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Abstract

Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary
decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them
corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two
stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch
between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a
question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model.
In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to
understand the global properties of the switching system. The local analysis is performed at the saddle point, an often
disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process.
Results are illustrated on three previously published models of biological switches: two models of apoptosis, the
programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity.
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Introduction

Decision-making processes are essential to many biological

functions. At a cellular level, they are commonly implemented

through bistable dynamical switches where both stable steady-

states correspond to a distinct decision. Example of bistable

switches are found in biological processes including cell cycle

progression [1,2], cell death signaling [3,4], developmental

processes [5], memory formation (long-term potentiation) [6], or

infectious diseases such as prion propagation [7].

The paper shows how a local analysis helps understanding the

global behavior of dynamical switches under assumptions that seem

very plausible. The key observation is that the local analysis must not

be performed around the stable steady-states of the model, which

correspond to experimentally observed conditions. Rather, the local

analysis is performed at a saddle point, an unstable equilibrium of the

model, which is shown to be a key ruler of the (transient) decision-

making process. Local analysis is shown to be particularly relevant for

two biologically important analysis questions: first, the parametric

robustness of the phenomenon [8] and second, which parameters

influence the transient behavior, i.e the time needed to make a

decision. Results are illustrated on three previously published models

of bistable switches: two models of apoptosis, the programmed cell

death [3,9] and a model of long-term potentiation [6].

We argue that a local analysis at the saddle point is an excellent

predictor of the global behavior and that it can save a considerable

amount of time with respect to the extensive simulations required

to capture the switching phenomenon under investigation.

The paper is structured as follows. The method section first

illustrates the relevance of the proposed approach in two-

dimensional models and describes how to extend it to models of

arbitrarily large dimension. The result section then presents the

results of the proposed analysis on two distinct types of published

models: two models of apoptosis where the analysis is applied to an

8-dimensional [3] and a 37-dimensional [9] model, and a 10-

dimensional model of long term potentiation [6].

Methods

Bistable dynamical models have two stable equilibria. Each

stable equilibrium has a distinct basin of attraction. The closure of

the basins of attraction includes a common boundary that

separates them. Most often, the separatrix contains an unstable

saddle point, which is attractive in the separatrix but repulsive

away from the separatrix. This section shows how a local analysis

at this saddle point is highly relevant to understand global

properties of biological switches. This is first illustrated on a two-

dimensional system, then the paper describes how to extend the

analysis to models of arbitrarily large dimension.

A two-dimensional illustration
Bistability is a phenomenon that is well understood in planar

models. There are many examples of two-dimensional bistable

models including the famous Lotka-Volterra equations for two

competing species population dynamics [10,11], the model of

genetic control proposed by Griffith [12] and the ‘‘excitatory-
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excitatory’’ (E-E) and ‘‘inhibitory-inhibitory’’ (I-I) models of

Hopfield for neural networks [13]. In all these models, bistability

is achieved thanks to the presence of a positive feedback loop, a

necessary condition for bistability [14,15]. This positive feedback

results from different mechanisms of interactions such as self-

induction (Lotka-Volterra model), mutual activation (Griffith and

E-E models) or mutual inhibition (I-I model). As a toy example for

this section, we use a model of mutual activation between two

simple components:

dx1

dt
~{x1zf (x2) ð1Þ

dx2

dt
~{x2zf (x1) ð2Þ

where x1,x2[<§0 are the level of activation of two interacting

components (activation of neurons, expression level of genes,

concentration level of proteins,). The positive, nonlinear function

f , typically sigmoidal or step-like, describes the positive feedback

of one component on the other. In this section, f is chosen as a

Hill function f (x)~
1

c

xn

1zxn
with cw0,nw1: For suitable values

of parameter cw0, the system is bistable.

In addition to the two stable equilibria, two-dimensional

bistable models must include a saddle point as an extra

equilibrium. Figure 1 depicts the typical phase plane of a bistable

model resulting from mutual activation. Equilibrium points are

located at the intersection of the nullclines (black-dashed curves),

i.e the curves dx1=dt~0, dx2=dt~0: Due to the s-shape

nonlinearity of nullclines (which is caused in cellular processes

by specific mechanisms like ultrasensitivity [16]), the system has

three equilibria. Two are stable and correspond to experimentally

observable conditions (green dots): the ‘‘off’’ state where both x1

and x2 are inactivated and the ‘‘on’’ state where both x1 and x2

are fully activated. The third equilibrium is unstable and is

therefore not seen in experiments (red dot). This point is a saddle

point, i.e an equilibrium point with attractive and repulsive

directions. The saddle point has a central role in the decision

model: it is like a mountain pass between two valleys. Its stable

manifold (green curve) divides the phase plane into the two basins

of attraction of stable equilibrium points while its unstable

manifold (red curve) connects the three equilibrium points.

