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Analysis of Bioactive Amino Acids 
from Fish Hydrolysates with a New 
Bioinformatic Intelligent System 
Approach
Mohamed Abd Elaziz1,6, Ahmed Monem Hemdan2, AboulElla Hassanien3, Diego Oliva   4 & 
Shengwu Xiong1,5

The current economics of the fish protein industry demand rapid, accurate and expressive prediction 
algorithms at every step of protein production especially with the challenge of global climate change. 
This help to predict and analyze functional and nutritional quality then consequently control food 
allergies in hyper allergic patients. As, it is quite expensive and time-consuming to know these 
concentrations by the lab experimental tests, especially to conduct large-scale projects. Therefore, this 
paper introduced a new intelligent algorithm using adaptive neuro-fuzzy inference system based on 
whale optimization algorithm. This algorithm is used to predict the concentration levels of bioactive 
amino acids in fish protein hydrolysates at different times during the year. The whale optimization 
algorithm is used to determine the optimal parameters in adaptive neuro-fuzzy inference system. The 
results of proposed algorithm are compared with others and it is indicated the higher performance of 
the proposed algorithm.

Nowadays, Peptides with their bioactive amino acids play a functional role at many pharmaceutecal and nutri-
ceutical industries. In this trend, we need intelligent, accurate and fast bioanalytical measurements to assess the 
analytes of interest with variable concentrations in variable conditions. As we should promote specific produc-
tion, enhance quality control processes and show food metabolic studies more clearly. Unfortunately, these indus-
tries face great technical problems with the bioactive amino acids production, the major problem is amino acid 
analysis in foodstuffs as they are destructed during acid hydrolysis in the preparation step, this problem can be 
greatest with the essential amino acids likely to be limiting in functional diets “methionine and cystine”, Lysine, 
threonine, and tryptophan. All amino acids have already been commercialized as nutraceuticals1. So, there is an 
urgent need to apply intelligent algorithms for not only detection but also the characterization of novel bioactive 
peptides in the protein2. Peptides from Fish protein hydrolysates differ so widely in their composition that “Lab” 
analytical methods would need to be more specific for each type, but these methods are time-consuming. Thus, 
compromises between the Lab and computerized analytical methods are often necessary, especially to promote 
the best utilization of great functional and nutritional benefits in protein3.

Fish proteins have variable but functional and biological applications4. They are the source of secretagogues, 
calciotropic hormones and growth factors5. Their bioactive amino acids provide important functional and biolog-
ical roles such as antihypertensive, antioxidant and immune modulatory activities. They perform the regulation 
of the blood pressure through inhibition angiotensin converting enzyme activity. As well as the antihyperten-
sive role, they perform antioxidant roles through scavenging activity that prevent oxidation process6. They also 
enhance the capacity of lymphocyte proliferation, percent of T-helper cells in spleen and secretion of inter-
feron plus cytokines. So, they have a great role in clinical diet formations which used in specific diseases. In 
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allergic patients, enzymatic protein hydrolysates and a mixture of specific amino acids have a great importance to 
decrease immune-mediated hypersensitive reactions7. Not only allergic patients but also patients with cancer and 
hepatic encephalopathies as they suffer from disorders in metabolism8.

Many studies have found that the functional properties of amino acids are related to the concentration in the 
diet and to the source of amino acids. As an example, fish-derived bioactive peptides are more functionally active 
than other sources9. In this paper, we estimated the concentration of bioactive amino acids in fish by-product pro-
tein hydrolysates with studying the effect of variable environmental temperature over the year. We aim to study 
the dynamic properties of functional amino acids as it has a great importance as it detects the functional quality 
of the extracted protein hydrolysates at different times10. This also has a vital role in pharmaceutical dynamic 
properties. So, we can target the produced protein hydrolysates to certain drugs based on amino acids concen-
tration levels. As an example, Patients with the liver disease show a plasma amino acid imbalance with high 
levels of tyrosine and phenylalanine and low level of valine leucine and isoleucine11. Therefore, the new analytical 
algorithms help to choose the specific amino acids which has an essential role in the treatment of patients with 
chronic liver diseases as an example. The optimum supply of amino acids is also necessary to enhance hepatic 
regeneration and immunologic host defense12 as well as normalization of plasma amino acid profile13. Finally, The 
previous functional and bioactive properties struggle the challenge of many changes in the environmental condi-
tions and variation in the temperature, so the optimal exploitation of bioactive amino acids for human nutrition 
and health possesses an exciting scientific and technological challenge while at the same time offering potential 
for commercially successful applications.

