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Abstract

Pseudomonas aeruginosa is a Gram-negative γ-proteobacterium that forms part of the nor-

mal human microbiota and it is also an opportunistic pathogen, responsible for 30% of all nos-

ocomial urinary tract infections. P. aeruginosa carries a highly branched respiratory chain

that allows the colonization of many environments, such as the urinary tract, catheters and

other medical devices. P. aeruginosa respiratory chain contains three different NADH dehy-

drogenases (complex I, NQR and NDH-2), whose physiologic roles have not been eluci-

dated, and up to five terminal oxidases: three cytochrome c oxidases (COx), a cytochrome

bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd-like oxidase (CIO). In this work,

we studied the composition of the respiratory chain of P. aeruginosa cells cultured in Luria

Broth (LB) and modified artificial urine media (mAUM), to understand the metabolic adapta-

tions of this microorganism to the growth in urine. Our results show that the COx oxidases

play major roles in mAUM, while P. aeruginosa relies on CYO when growing in LB medium.

Moreover, our data demonstrate that the proton-pumping NQR complex is the main NADH

dehydrogenase in both LB and mAUM. This enzyme is resistant to HQNO, an inhibitory mol-

ecule produced by P. aeruginosa, and may provide an advantage against the natural antibac-

terial agents produced by this organism. This work offers a clear picture of the composition of

this pathogen’s aerobic respiratory chain and the main roles that NQR and terminal oxidases

play in urine, which is essential to understand its physiology and could be used to develop

new antibiotics against this notorious multidrug-resistant microorganism.

Introduction

Pseudomonas aeruginosa is a Gram-negative, rod shaped γ-proteobacteria that colonizes a

large diversity of environments, such as soil, water, and forms part of the normal microbiota of

humans, animals and plants [1,2]. P. aeruginosa is also an opportunistic human pathogen that

commonly infects epidermal burns [3], the lung epithelia of cystic fibrosis patients [4,5] and it
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is responsible for one third of all nosocomial urinary tract infections (UTI), which greatly

increase the risk of morbidity and mortality in septic shock patients and diabetic patients [6]

and are commonly associated with the use of contaminated catheters [7,8]. The World Health

Organization ranks P. aeruginosa on its critical priority list as the second most important

microorganism for the development of new treatments [9]. Thus, it is essential to understand

the mechanisms used by this pathogen to survive in the urinary tract and other commonly

infected environments.

P. aeruginosa has an enormous repertoire of molecular mechanisms that allow its adapta-

tion to the environment, including a flexible metabolism that plays an essential role in its capa-

bility to colonize diverse niches. This bacterium is a facultative anaerobe with a highly

branched respiratory chain that uses either oxygen or nitrogen oxides as final electron accep-

tors [10–12] and that under aerobic conditions uses oxidative phosphorylation, rather than

fermentation, to produce ATP [4,11,12]. The genome contains 17 different dehydrogenases

[13], 15 of which transfer the electrons from diverse reduced substrates to ubiquinone, and

two of them transfer the electrons directly to nitrate reductases or cytochrome c [4,13]. The

aerobic respiratory chain is also branched at the level of the ubiquinone pool, containing a

cytochrome bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd–like oxidase (CIO),

both of which transfer electrons directly from quinol to oxygen (Fig 1A) [12–14]. In addition

to the quinol oxidases, the respiratory chain contains cytochrome bc1 and three cytochrome c
oxidases (COx): caa3, cbb3-1 and cbb3-2 (Fig 1A) [4].

One of the most striking differences between the respiratory chain of this bacterium and

that of human mitochondria is that P. aeruginosa possesses three different dehydrogenases

that transfer electrons from NADH to the ubiquinone pool: complex I, NQR (formerly Na+-

NQR, see below) and NDH-2 [13,15], while mitochondria only carry complex I. Complex I is

a 500 kDa respiratory enzyme composed of 14 subunits and several cofactors: two 2Fe-2S cen-

ters, six 4Fe-4S clusters, and a non-covalently bound FMN [16,17]. NQR is composed of six

subunits and contains one FAD, two covalently-bound FMNs, one 2Fe-2S center, a riboflavin

molecule and possibly a non-heme Fe center [18–22]. NDH-2 is a 46 kDa peripheral protein

with a single FAD cofactor [17,23]. The most important physiologic difference between these

enzymes is that complex I is a proton pump, while NDH-2 is not involved in ion pumping

[17,23]. Although in many cases it has been reported that NQR acts as a sodium pump, we

recently described that P. aeruginosa NQR is an ion pump that specifically transports protons

[24]. This raises questions regarding the role of each of these enzymes, especially since NQR

Fig 1. P. aeruginosa aerobic respiratory chain. A) Respiratory enzymes annotated in P. aeruginosa genome. Main

components of the respiratory chain in LB (B) and mAUM (C) media.

https://doi.org/10.1371/journal.pone.0231965.g001
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and complex I appear to be functionally redundant, and NDH-2 does not participate directly

in ion-gradient formation coupled to ATP synthesis. In other bacteria, the respiratory chain

typically contains NDH-2 and either complex I or NQR [23,25–27], and the presence of all

three NADH dehydrogenases is quite uncommon.

Although many studies have addressed the role of different respiratory complexes through

mutagenesis, transcriptomics and genomics tools [13,28–32], a clear picture of how these com-

plexes participate in the respiratory chain is currently unavailable. In this work, we performed

systematic functional and kinetic characterizations of the aerobic respiratory chain of P. aeru-
ginosa cultured in Luria Broth (LB) and modified artificial urine medium (mAUM), to under-

stand the composition of the respiratory chain and its physiological role in cells growing in

conditions that resemble urine. Our results indicate that P. aeruginosa respiratory chain com-

position is deeply influenced by the environmental conditions, which could be advantageous

for its survival and could be important to establish a successful infection. For instance, while

cytochrome CYO oxidase plays a major role in LB medium, the COx’s terminal oxidases play a

dominant role in mAUM. Our results also show that NQR is the most important NADH dehy-

drogenase in both conditions. These studies are important to better understand the physiology

of this important pathogenic bacterium and the role of the respiratory complexes in the sur-

vival in the urinary tract and in the initial steps of the colonization process, which may allow

the identification of new therapeutic targets against P. aeruginosa.