The saddle point is a particular equilibrium point as it is both

attractive and repulsive. In many bistable models, the attractivity

of the saddle point is enhanced by a time scale separation at this

point. Figure 2 A shows the phase portrait of a bistable model

where there is a strong time-scale separation between a fast

attraction to the saddle point in the stable manifold and a slow

repulsion from the saddle point in the unstable manifold. This

time-scale separation is visible in the vector field (black arrows)

which is almost parallel to the stable manifold. Due to the time-

scale separation at the saddle point, trajectories (grey curves) that

start in the vicinity of the stable manifold (green-dashed line)

converge in the fast time-scale to a neighborhood of the saddle

point. They escape the saddle in the slow time-scale, resulting in a

long transient latency. Eventually, they converge to one of the two

stable equilibria. For this example, the time-scale separation

persists relatively far from the stable manifold and can be observed

in a large portion of the phase plane. The ratio of speeds between

attractive and repulsive directions quantifies this time-scale

separation. It is calculated by linearizing and computing the

eigenvalues of the system at the saddle point. The positive

eigenvalue lu is associated with the unstable manifold while the

negative eigenvalue ls is associated with the stable one. We define

the ratio

t~ jlsj
lu

ð3Þ

as a qualitative measure of the time-scale separation around the

saddle point.

A large t occurs in systems working close to a saddle-node

bifurcation. At a saddle node bifurcation, the saddle point merges

with a stable equilibrium point and the system switches from

bistability to monostability. Because the positive eigenvalue lu of

the saddle point vanishes, the ratio t becomes arbitrarily large in

its vicinity. Figure 2 B-C show how nullclines and equilibria are

modified by increasing the parameter cw0: At c~cc, a saddle

node bifurcation occurs: the system initially presenting three

steady-states becomes monostable. The value of parameter c in

Figure 2 A is chosen close to cc to exhibit the time-scale

separation.

When t is large, a local analysis (e.g. a sensitivity analysis) of the

dynamics near the saddle point reveals global properties of

the bistable switch. Local analysis is routinely applied in the

neighborhood of stable equilibria, which correspond to experi-

mental steady-state conditions. In contrast, in bistable systems with

a ratio t sufficiently large to observe a time-scale separation, the

saddle point is very central to the system dynamics as it governs

the transient behavior. This central role makes it a good point to

estimate the effect of parametric perturbation on the global

switching behavior. Furthermore the saddle point is also the key

ruler of the bifurcation diagram in the neighborhood of the saddle

node bifurcation. A perturbation that strongly affects the saddle

Figure 1. Schematic phase plane of a two-dimensional bistable
model. The system has two stable steady-states (green dots) and an
unstable one (red dot). These steady states lie at the intersections of the
nullclines (black dashed curves), dx1=dt~0 and dx2=dt~0: The stable
manifold (green curve) of the saddle point divides the phase plane in
the two basins of attraction of the stable equilibria and is therefore
called a separatrix. The saddle point’s unstable manifold (red curve)
connects the three equilibrium points. Any perturbation pushing the
trajectory across the separatrix induces a switch in the final decision.
doi:10.1371/journal.pone.0033110.g001
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point is thus likely to push the system beyond the bifurcation point

and destroy the bistable behavior. For these reasons, a local

sensitivity analysis at the saddle point is a good predictor of the

global robustness of the system.

A saddle point with a large t has the additional property of

delaying the decision process. As an illustration, we consider an

input-output version of the system (1)–(2):

dx1

dt
~{x1zf (x2) ð4Þ

dx2

dt
~{x2zf (x1)zu(t) ð5Þ

y~x1 ð6Þ

with f (x)~
1

0:4

x2

1zx2
: Initially, the system is in the ‘‘off’’ state

corresponding to decision 1. We analyzed the effect of a short

duration (pulse-like) input, modeled for simplicity by a Dirac

function of amplitude d, i.e u(t)~dd(t): x1 is the observed

quantity. If the signal strength d is greater than a particular

threshold d, the system switches from the ‘‘off’’ state to the ‘‘on’’

state ( i.e from decision 1 to decision 2) see Figure 3 A where the

output has been normalized. The ‘‘off’’ state corresponds to y~0
and the ‘‘on’’ state to y~1: If dvd, the system returns to the ‘‘off’’

state and no switch occurs. The switch occurs when the transient

signal is strong enough to push the system state beyond the

separatrix in the phase plane. Interestingly, the switching time

depends on the signal strength. Figure 3 B shows the correspond-

ing trajectories in the phase plane. The time-scale separation at

saddle point forces trajectories that approach the stable manifold

to rapidly converge to a neighborhood of the saddle point from

which they slowly escape, causing the delay. This results in a

mechanism of input-strength dependent delays with delays

particularly long for inputs close to the threshold, d:
An important observation is that delayed decision making is

robust to perturbations and persists beyond the bifurcation.