In this paper, we proposed an a new prediction approach based on adaptive neuro-fuzzy inference system 
(ANFIS)14, 15 to improve the performance of predicting the amino acids concentration in fish. However, deter-
mining the optimal values for the parameters of the memberships function and weights between layers of ANFIS 
model is the main problem in ANFIS. The gradient descent approaches are the popular algorithms that used to 
learn the parameters of ANFIS. However, the gradient is computed at each iteration and it can be stuck with local 
point and therefore not a global solution can be determined16. To solve these drawbacks, the meta-heuristics like 
genetic algorithms (GAs)17 and particle swarm optimization (PSO)18, 19 are used. However, GAs are slow conver-
gence speed, whereas PSO is sensitive to neighborhood topology. So, the whale Optimizer (WO) algorithm is 
used to solve this problem20.WO is a new metaheuristic inspired that emulates the humpback whales20. In WO, 
there are three steps are used to mimic the hunting behavior: tracking, encircling and attacking the prey.

The main goal of this paper is to analyze the amino acid dynamics at variable temperature values with 
improving the performance of intelligent system (ANFIS based WO algorithm) to obtain the highest predictive 
importance.

Adaptive Neuro-Fuzzy Inference System (ANFIS)
The adaptive neuro-fuzzy inference system (ANFIS) is a hybrid of both neural network (NN) and fuzzy logic14, 15, 21.  
The structure of ANFIS is illustrated in Fig. 1, in which the ANFIS consists of five layers. The input data (x and y) 
are presented to each node in the first layer and the output is computed by using the generalized Gaussian mem-
bership function µ x( ) as:

µ µ µ= = = = = ρ σ− −
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where A B,i i are the membership values of the µA and µB, respectively. ρi and σi are represent the mean and stand-
ard deviation of data respectively. The output of each node in the first layer is passed to the second layer and the 
firing strength of a rule (wi) is computed as:
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Figure 1.  The five layers of ANFIS model.
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The normalized firing strength and the function fi is passed to each node in the fourth layer (an adaptive 
node) and its output is computed as:

= = + +O w f w p x q y r( ) (4)i i i i i i i4

where p q,i i and ri is the consequent parameters of the node. In the last layer, there is a single node and it is output 
is defined as.

∑=O w f
(5)i

i i5

The ANFIS parameters are divided into two sets, the consequent and premise parameters. All of these param-
eters are needed to update in learning process until the target is achieved. There are some approaches used to 
learn the ANFIS parameters such as the Least Square Method (LSM) is used to find the optimal values for both 
sets of the parameter. However, its convergence is slow and the hybrid algorithm that combines the LSM and the 
backpropagation (BP) algorithm is used to solve this problem17. This algorithm is susceptible to get stuck at local 
optima. To overcome this drawback, this paper introduces a new evolutionary technique, namely, Whale algo-
rithm as in the following section.

The Whale Optimization Algorithm
The whale optimization (WO) algorithm is a new swarm technique that emulates the humpback whales20. In WO 
algorithm, the search starts by generating a random population of whales (solutions). These whales attacking 
(optimization) their prey (

→⁎
X ) in either Encircling or Bubble-net method after determining the location of the 

prey.
In the encircling method20: The position of humpback whales are updated according to the best position as20:
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iteration number t. The two coefficient 
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where ∈r [0, 1] is random number, and the parameter →a  is decreased linearly from 2 to 0 as the iteration 
increased.