Materials and methods

Modified artificial urine medium

The growth medium used in this study to simulate urine is a modification of the Artificial Urine

Media reported by Brooks and Keevil [33]. The modifications are found in Table 1. One of the

Table 1. Comparison of artificial urine and modified artificial urine media.

[Nutrient]

AUM mAUM

EDTA - 3 mM

Citric acid 2 mM 2 mM

CaCl2 2.5 mM 2.5 mM

NaCl 90 mM 80 mM

Na2SO4 10 mM 10 mM

MgSO4 2 mM -

MgCl2 - 5 mM

KH2PO4 7 mM 50 mM

K2HPO4 7 mM -

Uric acid 0.4 mM 0.23 mM

NaHCO3 25 mM 37 mM

Peptone L37 1 (g/l) -

Bovine peptone - 1 (g/l)

Yeast extract 0.5 (g/L) 0.5 (g/L)

Urea 170 mM 170 mM

Creatinine 7 mM 7 mM

NH4Cl 25 mM 25 mM

Lactic acid/ Sodium lactate 1 mM 1 mM

FeSO4 5 μM 3.5 μM

pH 6.5 6.5

https://doi.org/10.1371/journal.pone.0231965.t001
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problems that we encountered with the original protocol is that precipitates were easily formed.

Indeed, the authors indicate that precipitations were formed in AUM at temperatures higher than

25˚C, which does not allow us to explore physiologic temperatures. Precipitation in mAUM was

eliminated by adding 3 mM EDTA to the solution and by using MgCl2 instead of MgSO4. EDTA

has shown antibacterial effects against P. aeruginosa planktonic cells and biofilms. However, these

effects are blocked completely in the presence of calcium and iron [34]. As shown in Table 1,

mAUM contains a molar excess of calcium, magnesium and iron compared to EDTA. Analysis of

species concentrations using Chelator [35] indicates that the concentration of free EDTA is negli-

gible in this medium, consistent with the healthy cell growth in these conditions. The concentra-

tion of phosphate was increased to 50 mM to serve as buffer, as the pH of the original medium

spontaneously increased a few hours after preparation, probably due to the chemical decomposi-

tion of urea into ammonium. Finally, the concentration of uric acid was decreased to 0.23 mM,

below its solubility limit (0.4 mM; 68 mg/ L) but within physiologic concentrations [36]. With

these modifications we obtained a stable and reproducible medium that sustains P. aeruginosa
growth and allows the study of this microorganism in conditions simulating human urine.

P. aeruginosa growth

Overnight cultures of P. aeruginosa PAO1 grown in LB broth media were washed with saline

solution (0.9% NaCl). The washed cells were inoculated (1:1000 dilution) into LB broth or

mAUM and were grown under agitation (250 rpm) at 37˚C. Bacterial growth was monitored

by measuring OD595. The growth curves were fitted to a logistic function (Eq 1) [37] to calcu-

late the growth rate (μ), maximum growth (a) and lag phase (l).

y ¼
a

1þ e4m
a ðl� tÞþ2

ð1Þ

P. aeruginosa membrane preparation

P. aeruginosa PAO1 cells were harvested at the early stationary phase of growth, washed twice

with KHE buffer (150 mM KCl, 20 mM HEPES, 1 mM EDTA, pH 7.5) and stored at -80˚C. Fro-

zen cell pellets were thawed, resuspended in KHE buffer supplemented with 10 μg/ ml DNAase I,

5 mM MgCl2 and 1 mM PMSF, and passed twice through an Emulsiflex-C5 high pressure

homogenizer (Avestin) at 16,000 psi. Cell debris was eliminated by centrifugation at 10,000 × g for

30 min at 4˚C. The supernatant was collected and ultracentrifuged at 100,000 × g for 5 h. The pel-

let, containing the membranes, was washed and resuspended in KHE buffer and stored at -80˚C.

P. aeruginosa NQR purification

P. aeruginosa NQR was purified as described previously [24]. Briefly, P. aeruginosa nqrA-F
NQR operon was cloned in pBAD plasmid and transformed into Vibrio cholerae O395N1

Δnqr cells [38]. The protein complex was expressed (upon addition of arabinose to the culture

media) and was purified from cytoplasmic membranes after solubilization with β-D-dodecyl-

maltoside (DDM) and Ni-NTA affinity chromatography, followed by anion exchange chroma-

tography, using DEAE-Sepharose [38]. Protein concentration for these and other samples was

measured by the BCA assay. NQR concentration was measured spectrophotometrically at 450

nm in a Gd-Cl denatured sample, as described before [38].

Blue native gel electrophoresis and NADH dehydrogenases in gel activity

Proteins were separated by blue native gel electrophoresis, as described by Schagger et al. [39].

Briefly, the membranes were solubilized in buffer containing 750 mM ε-aminocaproic acid, 50
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mM Bis-Tris, pH 7 and DDM (2 g/g prot) for 30 min on ice. The suspension was centrifuged

at 100,000 x g for 40 min and the supernatant, containing the solubilized membrane proteins,

was collected, mixed with 3x running buffer (with Coomassie blue G-250) and loaded in the

gel’s well. The samples were resolved in 4–16% polyacrylamide gradient gel. In-gel NADH

dehydrogenase activity staining was performed as reported previously [40]. BN-PAGE gel

lanes were sliced and incubated at room temperature in buffer containing 100 mM Tris-HCl,

140 μM NADH, 50 μM MTT, pH 7.4. After activity staining, the excess of background Coo-

massie blue was removed by washing the gel in 0.1% SDS.

Second dimension SDS- PAGE

BN-PAGE bands containing NADH dehydrogenase activity were excised and incubated for 30

min in 60 mM Tris-HCl, pH 6.8, 1% SDS, 1% β-mercaptoethanol. The gel pieces were washed

twice with 25 mM Tris, 192 mM glycine, 0.1% SDS and then mounted on a 15%-SDS-PAGE.