Figures 3 A-F show how the trajectories and the phase plane are

modified by adding a production term in equation (1),

dx1=dt~{x1zf (x2)zp, p§0: When p~0, the system is

bistable and one observes delays in the decision making process,

see Figure 3 A-B. For p~0:2, the saddle point disappears trough a

saddle-node bifurcation. Despite the absence of a saddle point, see

Figure 3 C-D drawn for p~0:25, one still observes the time-

delayed decision. The ghost saddle point creates a bottleneck, a

well-known phenomenon [17]. This phenomenon disappears as

the system moves further away from the bifurcation point, see

Figure 3 E-F where p~1:5:

Local analysis of a n-dimensional model
Bistability is also observed in models of dimension nw2: This

section shows how to find and identify a saddle point in a high-

dimensional model. It also describes how to extend the ratio t
introduced for two-dimensional systems and how to compute a

local sensitivity at this point.

Localization of the saddle point. Localizing steady states in

a high-dimensional system of nonlinear differential equations is not

a straightforward task because it requires finding the roots of the

algebraic equation f(x) = 0. The peformance of numerical root

finding algorithms is usually local, that is, roots are easily found

numerically provided that a good initial guess is known. For stable

steady-states of a bistable system, a few simulations of the

differential equation are sufficient to provide good initial guesses

since simulations will converge to one of the two stable equilibria.

In a similar way, simulations initialized in the vicinity of the stable

manifold of the saddle point will have a long transient near the

saddle point, especially if there is a strong time-scale separation,

thereby providing good initial guess for the root finding algorithm.

Because the stable manifold of the saddle is a separatrix of the two

basins of attraction, initializing a simulation near the stable

manifold is achieved by picking up a state variable that clearly

distinguishes the two stable states (this choice is often suggested by

biology) and by applying a bisection procedure to identify an initial

condition close to the separatrix. In this paper, we used Matlab’s

ode15s for simulating the differential equations and Levenberg-

Marquardt option in the fsolve algorithm for solving the algebraic

equations.

Figure 2. Time-scale separation at saddle point (A) and saddle node bifurcation (B-C). (A) A time-scale separation between the stable and
unstable manifolds of the saddle point enhances its temporary attractivity. Trajectories (grey curves) converge to the unstable manifold (red dashed
line) in the fast time-scale before sliding to a stable equilibrium point (green dot) in the slow time-scale. (B) For cvcc, the nullclines (black curves)
intersect a three equilibrium points, the system is bistable. For cwcc, the nullclines (grey dashed curves) intersect at a simple equilibrium point, the
system is monostable. (C) Corresponding diagram of bifurcation. At c~cc, the ‘‘on’’ stable equilibrium branch (solid green curve) merges with the
saddle branch (red dashed curve) in a so-called saddle node bifurcation.
doi:10.1371/journal.pone.0033110.g002
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Local stability analysis at the saddle point. The local

stability of an equilibrium point, x0 is computed by linearizing the

differential equation around that point to obtain the Jacobian

matrix

A~
L
Lx

f(x)

����
x~x0

ð7Þ

and calculating eigenvalues and corresponding eigenvectors of A:
A saddle point has eigenvalues with both positive and negative real

parts. ln this paper, we assume for simplicity that the saddle point

is hyperbolic, i.e it has no eigenvalues with zero real part. We also

assume that the linearization presents a simple positive eigenvalue

l1w0 and n{1 eigenvalues with a negative real part

<(ln)ƒ . . . ƒ<(l2)v0: From the stable manifold theorem [18],

the eigenvector associated with the positive eigenvalue l1 provides

the tangent approximation of the unstable manifold at the saddle

point while the remaining eigenvectors span an hyperplane

tangent to the stable manifold. We generalize the two-dimensional

definition of the ratio (3) by defining lu~l1 and ls~<(l2), a high

ratio meaning a strong time-scale separation.