There are two approaches to simulate the bubble-net behavior. The first approach is the shrinking encircling 
that achieved by using equation (8), also, 

→
A  is decreased. The second approach is the spiral updating position: 

This method is used to simulate the helix-shaped movement of humpback whales around prey:
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D X t X t( ) ( )  is the distance between the whale and prey, b is a constant for defining the shape of 
the logarithmic spiral, l is a random number in [−1, 1], and  is an element-by-element multiplication. The 
humpback whales can simultaneously swim around the prey through a shrinking circle and along a spiral-shaped 
path20.
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where a random probability ∈p [0, 1] is used to switch between the spiral model or the shrinking encircling 
mechanism to improve the position of whales.

In exploration phase, the whales search about the prey in a random from. The position of a whale is updated 
by selecting a random whale rather than ⁎X  as follows:

→
=

→ →
−

→
D C X X t( ) (11)rand
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where 
→
Xrand is a random whale’s position selected from the population.

The proposed prediction Algorithm
In this section, the proposed algorithm for predicting the bioactive amino acids concentration in fish. This algo-
rithm is the ANFIS based on WO (called ANFIS-WO), where this approach consists of five layers. The inputs 
variables to the first layer are (Moisture, fat, ash, Crude protein, and Temperature) and the output of layer 5 is the 
amino acids concentrations.
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The proposed algorithm starts by normalizing dataset then the fuzzy c mean (FCM) is used to determine the 
number of membership functions. The next step is to construct the ANFIS based on the number of membership 
function. The parameters in ANFIS are updated based on WO algorithm, that used square euclidian distance as 
a fitness function is defined as:

= −fitness function out pred (13)2

where the WO algorithm is started by generating a population with a random position for each whale that repre-
sents the parameters of ANFIS. Then the fitness function for all population is computed and the global objective 
function is determined. The value of a is decreased from 2 to 0 and for each whale in the population the A and C 
are computed based on equations (8) and (??) respectively. Then the position of current whale is updated based 
on the value of p, where if > .p 0 5 then the current position becomes the best position otherwise the position is 
based on either equations (6–7) or equations (11–12) based on if < .A 0 5 or ≥ .A 0 5 respectively. The WO still 
update the position until the stop condition is satisfied, the best solution is passed to ANFIS.

The training phase is finished, if the stop conditions (maximum number of iteration and error less than small 
value) are satisfied. In the predicting phase, the test data set in introduced to the ANFIS that predict the output 
and the performance of the output is evaluated. The proposed algorithm is illustrated in Fig. 2.

Experimental Results and Discussion
In the experiments, the data is divided into training and testing sets by using two methods, in the first method, 
the data is split randomly into 70% samples for the training set and the rest 30% as a testing set. However, the 
random division may be not accurate and can cause bias in the results of prediction, so, in order to avoid this 
limitation there are four strategies can be used as a second method. For example. the N-fold cross-validation test, 
sub-sampling test, independent dataset test and jackknife cross-validation test, in which these strategies have 
been widely used to examine the performance of a prediction model22–26. In this study, the N fold cross-validation 
test, (here 10 fold) was used to investigate the performance of the prediction model.

The ANFIS-WO algorithm was compared with five models, namely, ANFIS-PSO, ANFIS-GA, ANFIS, IBK, 
SMO, and SVM. The experiments were implemented in Matlab R2014b and Windows 10 (64-bit). The parameters 
are set as size of population is n = 25, the max iteration is 100.

Dataset collection.  By-products of 120 fresh farmed tilapia (oreochromus niloticus) were collected every 
month over a year at Kafrelsheikh Governorate, Egypt (One of the most important areas in the production of 
tilapia in the world). We collected fish byproduct under measured parameters (weight, Sex, length, water quality, 
ration). Then, they were minced and stored at −30 °C till use. The following steps shows the Enzymatic hydrolysis 
reaction process for preparing the data samples.

•	 Thawing the stored by product over night in cold place(4 °C).
•	 15% of the samples volume mixed with 50 ml phosphate buffer saline (pH 7.5).
•	 Pre-incubation at 60 °C for 20 minutes.
•	 Adding alcalase enzyme (2.5%)to initiate the enzymatic hydrolysis reaction.