The gel was exposed to UV light to identify the fluorescent bands corresponding to NQR sub-

units C and B containing the covalently-bound FMN [41]. The gel was then stained with Coo-

massie blue.

Oximetry

The respiratory activity of P. aeruginosa membranes (0.2 mg of protein /mL) was measured at

37˚C in KHE buffer in a 2 mL custom-made glass chamber, adapted to a Clark-type oxygen

electrode (YSI 5300), as described previously [42]. Assays were carried out in the presence of

specific substrates and inhibitors for each of the respiratory complexes. NADH oxidase activity

was tested using 200 μM NADH. Succinate dehydrogenase was tested in presence of 20 mM

succinate. The activity of other dehydrogenases was measured with 10 mM D, L- malate, 10

mM L-lactate, 10 mM glucose or 0.3% ethanol. Quinol oxidase activity was assessed with

50 μM ubiquinone-1 (2,3-Dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone,

Sigma-Aldrich) or menaquinone-2 (2-(3,7-dimethyl-2,6-octadienyl)-3-methyl-1,4-Naphtho-

quinone, Sigma-Aldrich) in the presence of 500 μM DTT, which readily reduces these qui-

nones [43–46]. The activity of cytochrome c oxidases was tested with the artificial redox

couple 100 μM TMPD+ and 5 mM ascorbic acid.

KCN titration analysis

The NADH-dependent respiratory activity of the two types of membranes was measured in

the presence of different concentrations of KCN, freshly prepared in KHE buffer. Initial activ-

ity rates were plotted against KCN concentrations and the data was fitted to the equation of

three independent enzymes competitively inhibited by KCN. The equation for each of these

enzymes has the familiar form: v = Vmax ([S]/Km)/ (1 + ([S]/ Km) + ([I]/ Kiapp), where Vmax
is the maximum activity of the enzyme, Kiapp is the apparent inhibition constant and [S]/ Km
is the substrate’s saturation ratio (assumed to be close to saturating, >10).

NADH dehydrogenase activity

P. aeruginosa membranes were solubilized with 0.3% DDM for 30 min at 4˚C and the suspen-

sion was ultracentifuged at 100,000 x g for 1 h. The supernatant was used to measure the

NADH-dependent ubiquinone reduction at 282 nm [38] in KHE buffer containing 50 μM ubi-

quinone-1 and 250 μM NADH or 250 μM deamino NADH.
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Results

P. aeruginosa growth in LB and mAUM

P. aeruginosa PAO1 strain was cultured aerobically in modified artificial urine media

(mAUM) (see Materials and Methods), to simulate the conditions that the planktonic state of

this microorganism might encounter in the urinary tract or in catheters when they start the

colonization process. Previous studies showed that the urinary tract environment is aerobic,

with urine’s oxygen concentration ranging from 130 to 90 μM in healthy patients vs patients

with urinary tract infections [47]. Moreover, the microorganisms associated with these infec-

tions are aerobic or microaerophilic [48]. However, some studies indicate that in certain con-

ditions urinary tract infections could be microaerophilic [49,50].

mAUM medium is based on the previously published AUM [33] with some modifications

to improve the solubility of salts, reduce precipitations and drastic changes in pH (Table 1, see

Materials and Methods). The bacterial growth obtained in mAUM (Fig 2B) was compared to

the growth in standard laboratory Luria Broth medium (Fig 2A). P. aeruginosa growth curves

were analyzed using a logistic function (Eq 1, Materials and Methods) [37]. The main parame-

ters obtained from this analysis are the duplication rate (μ) (Fig 2C), total growth (a) (Fig 2D)

and length of the lag phase (l) (Fig 2E). Although significant differences were found in all three

parameters, the major changes were found in the growth rate and total growth, which were 3

and 7 times higher in LB media vs mAUM, respectively. Due to the changes in growth kinetics,

the stationary phase was reached at 15 h in LB (Fig 2A) and at 6 h in mAUM (Fig 2B). The

growth rates in LB reported here are similar to the growth rates reported in other works [31].

Importantly, these data indicate that P. aeruginosa actively grows in these conditions and does

not enter a dormant state or immediately produces biofilms when exposed to urine.

Organization of P. aeruginosa respiratory chain in mAUM vs LB media:

Dehydrogenases and quinones

To understand the metabolic adaptations of P. aeruginosa in conditions that mimic human

urine, cells were cultured in mAUM and LB media and harvested at the early stationary phase

Fig 2. P. aeruginosa growth in LB and mAUM. P. aeruginosa growth curves in LB (A) and mAUM (B) media.

Comparison of growth parameters between LB and mAUM: growth rate (C), maximum growth (D) and lag phase (E).

These parameters were calculated using Eq 1. Results are expressed as mean ± S.D. n� 5. �, p<0.01 after t test.

https://doi.org/10.1371/journal.pone.0231965.g002
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of growth. To characterize the aerobic respiratory chain, oxygen consumption rates (OCR)

were measured in purified plasma membranes. OCR activities were measured in the presence

of different substrates: NADH, succinate, lactate, malate, glucose and ethanol. Moreover,

experiments were carried out with ubiquinol or menaquinol to identify the type of quinone

used by the cells. Fig 3A and 3B shows the dehydrogenase activities of P. aeruginosa mem-

branes in each growth media. As can be observed, NADH dehydrogenase and succinate dehy-

drogenase activities are 40–50% smaller in mAUM (Fig 3B) vs LB (Fig 3A). Malate

dehydrogenase also show differences, with higher activities in LB medium (Fig 3A and 3B).

On the other hand, lactate dehydrogenase activity was not modified in these conditions. Glu-

cose oxidase and ethanol dehydrogenases were also tested but have minor activities compared

to the other dehydrogenases.

In order to determine the type of quinone used as electron carrier, we tested the respira-

tory activity in presence of ubiquinol-1 and menaquinol-2. Fig 3 shows that the ubiquinol

oxidase activity is similar compared to the NADH dehydrogenase activity in LB (Fig 3A)

and mAUM (Fig 3B), while menaquinol oxidase activity is negligible in both types of media.