Local sensitivity at the saddle point. Sensitivity analysis is

a standard tool to quantify the effect of parameter variation on the

system behavior. Local sensitivity analysis is routinely applied

around stable fixed points. Here, we propose to compute the local

sensitivity analysis at the saddle point. For hyperbolic steady states,

the sensitivity at the steady state x0 is given by

S~{
Lf(x)

Lx

����
{1

x~x0

Lf(x)

Lp

����
x~x0

, ð8Þ

or, its normalized version for a steady state x0 with nonzero entries

~SS~{diag (p)
Lf(x)

Lx

����
{1

x~x0

Lf(x)

Lp

����
x~x0

diag (x0){1: ð9Þ

To convert this matrix into a scalar measure, we use the

cumulated sensitivity of a given parameter defined as

~ssp~
Xn

i~1

jeT
i diag(p)

Lf(x)

Lx

����
{1

x~x0

Lf(x)

Lp

����
x~x0

diag(x0){1j ð10Þ

where ei is the i-th Euclidean basis vector. The scalar quantity ~ssp is

the matrix one-norm of ~SS:

Non local sensitivity analyses
Non local sensitivity analyses are based on numerical tools and

have been used to estimate the parametric robustness of several

biological systems [19–23]. Such methods include bifurcation

diagrams [19,20] or extensive numerical simulations such as

Monte Carlo-based methods [21,22,24]. A limitation of these

Figure 3. Switches with input-strength dependent delays. In Figure (A), the system is bistable. The switch occurs when the signal strength d is
greater than a particular threshold d: The switching time depends on d: Figure (B) shows the corresponding trajectories in the phase plane. For
inputs close to d, trajectories start in the vicinity of the stable manifold (green dashed curve) and converge rapidly to a close neighborhood of the
saddle point (red dot). The escape from the saddle point is slow, causing the time-delay. Figures (C-D) and (E-F) show how the switch is modified by
adding a production term pw0 to equation (1). (C-D) p~0:25, only the ‘‘off’’ state remains while the value of p is close to the bifurcation point
pc~0:2: The saddle point has disappeared but its ghost creates a similar delay. One can still observe switches with input-strength dependent delays.
(E-F) p~1:5, both the bottleneck and the switches with delays disappear.
doi:10.1371/journal.pone.0033110.g003
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methods is that the computational task becomes considerable as

the dimension of the model increases. In this paper, the results of a

local sensitivity analysis at saddle point are compared with the

results of a non local single parameter robustness analysis, the

DOR analysis. This method consists in computing for each

parameter, a degree of robustness (DOR) and is inspired by the

method of Ma and Iglesias [20] proposed to study the robustness

of oscillators. The DOR of a bistable model with respect to a

particular parameter kw0 (all remaining parameters being fixed)

is defined by:

DOR~1{ max
kmin

k
,

k

kmax

� �
ð11Þ

where (kmin,kmax)((0,?) denotes the range of bistability. This

global sensitivity measure is computed around (and therefore

dependent on) a nominal set of parameters. A degree close to one

means that the system is very robust to parameter k and a degree

close to zero means that it is very sensitive to this parameter. The

computation of the range of bistability for each parameter

variation is of course a computationally demanding task. For the

Eißing and Aslam models and the set of nominal parameters

proposed by original authors (see Table S1 and Table S3), it is

computed by drawing a diagram of bifurcation for each parameter

k with the software XPPAUT [25]. For the 37-dimensional and

highly nonlinear Schliemann model, calculating diagrams of

bifurcation becomes very demanding. Instead, the interval of

bistability is computed using simulations, i.e by perturbing one

parameter at a time and checking that the system is still bistable.

The set of parameters used for this model is referenced in Table

S2.

Results

This section presents the proposed local analysis on three

published models of deterministic biological bistable systems. The

analysis is first applied to a small model of the apoptotic switch

proposed by Eißing et al. [3], then to a larger model of the

apoptotic switch by Schliemann et al. [9] and finally to a model of

long term potentiation proposed by Aslam et al. [6]. In these three

models, the switch is triggered by a transient signal (pulse-like).

The local analysis sheds light on the mechanism governing the

switch between stable steady-states and is used to quantify the

robustness of the process to parametric perturbations. The results

are compared with results from non local analyses.

Local analysis at the saddle point of apoptosis models
provides global understanding of the decision-making
process

Apoptosis, the predominant form of programmed cell death, is

used by multicellular organisms to remove superfluous, damaged

or potentially harmful cells [26]. In this process, a pro-apoptotic

signal triggers a biochemical signaling cascade activating specific

proteases, the initiator caspases, which then activate other

proteases, the effector caspases, leading to cellular death [26].