Figure 2.  Flowchart of Proposed model.



www.nature.com/scientificreports/

5SCIEnTIFIC REPOrTS | 7: 10860  | DOI:10.1038/s41598-017-10890-1

•	 Heating in water bath (90 °C) for 15 minutes.
•	 Cooling in ice.
•	 Centrifuge the cooling mixture for twenty minutes at 10000 rpm then the hydrolysis degree was measured to 

the supernatant according to27.
•	 Supernatant extraction then freeze dried and characterized.

Preparation Phase.  Analysis of Tilapia fish by-product and its hydrolysates powder.  The contents of tilapia 
fish by-product and its hydrolysates were measured according to AOAC method28, The protein content was deter-
mined using kjeldal method. Moisture percentage was estimated with drying method. In addition, Ash content 
was measured by muffle furnace. Within our study, the protein hydrolysates were extracted with alcalase enzyme 
with appropriate PH and temperature29.

Amino acid sequence analysis.  According to30, stacking and separating gel were prepared using gel buffer with 
percentage 4% and 16% respectively. Heating the sample mixture with the buffer till 90 °C for 10 min, then loading 
into specific wells. Protein standards (1.06 kDa to 26.6 kDa) were also performed on the gels. Fixing, staining and 
destaining solutions were mixed with gel, after electrophoresis then comparing the resulted protein bands with 
the standard ones31.

Tricine SDS-PAGE analysis.  According to30, we performed Tricine-SDS-PAGE by preparing gel buffer with 
4% and 16% stacking and separating gel respectively, then fixing solution was added to gels. After that staining 
solution was added before the destaining solution. Comparing the resulted bands with standard protein bands.

Evaluation criteria.  The performance and efficiency of the ANFIS-WO model is evaluated by three statisti-
cal methods, namely, Average Absolute Percent Relative Error (AAPRE)and Root Mean Square Error (RMSE) as 
in Table 1: where xi is the i-th predicted element, yi is the i-th measured element, and N  is the number of samples. 
yi is the average of the corresponding predicted value.

Results
The results of the proposed model compared with other models according to divided the data randomly are 
introduced in Table 2 and Figures S1–S15 in Supplementary Material which are the average of 10 runs. Where 
Figure S1 is the average of the algorithm overall the concentration, and from this figure we can conclude that, in 
general, the proposed algorithm has the best values of RMSE and AAPRE which are 1.70 and 8.23 respectively. 
Also, its accuracy is higher than all other versions ANFIS model that have the values 8.81, 6.35 and 8.069 for 
ANFIS, ANFIS-GA, and ANFIS-PSO, respectively. Also, when compared the proposed algorithm with SMO, 
SVM, IBK, and RF, it also still has the best solution in term of all measures. Figures S2 and S15 which indicate that 
The ANFIS-WO output values are nearest to the target data (not testing target only).

Discussion
Preliminary studies were carried out in order to determine the concentration of bioactive amino acids (Figures S1 
and S16) in crude protein by-products and protein hydrolysates by-products by alcalase enzyme hydrolysis in 
tilapia fish. Obviously, the main criteria for selection of the alcalase enzyme are its ability for high extraction of 
the target analytes (Figures S2 and S17). The characterization of the molecular weights of Protein hydrolysates 
by SDS-PAGE showed the presence of strong bands ranging between 3.5–26.7 kDa, which indicated that alcalase 
enzyme was able to produce small-sized peptides in 120 min. Our study shows the alcalase enzyme ability to 
produce low molecular weight peptides through a high degree of hydrolysis. Fish protein hydrolysates with high 
functional values must be rich in low molecular weight peptides, and the effective production of such peptides 
from Tilapia By-product indicated its potential application in functional food products32 Based on this, the meas-
ured proximate compositions of Tilapia by-product and Tilapia protein hydrolysates with special concern to 
environmental temperature effect were selected and tested.