The data indicate that ubiquinone is the preferred electron carrier in the respiratory chain

of this bacterium.

Composition of P. aeruginosa respiratory chain in mAUM vs LB media:

Terminal oxidases

As mentioned above, in addition to cytochrome bc1 and three cytochrome c oxidases (COx),

P. aeruginosa contains two different ubiquinol oxidases: CIO and CYO [12,28,30]. To under-

stand the role of these complexes in these growth conditions, the respiratory activity obtained

with ubiquinol was compared to the rate of oxygen consumption in presence of ascorbic acid

and TMPD+. Ascorbate-TMPD+ chemically reduce the endogenous cytochrome c and is used

as substrate by COx oxidases [51]. TMPD-ascorbate oxidase activity is 6 and 2 times higher

compared to the ubiquinol oxidase activity in LB (Fig 3A) and mAUM (Fig 3B) membranes,

respectively. These results could suggest that in both media COx oxidases play a major role.

However, these measurements cannot be used to predict the activity in situ, since COx activity

Fig 3. P. aeruginosa respiratory activity in LB and mAUM membranes. Oxygen consumption rate (OCR) of membranes obtained

from bacteria grown in LB (A) or mAUM (B). Oxygen consumption was measured in KHE buffer in the presence of the next substrates:

200 μM NADH, 10 mM succinate, 10 mM lactate, 10 mM glucose, 0.3% ethanol, 50 μM ubiquinol or 50 μM menaquinol or 100 μM

TMPD+ plus 5 mM ascorbic Acid. Bars represent mean ± S.D. n� 3. �, p<0.05 after t test between LB and mAUM.

https://doi.org/10.1371/journal.pone.0231965.g003
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was assayed by fully-reducing cytochrome c (representing near-maximal activities) and

reduced cytochrome c concentration could be far from optimal under physiologic conditions.

To measure the relative contribution of the three types of oxidases to cell physiology, the

respiratory activity was measured in the presence of different concentrations of KCN. The ter-

minal oxidases have very different cyanide sensitivities, which can be used as a tool to quantify

their relative contributions to respiration. As shown in Fig 4, the KCN titration of the NADH-

dependent respiratory activity revealed three distinct kinetic components for LB (Fig 4A) and

mAUM (Fig 4B) membranes, with apparent inhibition constants (Kiapp) that were at least one

order of magnitude higher, producing step ladder-like curves. The first component is highly

sensitive to cyanide, with a Kiapp of 0.5–1 μM, consistent with the high affinity of COx oxidases

for this inhibitor [52,53], including those of Pseudomonas species [54]. The second component

has a Kiapp of 10 μM, similar to the reported values for CYO oxidase (8 μM) [55,56]. The last

component has a Kiapp of 2.5 mM, and it is most likely due to CIO oxidase activity, which is

highly resistant to cyanide [32,56]. To corroborate that P. aeruginosa terminal oxidases have

similar sensitivities for cyanide as other members of these families, we carried out a KCN titra-

tion of the COx and ubiquinol oxidases in LB membranes (Fig 4D and 4E). COx activity was

measured using Ascorbate-TMPD, as described previously. Fig 4D shows that the COx activity

is highly sensitive to KCN, with a Kiapp of 0.3±.1 μM, which corroborates that the first kinetic

component in Fig 4A (magnified in the Fig 4D inset) is indeed COx. Ubiquinol oxidase activity

Fig 4. Cyanide titration of respiratory activity. NADH-dependent respiratory activities were measured in LB (A) and

mAUM (B) membranes in the presence of different concentrations of KCN (0–5 mM). Titration curves were fitted to

the function with three independent Competitive Inhibition Michaelis-Menten components (see Materials and

Methods). The first component (Kiapp<1 μM) was assigned as COx, the second component (Kiapp 10 μM) was assigned

as CYO and the third component (Kiapp 2.5 mM) was assigned as CIO. The activities (Vmax) of these components in LB

(black bar) and mAUM (white bar) are compared in panel C. Bars represent mean ± S.D. n� 3. �, p<0.01 after t test.

Insets in panels A and B show the expected titration curves of COx (blue), CYO (orange) and CIO (pink) oxidases, and

the addition of the three components (dashed black line). The colored lines were slightly moved to the right for clarity.

D) Titration of the Ascorbate /TMPD respiratory activity of LB membranes. The fitting line was obtained with a single-

component kinetic model. The inset shows a magnification into the 0–5 μM KCN region of panel A. E) KCN titration of

the ubiquinol-dependent respiratory activity in the presence of 1 μM antimycin A, which inhibits cytochrome bc1. The

fitting line was obtained with a two-component kinetic model, with Kiapp values of 15 μM and 3 mM. The inset shows a

replotting of the data with a break from 100–200 μM KCN.

https://doi.org/10.1371/journal.pone.0231965.g004
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was measured with ubiquinol- DTT in the presence of 1μM antimycin A, which specifically

inhibits complex bc1 and indirectly inhibits COx. The titration of the activity revealed two

components, with Kiapp‘s of 15 μM and 3 mM, likely corresponding to CYO and CIO.

The triphasic behavior found in Fig 4A and 4B (with similar Kiapp’s as found here) has been

reported in other species, such as Pseudomonas pseudoalcaligenes [54] and it is also evident in

the re-plotting of the original data on P. aeruginosa respiration by Cunningham, et al. [32]. In

previous reports cyanide titration data was analyzed using the empirical equation: A/ 1+([I]/

IC50)n [56], which it is not based on a strict kinetic model and incorporates a “Hill coefficient”

(n), providing a seemingly good data fitting but no strict biochemical meaning. In this report,

the titration curves were analyzed with an equation that considers three independent kinetic

Michaelis-Menten components, with individual Kiapp and Vmax values (see Materials and

Methods), showing excellent fitting to the data. Insets in Fig 4A and 4B show the predicted

activities of each kinetic component when varying the cyanide concentration, to better illus-

trate the analysis carried out. As can be observed, the first (COx) and the second (CYO) com-

ponents are saturated by cyanide concentrations of 10 and 100 μM, while and the third

component (CIO) is active at concentrations in the mM range. Fig 4C shows the comparison

of the activities (Vmax) of the three components, as can be observed the three types of oxidases

have significant contributions to the respiratory activity in both cases. However, the relative

contribution of each oxidase varies depending on the culture medium. In LB medium 50% of

the activity can be attributed to CYO oxidase, while in mAUM more than 60% of the activity

can be attributed to COx. This difference could be related to the importance of energy balance

in the relatively poorer urine medium (see below).