See [27] for an overview of the broad variety of apoptotic signaling

models. Among these models, several involve a feedback loop

between initiator and effector caspases leading for suitable

parameters to a bistable system. This is the case for the 8-

dimensional model of Eißing [3] and the 37-dimensional model of

Schliemann [9].
Eißing model. The model of Eißing [3] is a model of 8

ordinary differential equations with 19 kinetic parameters, where

the activation of the initiator caspase C8 is enhanced through a

positive feedback loop with the effector caspase C3, see Figure 4 A.

The model also involves two inhibitors of apoptosis IAP and

CARP that can link to caspases to avoid apoptosis.

Eißing et al proposed an input-ouput version of the model. The

input affects the concentration of activated initiator caspases C8�

while the ouput was related to the concentration of activated

effector caspases C3�: In the present analysis, the input signal

directly acts on the number of initiator caspases that become

activated (C8?C�8 ) rather than an extra inflow of active initiator

caspases. This slight modification with respect to [3] has been

chosen to better describes the effect of a pro-apoptotic signal but

the same results hold for the original input. For nominal

parameter values (see Table S1), the system exhibits three

steady-states with non-negative concentrations, two stable points

corresponding to life and death and a saddle point.

The system linearized at the saddle point has one real positive

eigenvalue l1, and 7 negative ones l2 . . . l8 with 0vjl1jvjl2j
v . . . vjl8j, see Table 1. The ratio, t between the slowest

negative eigenvalue and the positive one is high (&10) and reflects

the high time scale separation at the saddle point. Although the

model is eight-dimensional, the strong time-scale separation forces

trajectories to rapidly converge to the vicinity of the saddle point

before slowly escaping along its unstable manifold to asymptoti-

cally reach one of the two stable equilibria, see Figure 4 B. The

cumulative sensitivity ~ssp shows that the saddle is insensitive to the

parameters k4, k5 and k6, the ones controlling the degradation of

free activated caspases C3* and C8* and the active degradation of

an inhibitor IAP by C3*, see Figure 4 C. In Figure 4 D, this local

sensitivity analysis is compared with the result of a non local

robustness analysis. This analysis shows that the system is

particularly robust to the parameters k4, k5 and k6, thus to the

ones with low sensitivities at the saddle point. Conversely, the

bistability is not robust to parameters with high sensitivities. The

good match between both analyses reveals the predictive power of

the local sensitivity analysis at the saddle point to estimate the

robustness of the bistable behavior. Interestingly, the three

insensitive parameters control the degradation of free caspases

suggesting that free caspases are not involved in the death decision

making process. Instead, the slow dynamics at the saddle point are

mostly governed by inhibitors.

The presence of a saddle point with a large t induces a delayed

decision mechanism in the Eißing model. We simulated the system

for inputs of increasing amplitude by modifying the initial

concentrations of C8 and C8 � : For small stimuli, the systems

returns to the life state but strong stimuli induce a fast transition to

the death equilibrium. By bisection, we obtained the input’s

switching threshold as �dd&75 mol/cell. For inputs close to this

value, the states remain relatively close to the saddle point for a

long time, see Figure 4 B,E. The switching time depends on the

stimulus strength.

Schliemann model. The model by Schliemann et al. is a

much larger model of apoptosis signaling [9]. This model describes

the pro- and anti-apoptotic signaling pathways induced by the

stimulation with the cytokine TNF. On the one hand, TNF

enhances the activity of NF-kB, an important transcription factor

for anti-apoptotic proteins. On the other, TNF internalizes and

then activates the initiator caspase Caspase 8, which is part of a

positive feedback loop of mutual activation of Caspase 8, Caspase

3 and Caspase 6. In the input-output version of the system, the

input modifies the initial concentration of TNF while the output is

chosen as the concentration of activated Caspase 3. For nominal

parameter values (see Table S2), the model has a total of 37 states

and is also bistable with a saddle point having only one positive

Global Analysis of Decision-Making Models
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eigenvalue, which furthermore is the smallest one in absolute

values, see Figure 5 A and Table 2. The ratio t is less pronounced

here, approximatively a factor two. This is still enough to delay the

switch for impulse inputs close to the input threshold, see Figure 5

B for simulations with various input intensities around the

threshold level �dd: The delayed decision making is particularly

pronounced for inputs slightly above the threshold, where the

delay is quite significant (about one day). Visualizing the

trajectories in the state space illustrates the importance of the

saddle point and of its unstable manifold (Figure 5 C). Inputs close

to the transition threshold result in trajectories that first converge

to the proximity of the saddle point before diverging along the

unstable manifold. Because of a smaller t value than in the model

of Eißing, the convergence is less pronounced for inputs not very

close to the threshold.