The experimental results showed the significant effect of environmental temperature and proximate com-
positions on the concentration of amino acids as. According to33, crude protein as a proximate composition has 
the greatest effect on amino acid concentrations and this matched respectively with water temperature values as 
external factor, Fat, moisture and ash which have a great effect on the metabolism and gene expression of amino 
acids in fish, specially adapted to different thermal conditions Under these controlled conditions, amino acids 
biosynthesis represented by their concentrations can be predicted by different algorithms.

Development of ANFIS via WO algorithm shows better performance in the concentrations standard devi-
ation of the differences between predicted and observed amino acids concentrations than showing incorrect 
amino acids quantity is from the true values within the biosynthesis process of whole amino acids at different 

Measure Description Rule

Average Absolute Percent 
Relative Error (AAPRE)

measures the relative absolute deviation 
from the experiment output = ∑ =

−
AAPRE N i

N xi yi
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100
1

( )

Root Mean Square Error (RMSE) Measure the differences between the 
predicted values and the actual values = ∑ −=RMSE x y( )N i

N
i i

1
1
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Table 1.  Measure the performance of algorithms.
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temperature values. Figures S2 and S11 (and Figures S17–S26) show the best biosynthesis process expressed by 
aspartic and glutamic amino acids concentrations obtained within the 27–29 °C with a marked decrease at 35 °C 
and 38 C. It is noted that these two amino acids have the same carboxylic acid on its side chain that gives it acidic 
(proton-donating) and functional properties. It is noted that Aspartate can be converted into methionine and 
threonine that, also, gives rise to isoleucine. Although these amino acids contain different mechanisms for their 
regulation and concentration, ANFIS-WO algorithm gives errors with larger absolute concentration values more 
weight than errors with smaller absolute concentration values with the same effect of temperature for aspartic 
acid and isoleucine (Figures S2 and S9, and Figures S17 and S24), otherwise, methionine which found SVM the 
best to show its predicted values (Table 2).

According to34, Alanine and Valine are produced by the transamination of pyruvate molecules as given in 
Figure S3 (Figure S18) and Figure S4 (Figure S19), respectively. These figures show that the lowest concentrations 
were in between the 12–15 C; as cold temperature may affect the glycolysis process and decrease the pyruvate pro-
duction which is the precursor for the alanine and valine. Because leucine is synthesized by a diversion from the 
valine synthetic pathway, the feedback inhibition of valine on its pathway also can inhibit the synthesis of leucine.

This biosynthesis process of the previous nonpolar amino acids alanine, as well as leucine diversion from the 
valine synthetic pathway, were optimized based on their concentrations with higher performance by ANFIS-WO 
algorithm under variable temperature measurements as shown in Figure S8 (Figure S23), but valine concen-
trations were predicted with the highest standard metric values to be at the highest performance with SMO 
Tables 2–3. Likewise, the proline amino acid (non-polar amino acid) was predicted in the best performance value 
with SMO as in Table 2, however, based on the results in Table 3, the SMO algorithm is in the third rank after the 
proposed ANFIS-WO algorithm and RF algorithm.

It is noted that ANFIS-WO gives the best performance predicted values for Phosphoryl creates group concen-
trations represented in Serine-glycine and Cysteine, Serine is the first amino acid in this family to be produced; 