Composition of P. aeruginosa respiratory chain in mAUM vs LB media:

Role of NADH dehydrogenases

Three different NADH dehydrogenases are annotated in the genome of P. aeruginosa: complex

I, NDH-2 and NQR. The presence of the three types of NADH dehydrogenases is puzzling,

especially since NQR and complex I are both proton pumps [24,57] and NDH-2 is not linked to

the generation of an electrochemical gradient. Here we aim to elucidate the roles of these

enzymes in the physiology of P. aeruginosa. Although these enzymes catalyze the same redox

reaction, they can be distinguished by their molecular weights, using blue native gel electropho-

resis (BN-PAGE), and by their inhibitor sensitivity and substrate specificity. Membranes of cells

grown in LB and mAUM were solubilized using n-dodecyl-β-D-maltoside (DDM) (2 g /g prot).

The proteins were separated using BN-PAGE and the NADH dehydrogenase activity was

assayed in-gel, using NADH as substrate and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide) as an artificial electron acceptor. The reduction of MTT produces a for-

mazan precipitate and purple bands appear in the gel in locations where the NADH

dehydrogenase reaction takes place. Two NADH dehydrogenase bands of 100 and 220 kDa (Fig

5B) were observed in both types of membranes, matching the molecular weights of a NDH-2

dimer (46 kDa monomer) and the six-subunit NQR complex (210 kDa) [24]. To estimate the

relative activity of both bands, the reaction was measured densitometrically at different time

points (Inset Fig 5B). From the initial rates we determined that the 220 kDa band is 3–5 times

more active than the 100 kDa band. A third band, with an estimated molecular weight of 500

kDa (likely corresponding to complex I [16,23]), could also be observed in LB membranes, but

the incubation time required to visualize this band was much longer (overnight) compared to

the other bands. The 220 kDa BN-PAGE bands were excised and ran in a second dimension

SDS-PAGE. The gel was exposed to UV light a fluorescent bands were observed in the lanes of

the 220 kDa complex, corresponding to the covalently-attached FMN to subunits B and C of
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NQR (Fig 5C) [41,58], as confirmed by mass spectrometry analysis (Proteomics Unit, Univer-

sity of Illinois at Chicago) of the fluorescent band (S1 Table). The 220 kDa band also contain

the six subunits of the NQR complex, as shown in the Coommassie-stained 2D SDS-PAGE gel

(Fig 5D), confirming the presence of this enzyme in both conditions.

The 2D-SDS PAGE of the 100 kDa band contained a band with the expected molecular

weight of NDH-2 of 46 kDa, which was excised and analyzed by mass spectrometry. Several

proteins were identified but none of them corresponded to NDH-2 (S1 Table). Although the

100 kDa band has significant activity in gel, it is not related to any enzyme of the respiratory

chain. It should be pointed out that the turnover rates of NQR (500 s-1 [38]) and NDH-2 (900

s-1 [59]) are comparable and based on NQR abundance in the gel, NDH-2 should be an abun-

dant band as well, if the 100 kDa activity band contains this protein.

Although in-gel activity measurements indicate that NQR is the main NADH dehydroge-

nase, the effects of specific inhibitors of complex I (rotenone) [60] and NQR (HQNO, N-

2-heptyl-4-hydroxyquinoline) [61,62] were tested on the rate of oxygen consumption in mem-

branes obtained from LB or mAUM media to confirm this hypothesis. At a saturating concen-

tration, rotenone (1 μM) (Ki = 4 nM) [63,64] inhibits <20% of the respiratory activity of LB

membranes (Fig 6A), and had no effects on the activity of mAUM membranes (Fig 6B), indi-

cating that complex I does not participate in the respiratory activity in mAUM, consistent with

the low activity obtained in in-gel assays. The titration of the NADH-dependent activity with

HQNO produced a curve with a Ki = 2 μM and a kinetic component of 40% that is insensitive

to concentrations >10 μM of this inhibitor, in both types of membranes (Fig 6C and 6D). This

behavior is nearly identical to the titration of the purified P. aeruginosa NQR (Fig 6C inset)

[24]. To test that HQNO and rotenone act specifically on the NADH dehydrogenases, these

inhibitors were tested using succinate as a substrate, as it has been reported that HQNO can

inhibit other respiratory enzymes [65–67]. As shown in Fig 6A and 6B, the inhibitors had little

effect on the activity with succinate in both types of membranes, indicating that at these con-

centrations they act specifically on the NADH dehydrogenases, in particular on NQR.

Fig 5. BN and 2D-SDS PAGE identification of NQR in LB and mAUM membranes. A) Coomassie-stained BN-PAGE

gel of lanes containing solubilized LB and mAUM membranes. B) In-gel NADH dehydrogenase activity of BN-PAGE

lanes of LB and AUM membranes, showing the 100 and 220 kDa bands. Inset, densitometry assay of the in-gel kinetics of

NADH dehydrogenase activity (Black, LB -100 kDa; Red, AUM-100 kDa; Blue, LB-220 kDa; Green, AUM-220 kDa). The

220 kDa bands of the BN-PAGE gel were excised and run in a second dimension SDS-PAGE. The 2D gel lanes were

exposed to UV light to identify the fluorescent bands of NQR subunits B and C (panel C), which co-migrate in this type

of gel, due to the high hydrophobicity of subunit B, and were subsequently Coomassie-stained (D). Purified Pa-NQR [24]

was run as standard for comparison.

https://doi.org/10.1371/journal.pone.0231965.g005
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Finally, to corroborate that the NADH-dependent respiratory activity in membranes is

mostly due to NQR and not to NDH-2, we tested the ubiquinone oxidoreductase activity in

membranes solubilized with DDM using NADH or diamino-NADH as substrates. While

NQR can use both substrates equally well (Fig 6F) [68,69], NDH-2 can only use NADH

[70,71]. The ratio of activity with NADH and deamino-NADH can be used to determine the

contributions of these two enzymes. As shown in Fig 6E, the activities obtained with these two

substrates are nearly identical in both types of membranes. Taken together the data unambigu-

ously demonstrate that NQR is the main NADH dehydrogenase for P. aeruginosa in the condi-

tions tested in this study.