Figure 6 shows the relative sensitivities at saddle point. It should

be noted that the sum of relative sensitivities is computed over the

states with a non-zero concentration. Interestingly, the linearized

system is sensitive to the parameters controlling the reactions

which involve the caspases and their inhibitors while it is quite

robust to parameters controlling the reactions that govern the

binding of the ligand to the receptor. This suggests an essential role

for caspases and inhibitors in the control of the switch from life to

death in agreement with a recent analysis of the system based on

experimental data [28]. Red parameters, i.e parameters with a

Figure 4. Results of the analysis of the model of apoptosis proposed by Eißing et al. [3]. (A) Model description. In response to a pro-
apoptotic input signal, initiator caspases C8 become activated and activate the effector caspase C3. Activated C3, C3*, activate C8 in return through a
positive feedback loop. Inhibitors CARP and IAP bind to C8* and C3* to prevent apoptosis. (B) Time-scale separation at saddle point. Trajectories
rapidly converge to the unstable manifold (red dashed line) of the saddle point (red dot) and then slowly escape to reach either the life (green
square) or the death steady-states. For the grey trajectory, equally distributed time markers are depicted (t0,t1,t2,. . .) showing how trajectories are
delayed in the vicinity of the saddle point. (C) Sum of relative sensitivities at saddle point. The saddle point is insensitive to parameters kz4, kz5 and
kz6 (see Supplementary table 1). These parameters have a high degree of robustness (D). (E) Output trajectories for increasing input. For input above
the threshold, the system switches to the unexcited state, see the corresponding trajectories in the phase plane (B). Trajectories have been
normalized such that the output equals zero in the unexcited state and equals one in the exited state. Depending on the input strength, the switch is
more or less delayed. By observing trajectories in the phase plane (D), one can see that trajectories starting close to the stable manifold of the saddle
point fast converge in the neighborhood of the saddle point where there are delayed before converging to the excited state creating a mechanism of
delayed decision making.
doi:10.1371/journal.pone.0033110.g004

Table 1. Model of Eißing: Eigenvalues and ratio t.

l2 l1 t

–0.0011 1.08e–04 9.9897

doi:10.1371/journal.pone.0033110.t001
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large sensitivity at saddle point have a DORƒ0:53: At the

opposite, dark blue parameters, i.e the parameters with a low

sensitivity at saddle point, have a DOR§0:95: As for the model of

Eißing, sensitivity analysis at saddle point is a good predictor of the

robustness of the bistable behavior.

Model of long-term potentiation
This section shows the results of our local analysis to a model of

long term potentiation proposed by Aslam et al. [6]. Long term

potentiation (LTP) describes the long-lasting increase in synaptic

strength described in learning and memory processes [29]. Aslam

et al. proposed a model of late LTP (L-LTP) in agreement with

experimental data where long term potentiation is achieved thanks

to the presence of a bistable switch resulting from the molecular

loop between the kinase (a-CaMKII) and the translation

regulation factor (CPEB1), see Figure 7 A. The protein a-CaMKII

can be in one of three states: inactive (X), active (XA) and

phosphorylated (XA
p ). When active and phosphorylated a-CaMKII

phosphorylates CPBE1 which in return initiates the translation of

a new a-CaMKII protein creating a positive feedback leading to a

fast increase of the total concentration of a-CaMII. For

biologically plausible parameters values (see Table S3), the 10-

dimensional ODE model is bistable. The induction of L-LTP is

modeled by a brief pulse (10 seconds) which transiently increases

the basal level of (Ca2z)4-CaM. For weak pulses, the system

returns to the initial steady state corresponding to low concentra-

tion of total CaMKII. For stronger pulses, the system switches to

the other stable steady state and the total concentration of

CaMKII increases to approximately twice its basal level, see

figure 7 B.

We numerically found a saddle point and computed the

eigenvalues of the Jacobian matrix at this point, see Figure 7 C and

Table 3. All the eigenvalues are real with l1w0 and

0vjl1jv . . . vjl10j: As for the models of Eißing and Schliemann,

the unstable manifold of the saddle point is one-dimensional. The

ratio t is smaller than for the model of Eißing but it is sufficient to

induce a time-scale separation at saddle point and observe delays

in the switch see Figure 7 B. The local sensitivity analysis at the

saddle point correlates well with the degree of robustness:

parameters with high sensitivities have a low degree of robustness

while parameters with low sensitivities have a high degree of

robustness, see Figure 7 D-E where the relative sensitivities have

been computed for the non-zero parameters of the nominal model.

