic (low CO) septic 
shock and/or bradycardia,[2] as dopamine increases 
inotropy and chronotropy (thereby increasing CO 
and MAP) with a minimal increase in SVR

•	 Ephedrine	 acts	 primarily	 on	 alpha	 and	 beta	
receptors,[105] similar to epinephrine but with less 
potency. Ephedrine also releases endogenous 
norepinephrine from sympathetic neurons and 
inhibits norepinephrine reuptake, accounting for 
additional indirect alpha and beta receptor effects. 
Ephedrine’s combined effects result in an increased 
HR, CO, and MAP. Ephedrine is a noncatecholamine 
and because of its longer duration of action, its 
dependence on endogenous norepinephrine for 
its indirect effects and its potential to therefore 
deplete norepinephrine, it is not ideal for infusion 
and is therefore rarely used except in the setting of 
transient anesthesia‑related hypotension.

Inodilators
•	 Isoproterenol has potent beta‑1 and beta‑2 activity 

with virtually no alpha activity. Its principal 
actions are inotropy, chronotropy, and systemic 
and pulmonary vasodilation.[8] Despite its inotropy, 
the systemic vasodilation decreases venous return, 
resulting in a minimal increase in CO and a drop 
in MAP.[8] Because of this, isoproterenol is limited 
to situations where hypotension and shock result 
from bradycardia or heart block[92]

•	 Dobutamine primarily stimulates beta‑1 and beta‑2 
receptors resulting in increased chronotropy, 
inotropy, and systemic and pulmonary vasodilation. 

The net result is increased HR, CO, and decreased 
SVR with or without a small reduction in MAP. 
Dobutamine is frequently used to treat low CO 
following cardiac surgery primarily due to its 
inotropic and pulmonary vasodilatory effects.[106] 
Although its recommendation in cardiogenic shock 
no longer formally exists, it may still be useful in 
early cardiogenic shock without evidence of organ 
hypoperfusion.[100] However, if organ hypoperfusion 
is present, an inoconstrictor should be chosen to 
restore organ perfusion pressure.[100] Dobutamine 
remains recommended therapy in septic shock with 
low CO[2]

•	 Milrinone,	 a	 nonadrenergic	 phosphodiasterase	
inhibitor, increases intracellular levels of myocardial 
and vascular smooth muscle cAMP by inhibiting 
its breakdown, leading to increased myocardial 
contractility and smooth muscle relaxation resulting 
in pulmonary and systemic vasodilation. Thus, 
milrinone improves RV function in the setting 
of pulmonary hypertension,[106] more so than the 
adrenergic inodilators. In addition, milrinone 
uniquely improves diastolic relaxation (lusitropy). 
Being a nonadrenergic agent, it has the advantage 
of not being affected by beta‑blocker use or the 
characteristic diminished beta receptor responses 
seen in chronic heart failure and does not produce 
the adverse effects associated with beta‑receptor 
stimulation.[8,106] Milrinone’s vasodilatory properties 
limit its use in hypotensive patients,[107] and its 
30–60 min half‑life is significantly longer than the 
adrenergic inodilators[106]

•	 L e v o s i m e n d a n 	 i s 	 a 	 n o n a d r e n e r g i c	
calcium‑sensitizing agent that produces inotropy 
by calcium sensitization of myocardial contractile 
proteins, without increasing intracellular calcium, 
and vasodilatation within the systemic and 
pulmonary circulation, by activation of adenosine 
triphosphate‑sensitive potassium channels.[108] 
Levosimendan produces similar clinical effects to 
milrinone,[109,110] but is also limited by hypotension 
and a long duration of action (80 h due to active 
metabolites). Levosimendan is a relatively new 
agent and is not currently approved for use in the 
United States.

CONCLUSION

Despite the growing body of evidence evaluating the 
efficacy of vasoactive agents in the management of 
circulatory shock, it appears no agent is superior, and 
the recent meta‑analysis of 23 randomized controlled 
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trials comparing commonly used agents supports this.[11] 
This is becoming increasingly accepted as current 
guidelines from the American College of Cardiology 
and the American Heart Association no longer publish 
detailed algorithms for the management of cardiogenic 
shock,[100] and have instead replaced them with a single 
statement: Vasoactive agents should be individualized 
and guided by invasive hemodynamic monitoring.[104] 
Based on this, vasoactive agent selection may currently 
be individualized and left to the discretion of the treating 
physician with a goal‑directed approach. However, 
circulatory shock in the comorbid patient is a complex 
process; therefore, the ability to rapidly diagnose the 
etiology and firmly understand its pathophysiology 
as well as the pharmacology of vasoactive agents is 
ultimately paramount importance to guide successful 
therapy.

In summary, the following recommendations can 
be made regarding the current management of 
perioperative circulatory shock: (1) Vasoactive agent 
selection should be based on correcting the underlying 
physiologic deficits and the agent ultimately chosen 
probably does not matter as long as the hemodynamic 
goals are achieved;[22,26] (2) achieving supraphysiologic 
goals for CO has not been shown benefit patients and 
may cause harm,[23,57,58] but if maximal doses of a first 
agent are inadequate to meet goals, then a second drug 
should be added, with consideration given to agents 
with different mechanisms of action to maximize 
effects; and (3) patients receiving vasoactive agents 
require careful monitoring and frequent reevaluation 
so these agents can be titrated to the minimal effective 
dose to avoid potential adverse effects.
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