Discussion

Previous studies using proteomics, transcriptomic and mutagenesis methodologies have

addressed the role of different respiratory complexes for this microorganism [13,28–32].

Fig 6. NQR activity measurements in LB and mAUM membranes. NADH-dependent (black) and Succinate-

dependent respiratory activity of LB (A) or mAUM (B) membranes in the presence of rotenone (1 μM) or HQNO (1

or 10 μM). Bars represent mean ± S.D. n� 3. �, p<0.05 after t test between NADH-dependent (black) or Succinate-

dependent (white) respiratory activity. Effect of HQNO on the NADH-dependent rate of oxygen consumption in LB

(C) and mAUM membranes (B). Inset in C, HQNO titration on the activity of the purified Pa-NQR. Inset data were

taken from reference [24]. Ubiquinone reductase activity of solubilized membranes obtained from cells grown in LB or

mAUM (E) or purified P. aeruginosa NQR (F) using as substrates NADH (black) or deamino NADH (white;

DA-NADH). Data are expressed as SDM (n� 5). � p< 0.05 vs control.

https://doi.org/10.1371/journal.pone.0231965.g006
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However, these methodologies have intrinsic limitations and a clear understanding of the spe-

cific roles of respiratory enzymes used by P. aeruginosa in diverse conditions is missing.

Among the aspects that limit the usefulness of these techniques are: 1) transcriptomics studies

normally report the relative expression of a gene compared with a specific “basal” condition

and mRNA content does not necessarily directly correspond to protein content, 2) proteomic

identification and quantification may not be used to estimate the enzymatic activity in the

pathway, due in part to the presence of inactive and active pools of enzymes (apo vs holo) and

because protein content does not necessarily linearly correlate with enzymatic activity, due to

multifactorial regulation. On the other hand, mutagenesis studies are a powerful tool to ana-

lyze the effects of gene elimination on microbial growth parameters. However, this technique

relies on the ability of cells to grow in the absence of specific genes, and it is highly likely that

this method could select variants that can withstand genetic manipulation by upregulating

other genes or pathways, which might not represent the wild-type genetic background. In this

report we performed a comprehensive functional characterization of the respiratory chain of

P. aeruginosa, measuring directly the metabolic and enzymatic activities within their pathways.

Although the method is disruptive to the cell, it allows the direct determination of the activities

of different respiratory complexes using their specific kinetic properties, including substrate

and inhibitor specificity. Our results allow us to reconstruct the electron transfer pathway used

by P. aeruginosa planktonic state while growing in medium similar to human urine.

Role of succinate dehydrogenase, malate dehydrogenase and lactate

dehydrogenase in carbon flux

Previous studies have shown that the Krebs and glyoxylate cycles are highly active in P. aerugi-
nosa isolated from both cystic fibrosis patients and from urinary tract infections [72]. Here we

have found that succinate dehydrogenase is very active in both LB and mAUM membranes,

which is consistent with a high carbon flux through these pathways, allowing the synthesis of

important molecules for bacterial survival [72]. In addition, we report an important respira-

tory activity with malate in both LB and mAUM membranes, which indicates that the mem-

brane-bound malate dehydrogenase [73] found in the genome is active. P. aeruginosa genome

also contains two genes for membrane-bound lactate dehydrogenases (mLDH), which transfer

the electrons to ubiquinone, rather than to NAD as the soluble enzyme does [74]. The rela-

tively high activity of mLDH found in mAUM membranes could be advantageous for the

growth in urine medium, which contains high amounts of the racemic mixture of lactate, the

products of human (L-lactate) and microbial metabolism (D-lactate) [75].

Role of terminal oxidases in artificial urine medium

Although, P. aeruginosa is an important human pathogen that produces one of the most com-

mon hospital-acquired infection, the regulation and physiologic roles of P. aeruginosa terminal

oxidases during urinary tract infections have remained completely unknown. Previous reports

suggested that CYO is not a critical enzyme for the aerobic metabolism of P. aeruginosa, since

its expression is low in LB medium and it seems to be induced specifically during iron starva-

tion [76]. Moreover, mutants that lack this enzyme do not show major changes in the growth

parameters [28]. However, our results unambiguously indicate that CYO is the main terminal

oxidase in LB medium, contributing to 50% of the respiratory activity. These findings highlight

the need to complement mutagenesis, proteomic and transcriptomic data with functional anal-

ysis of the enzymes and metabolic pathways. Interestingly, in other gram-negative proteobac-

teria, such as the closely-related Pseudomonas putida [77], and also in Escherichia coli [78] as
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well as in Gluconobacter oxydans [79], CYO was also found to be the main terminal oxidase,

suggesting a common evolutionary or physiologic trend among prokaryotes.

On the other hand, in mAUM membranes 60% of the activity can be attributed to COx oxi-

dases, since most of the activity is sensitive to very low cyanide concentrations (< 1μM).

Among the three different types of terminal oxidases, COx oxidases (caa3, cbb3-1 and cbb3-2)

provide the highest energy yields to the cell. COx oxidases could be favored in mAUM because

it is not a rich medium compared to LB and in these conditions cell energetics could have a

predominant role. Cytochrome cbb3-1 oxidase may be the main terminal oxidase used in these

conditions, since it is constitutively expressed and appears to be a major component during

exponential growth. On the other hand, cbb3-2 oxidase appears to be induced in the stationary

phase when the oxygen tension drops [80] and previous studies have shown that caa3 oxidase

expression is extremely low under aerobic conditions [76]. Recent studies have shown that

cbb3 oxidases are important for the formation of biofilms by P. aeruginosa, which strongly sug-

gests that this terminal oxidase plays major roles during the colonization of lung epithelium

[81] and as shown in this work, also in the colonization of the urinary tract or catheters. As

shown in Fig 4, both types of membranes have a significant cyanide-resistant respiratory activ-

ity, which can be attributed to CIO oxidase [12,82–84]. CIO oxidase expression has been con-

sidered a pathogenicity marker for P. aeruginosa [82], since this microorganism actively

produces cyanide during infection [28], which can be as high as 300 μM in culture [32].