Figure 5. Results of the analysis of the model of Schliemann et al. [9]. (A) Magnitude of the real part of the eigenvalues of the Jacobian
matrix at the saddle point, the stable ones are depicted in black while the unstable one is depicted in red. The zooms in on the three slowest
eigenvalues. (B) Output trajectories for impulse inputs, slightly below (light blue solid curve), slightly above (dark grey dashed curve), above (dark
grey solid curve) and significantly above (black solid curve) the decision making threshold, d: (C) Corresponding trajectories in the phase plane.
Trajectories passing close to the saddle point are delayed. Trajectories follow the unstable manifold of the saddle point (red dashed curve) before
reaching the survival or death state.
doi:10.1371/journal.pone.0033110.g005

Table 2. Model of Schliemann: Eigenvalues and ratio t.

l2 l1 t

–5.6e–05 2.6e–05 2.2

doi:10.1371/journal.pone.0033110.t002
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Figure 6. Sensitivity analysis at saddle point for the model of apoptosis proposed by Schliemann et al. [9]. The parameters have been
divided in three sets. The first one include the parameters controlling the reactions involving the binding of TNF to receptor, the second one the
parameters controlling the activity of NF-kB and the last one the parameters linked to the reactions governing caspases and their inhibitors.
doi:10.1371/journal.pone.0033110.g006

Figure 7. Model of Aslam et al. [6]. (A) The model describes the positive feedback loop between the protein a-CaMKII and the translation factor
CPEB1. The protein a-CaMKII can be in one of three states: inactive (X), active (XA) and phosphorylated (XA

p ). When active and phosphorylated, a-
CaMKII phosphorylates CPBE1 which in turn can initiate the translation of a new a-CaMKII protein [6]. (B) Trajectories for increasing inputs showing
the delay close to the threshold �dd: (C) Magnitude of the real part of the eigenvalues of the Jacobian matrix at the saddle point, the stable ones are
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In addition, we looked at the effect of a parametric perturbation

on the switch. We chose a set of parameters with different

sensitivities at saddle point and perturbed one parameter at a time.

Then we computed the new switching threshold �dd and simulate

the system for increasing inputs above this new threshold d:
Simulations show that both the switching threshold and the delay

durations are mostly affected by the sensitive parameters at the

saddle point, such as the basal level of (Ca2z)4-CaM (parameter

22) and the rate of activation of CAMKII k1 (parameter 1), see

Figure 8. In contrast, the switch was insensitive to modification of

the protein synthesis rate kSYN2 (parameter 20) as predicted by

the local sensitivity analysis at the saddle. As previously illustrated

in dimension 2, delayed decision making is enhanced close to a

saddle node bifurcation where the ratio t is generally high. This is

illustrated by modifying the initial value (control) of parameters

(Ca2z)4-CaM, kSYN1, k1 and putting them close to their value at

bifurcation, (Ca2z)4-CaMc, kSYN1c, k1c, see Figure 9.

Discussion

Local analysis for global predictions
Sensitivity analysis is routinely applied to systems linearized

around a stable equilibrium point in order to test the parametric

robustness of the model. In this paper, we propose to study the

sensitivity around an unstable equilibrium point to analyze the

parametric robustness of a bistable decision process. Performing a

local analysis around an unstable equilibrium point may seem of

little relevance since it does not correspond to an experimental

condition. However, it was shown that the saddle point is a key

ruler of the transient behavior of bistable decision processes,

especially in the case of strong time-scale separation.

Our approach is based on the hypothesis that the system has a

saddle point with a ratio t which is large enough to induce a time-

scale separation between a fast attraction to the saddle in the stable

manifold and a slow repulsion from the saddle in the unstable

manifold. Every model satisfies the required hypothesis in the

vicinity of a saddle node bifurcation as the real part of the positive

eigenvalue lu vanishes close to the saddle node bifurcation. The

phenomenon is therefore commonly encountered in bistable

models and it is not surprising to observe large t in models of

biological switches.

The two global predictions derived from the local analysis rely

on the time-scale separation in the following sense: (i) the use of t
to predict decision delays is a direct consequence of considering

the unstable manifold of the saddle as a valid one-dimensional

reduction of the full model, see [30] for a formal reduction based

on singular perturbation theory. (ii) The use of local sensitivity

analysis to predict the robustness of bistability is particularly

relevant when the nominal set of parameters is chosen close to a

saddle node bifurcation, which implies a strong time-scale

separation at the saddle point.