Role of NQR in P. aeruginosa physiology: Autopoisoning resistance

Recent studies show an increased expression of complex I and NQR in P. aeruginosa isolated

from cystic fibrosis patients [85]. Moreover, mutagenesis analyses indicate that complex I is

critical for the survival of P. aeruginosa under microaerophilic conditions [15,86]. However,

the role of NADH dehydrogenases in the physiology and pathogenic behavior of this bacte-

rium remains almost completely unknown. In this work we have determined that P. aerugi-
nosa NADH dehydrogenase is highly active in LB and mAUM. In both media most of the

NADH dehydrogenase activity is resistant to rotenone, indicating that complex I does not play

a major role in the respiratory activity. To test if NQR or NDH-2 are functional in these condi-

tions, a titration with HQNO was performed. Although, the titration curve of the respiratory

chain is almost identical to the titration of isolated NQR [24] (Fig 6C), HQNO can also inhibit

NDH-2 [65,67,87]. To distinguish between NDH-2 and NQR, the activity was measured with

NADH and deamino-NADH. While NQR can use both substrates, NDH-2 is inactive with

deamino NADH. The data indicate that the NADH dehydrogenase activity is nearly identical

with both substrates, clearly demonstrating that NQR is the main NADH dehydrogenase in P.

aeruginosa. These results are consistent with the BN-PAGE band of 220 kDa having the great-

est activity, which contains the six NQR subunits, including the fluorescent subunits B and D.

Although the 100 kDa band also has significant NADH dehydrogenase activity, it did not con-

tain NDH-2 and the activity could be due to other flavoproteins present in the sample.

In a recent report, Torres, et al. [15] showed that P. aeruginosa mutants lacking complex I

are unable to grow under anaerobic conditions, are less sensitive to gentamycin and showed

slightly reduced virulence compared to the wild-type strain, which might indicate that this

respiratory complex plays a major role. This conclusion contrasts sharply with the lack of effect

of rotenone in our experiments. Interestingly, the authors also showed that individual mutants

of complex I, NDH-2 and NQR had no effects on the growth kinetics in several types of growth

media, including LB. These results were confirmed by our group, using selected P. aeruginosa
P14 mutant library strains (kindly provided by Dr. Martin Schuster, Oregon State University

[88]). As indicated above, mutagenesis studies report the tolerance of microorganisms to the
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lack of specific enzymes. In the case of P. aeruginosa, it is not surprising that the other two

NADH dehydrogenases can compensate for the lack of any individual enzyme, especially since

the cells can grow aerobically even when all three dehydrogenases are removed [15]. Our

results show unambiguously that NQR is the preferred NADH dehydrogenase for P. aerugi-
nosa in the tested conditions, but as shown by the mutagenesis analysis, it is not an essential

enzyme.

These results and a recent report by our group [24] suggest that the respiratory chain of P.

aeruginosa has evolved with the ability to resist auto-poisoning. We previously demonstrated

that P. aeruginosa NQR is resistant to HQNO, and that the resistance is conferred by residues

Leu151 and Phe155 located in subunit D of the ubiquinone binding site [24]. This characteris-

tic could be an advantage to avoid autopoisoning, since this microorganism actively produces

HQNO to eliminate competing bacteria [66,89,90]. Moreover, in a previous report we pro-

posed that NQR could be important for pathogenic bacteria when iron is limiting [91], which

is relevant for the infection since the immune system produces iron chelators that deprive

pathogens of this essential nutrient. NQR is the ion-pumping NADH dehydrogenase that

requires the least amount of iron for its assembly (1 or 2 atoms per molecule [20,21,92,93]),

which could allow an active bioenergetic metabolism and cell survival during infection, in par-

ticular when the immune response has been mounted.

The main conclusions of this paper are summarized in Fig 1, showing that NQR is the main

NADH dehydrogenase in LB (Fig 1B) and mAUM (Fig 1C), that succinate dehydrogenase also

plays a major role and that the main terminal oxidases used by P. aeruginosa are CYO and

COx in LB and mAUM media, respectively. Our data offers a clear understanding of the orga-

nization of the respiratory chain in physiologically relevant conditions and suggests that the

apparent redundancy in the number and type of dehydrogenases and oxidases could be an

advantage that allows the cells to avoid autopoisoning by HQNO and cyanide, which P. aerugi-
nosa actively produces to inhibit the respiratory enzymes of the human host and of competitor

bacteria [51,52,97,61,66,67,89,90,94–96, 97].

Supporting information

S1 Table. Proteins identified in the 30 and 46 kDa of the 2D- PAGE gel of LB and mAUM

membranes. The 30 kDa fluorescent band was obtained after running a second dimension

(2D SDS PAGE) of the 200 kDa band obtained after BN PAGE that contained NADH dehy-

drogenase activity. The 46 kDa band was obtained after running a second dimension (2D SDS

PAGE) of the 100 kDa band obtained after BN PAGE that contained NADH dehydrogenase

activity.
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Resources: Claudia C. Häse, Oscar Juárez.
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References
1. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, et al. Population structure of

Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2007; 104: 8101–6. https://doi.org/10.1073/pnas.

0609213104 PMID: 17468398

2. Hardalo C, Edberg SC. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev

Microbiol. 1997; 23: 47–75. https://doi.org/10.3109/10408419709115130 PMID: 9097014

3. Silver S. Pseudomonas aeruginosa as an opportunistic pathogen. Trends Microbiol. 2003; 2: 33.

https://doi.org/10.1016/0966-842x(94)90345-x

4. Williams HD, Zlosnik JEA, Ryall B. Oxygen, Cyanide and Energy Generation in the Cystic Fibrosis Path-

ogen Pseudomonas aeruginosa BT—Advances in microbial physiology Vol. 52. In: Poole Robert K.,

editor. Advances in microbial physiology Vol 52. Academic Press; 2006. pp. 1–71. Available: http://

linkinghub.elsevier.com/retrieve/pii/S0065291106520016%5Cnpapers3://publication/doi/10.1016/

S0065-2911(06)52001-6

5. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev.

2002; 15: 194–222. https://doi.org/10.1128/CMR.15.2.194-222.2002 PMID: 11932230

6. Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, et al. Risk factors for mortality in patients with

Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial ther-

apy. BMC Infect Dis. 2014; 14: 161. https://doi.org/10.1186/1471-2334-14-161 PMID: 24655422

7. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas

aeruginosa: A minireview. J Infect Public Health. 2009; 2: 101–111. https://doi.org/10.1016/j.jiph.2009.

08.003 PMID: 20701869

8. Warren JW. Catheter-associated urinary tract infections. Int J Antimicrob Agents. 2001; 17: 299–303.

https://doi.org/10.1016/s0924-8579(00)00359-9 PMID: 11295412

9. Knols BG, Smallegange RC, Tacconelli E, Magrini N, Kahlmeter G, Singh N. Global Priority List Of Anti-

biotic-Resistant Bacteria To Guide Research, Discovery, And Development Of New Antibiotics. Lancet

Infect Dis. 2009; 9: 535–536. https://doi.org/10.1016/S1473-3099(09)70222-1

10. Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyama H. Influence of the Pseudomonas

quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol. 2008; 190: 7947–7956.

https://doi.org/10.1128/JB.00968-08 PMID: 18931133

11. Alvarez-Ortega C, Harwood CS. Responses of Pseudomonas aeruginosa to low oxygen indicate that

growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol. 2007; 65: 153–165. https://doi.

org/10.1111/j.1365-2958.2007.05772.x PMID: 17581126

12. Arai H. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomo-

nas aeruginosa. Front Microbiol. 2011; 2: 103. https://doi.org/10.3389/fmicb.2011.00103 PMID:

21833336

13. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome

sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406: 959–964.

https://doi.org/10.1038/35023079 PMID: 10984043

14. Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxi-

dative and nitrosative stress. Biochim Biophys Acta—Bioenerg. 2014; 1837: 1178–1187. https://doi.

org/10.1016/j.bbabio.2014.01.016 PMID: 24486503

PLOS ONE Pseudomonas aeruginosa respiratory chain

PLOS ONE | https://doi.org/10.1371/journal.pone.0231965 April 23, 2020 15 / 20

https://doi.org/10.1073/pnas.0609213104
https://doi.org/10.1073/pnas.0609213104
http://www.ncbi.nlm.nih.gov/pubmed/17468398
https://doi.org/10.3109/10408419709115130
http://www.ncbi.nlm.nih.gov/pubmed/9097014
https://doi.org/10.1016/0966-842x(94)90345-x
http://linkinghub.elsevier.com/retrieve/pii/S0065291106520016%5Cnpapers3://publication/doi/10.1016/S0065-2911(06)52001-6
http://linkinghub.elsevier.com/retrieve/pii/S0065291106520016%5Cnpapers3://publication/doi/10.1016/S0065-2911(06)52001-6
http://linkinghub.elsevier.com/retrieve/pii/S0065291106520016%5Cnpapers3://publication/doi/10.1016/S0065-2911(06)52001-6
https://doi.org/10.1128/CMR.15.2.194-222.2002
http://www.ncbi.nlm.nih.gov/pubmed/11932230
https://doi.org/10.1186/1471-2334-14-161
http://www.ncbi.nlm.nih.gov/pubmed/24655422
https://doi.org/10.1016/j.jiph.2009.08.003
https://doi.org/10.1016/j.jiph.2009.08.003
http://www.ncbi.nlm.nih.gov/pubmed/20701869
https://doi.org/10.1016/s0924-8579(00)00359-9
http://www.ncbi.nlm.nih.gov/pubmed/11295412
https://doi.org/10.1016/S1473-3099(09)70222-1
https://doi.org/10.1128/JB.00968-08
http://www.ncbi.nlm.nih.gov/pubmed/18931133
https://doi.org/10.1111/j.1365-2958.2007.05772.x
https://doi.org/10.1111/j.1365-2958.2007.05772.x
http://www.ncbi.nlm.nih.gov/pubmed/17581126
https://doi.org/10.3389/fmicb.2011.00103
http://www.ncbi.nlm.nih.gov/pubmed/21833336
https://doi.org/10.1038/35023079
http://www.ncbi.nlm.nih.gov/pubmed/10984043
https://doi.org/10.1016/j.bbabio.2014.01.016
https://doi.org/10.1016/j.bbabio.2014.01.016
http://www.ncbi.nlm.nih.gov/pubmed/24486503
https://doi.org/10.1371/journal.pone.0231965


15. Torres A, Kasturiarachi N, DuPont M, Cooper VS, Bomberger J, Zemke A. NADH Dehydrogenases in

Pseudomonas aeruginosa Growth and Virulence. Front Microbiol. 2019; 10: 75. https://doi.org/10.3389/

fmicb.2019.00075 PMID: 30804898

16. Yagi T, Yano T, Di Bernardo S, Matsuno-Yagi A. Procaryotic complex I (NDH-1). An overview. Biochim

Biophys Acta—Bioenerg. 1998; 1364: 125–133. https://doi.org/10.1016/S0005-2728(98)00023-1
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19. Juárez O, Nilges MJ, Gillespie P, Cotton J, Barquera B. Riboflavin is an active redox cofactor in the Na

+ -pumping NADH:quinone oxidoreductase (Na + -NQR) from Vibrio cholerae. J Biol Chem. 2008; 283:

33162–33167. https://doi.org/10.1074/jbc.M806913200 PMID: 18832377
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