We analyzed three previously published models of bistable

switches and compared our results with results of non local

methods such as diagrams of bifurcation and numerical simula-

tions. For the three models, results of the local sensitivity analysis

are excellent predictors of the results obtained with the non local

methods. Local sensitivity analysis allowed us to identify the

parametric perturbations that are the most likely to destroy the

switch. In particular, in both models of apoptosis and for the set of

nominal parameters proposed by original authors, the apoptotic

switch is particularly sensitive to the parameters controlling the

reactions involving caspases linked to inhibitors. This result is in

agreement with previous analyses of the models which identified

the complexes caspases-inhibitors as key rulers of the decision

making process [31,32].

Our analysis also reveals a simple mechanism to create switches

with delays. This type of behavior has been observed in several

biological switches including apoptosis [33,34]. In apoptosis,

experimental results have shown the existence of a variable latent

period before the fast activation of effector caspases [33,34].

Recent experiments suggest that the variability in the duration of

the latent period has a non-genetic origin and depends on the

protein levels in the cell [35]. These results are well captured by

the proposed mechanism where the variability of the delay

depends on the initial concentration of enzymes involved in the

death process and the way trajectories are attracted and then

repulsed by the saddle point.

Table 3. Model of Aslam: Eigenvalues and ratio t.

l2 l1 t

–0.0013 4.04e–04 3.3

doi:10.1371/journal.pone.0033110.t003

depicted in black while the unstable one is depicted in red. The inlet zooms in on the three slowest eigenvalues. (D) Sensitivity at saddle point and (E)
degrees of robustness (DOR). Parameters with a high sensitivity (red) have a low degree of robustness. Conversely, parameters with a low sensitivity
(dark blue) have a high DOR.
doi:10.1371/journal.pone.0033110.g007

Figure 8. Parameter perturbation of the model of Aslam et al.
[6]. (A)-(D) The switching is depicted for nominal values of the
parameters (black curve), 10% of parameter perturbation (blue dashed
curve), 20% (green dashed-doted curve) and 30% of variation (red
curve). The system is simulated for an input slightly above the
threshold, i.e d~1:01�dd, where the threshold d is recomputed for each
parameter perturbation. (A) (Ca2z)4-CaM (parameter 22), (B) kSYN1

(parameter 18), (C) k1 (parameter 1) and (D) kSYN2 (parameter 20). Both
the switching threshold and time are affected by perturbation of
parameters (Ca2z)4-CaM and k1 . In contrast, the switching threshold
and time are insensitive to a perturbation of parameter kSYN2.
doi:10.1371/journal.pone.0033110.g008
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Decision-making in non bistable models
A striking feature of the proposed analysis is that it captures

important properties of bistable switches models beyond the

blanket hypotheses of the paper, i.e the assumption of a saddle

point with strong time-scale separation and of two stable points.

This is because, on the one hand, time-scale separation is a robust

phenomenon even for moderate values of t and, on the other

hand, because of the ghost effect of the saddle point beyond the

bifurcation. In that sense, the debate whether bistability is a

necessary feature of the decision making processes is irrelevant to

the results of the paper. For this reason, predictions made with our

analysis in the vicinity of a saddle-node bifurcation apply beyond

the bifurcation, that is, to models that are monostable and contain

no saddle.

Delayed decision-making and decision reversibility
The mechanism of delayed decision making has strong

biological relevance because it is related to potential reversibility.

In state space, the long latency period of delayed decision takes

place close to the separatrix of the basins of attraction. As a

consequence, small perturbations have the ability to revert the

switch during the entire latency period. This potential of

reversibility might be particularly relevant for the long term

potentiation model of Aslam. The importance of the model lies in

its ability to reproduce experimental results, in particular to

account for the different effects of applying inhibitors during the

induction or the maintenance phase of L-LTP: if applied during

the induction of L-LTP, protein synthesis inhibitors can block L-

LTP but they do not reverse the potentiation when applied during

the maintenance phase of L-LTP [29,36]. Moreover blocking the

aCaMKII activity stops the L-LTP induction phase but not the

maintenance phase [37,38]. These observations are completely

consistent with our explanation that small perturbations can revert

the decision during the latency period, i.e close to the saddle point

in state space, but not once the system has reached one of the two

equilibria.

Future directions
The proposed analysis is purely deterministic. However, in real

organisms, the decision-making process is affected by noise

[39,40]. Noise can affect the dynamics in many ways but clearly

affects both the probability of switching and the time required to

make a decision. An interesting extension of this work would be

the analysis of stochastic systems in order to determine in which

measure the local analysis remains a good predictor under the

presence of noise. In this paper, we only studied models of

decision-making at the intracellular level. However, bistability has

been used to describe decision-making in other contexts such as

collective decision in neuronal populations and insects colonies

[41,42]. Further work should determine what further insight could

be gained from applying the proposed methodology to these

systems.
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