ANFIS
ANFIS 
GA

ANFIS 
PSO SMO

ANFIS 
WO SVM IBK RF

aspartic acid
AAPRE 51.09 45.73 38.85 7.49 6.72 10.30 29.50 6.95

RMSE 18.29 16.36 13.69 3.44 2.44 4.29 10.95 2.80

glutamic acid
AAPRE 36.79 33.81 27.32 30.96 7.38 14.78 17.84 8.52

RMSE 23.00 20.82 16.86 21.60 5.08 11.21 11.05 5.66

serine
AAPRE 44.17 38.26 33.86 35.38 12.82 22.40 21.92 13.22

RMSE 8.52 7.45 6.84 7.51 2.56 5.27 4.16 2.77

glycine
AAPRE 30.51 28.27 54.82 31.93 1.84 25.99 19.01 1.87

RMSE 16.99 15.81 33.73 19.26 1.03 17.25 11.12 1.74

alanine
AAPRE 15.75 13.43 13.71 4.74 0.46 5.57 8.15 0.47

RMSE 6.88 5.75 5.92 2.23 0.23 2.47 3.80 0.27

cysteine
AAPRE 97.99 36.82 76.95 422.29 30.27 290.34 58.51 31.49

RMSE 0.56 0.22 0.44 2.85 0.19 2.00 0.34 0.20

tyrosine
AAPRE 23.01 8.41 15.80 22.99 3.98 14.19 14.13 5.14

RMSE 2.85 1.12 1.98 3.35 0.58 2.40 1.75 0.68

Arginine
AAPRE 22.13 24.44 11.84 13.03 7.26 7.20 13.47 8.86

RMSE 5.69 6.31 3.31 3.60 1.99 2.17 3.50 1.97

proline
AAPRE 41.43 33.42 34.57 3.92 7.16 11.37 21.86 7.81

RMSE 13.06 10.72 10.84 1.52 2.64 4.13 6.89 2.69

valine
AAPRE 13.81 12.81 15.59 4.49 11.06 5.38 11.87 8.9781

RMSE 2.95 2.75 3.31 1.06 2.50 1.26 2.54 2.75

Methionine
AAPRE 27.76 25.66 24.97 7.24 14.82 4.53 16.39 13.61

RMSE 3.57 3.29 3.21 1.19 2.01 0.72 2.10 1.84

Isoleucine
AAPRE 33.64 17.11 35.57 37.86 4.49 24.29 17.80 4.61

RMSW 5.25 2.84 6.42 7.16 0.94 5.08 2.88 0.98

leucine
AAPRE 31.28 19.68 14.32 5.88 2.89 5.39 12.23 3.31

RMSE 10.59 6.60 4.83 2.26 1.31 2.02 4.18 1.46

Histidine
AAPRE 76.47 39.22 18.36 8.26 4.15 11.42 40.57 4.75

RMSE 5.23 2.74 1.29 0.65 0.32 1.01 2.86 0.35

Table 2.  Comparison between algorithms based on RMSE and AAPRE using random division dataset for 
training and testing Moreover, the comparison results between the proposed method and the other methods 
according to the 10fold cross-validation are given in Table 3 and Figures S16–S30 in Supplementary Material. 
From these results, it can be seen that the high performance of the proposed algorithm has the better average 
overall concentrations, nearly, 1 and 5.64 for RMSE and AAPRE, respectively. As well as, the RF algorithm, is in 
the second rank which has better results than the other followed by the SVM algorithm; while the worst results 
are achieved by traditional ANFIS.
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it is then modified to produce both glycine and cysteine. In Figures S6–S10 (Figures S21–S25), the proposed 
algorithm shows the clear variation in the serine and glycine as well as tyrosine (Figure S4 and Figure S19) (as 
polar amino acids) concentrations at different times over the year which matched with the actual higher concen-
tration values at 27–29 °C and lower concentration values at 12° C, but in Figures S12 and S27, although cysteine 
biosynthesis derived from serine amino acids, their concentration variation is not clear as serine. This may be due 
to down regulation of genes required for the synthesis of cysteine which is coded on the cys regulon. Cys regulon 
can actually down regulate its own transcription by binding to its own DNA sequence and blocking the RNA 
polymerase. In this case, N-acetyl-serine which is an effective inducer of this regulon act to disallow the binding 
of regulon to its own DNA sequence35.

In Figures SS13–SS15 and SS28–SS30, ANFIS-WO present the best-predicted value performance for basic 
amino acids (arginine and histidine) which possesses similar chemical property. Biosynthesis prediction of these 
amino acids via their concentration is so vital to give clear understand the biological dynamics of amino acids in 
the fish and consequently their products including protein hydrolysates.

From all previous figures we can conclude that the standard deviation, MSE and RMSE has small values for all 
amino- acids concentration, where the predictions are the closer to the actual data.

Conclusion and Future work
The Prediction algorithms enhance the practical properties of fish products that have an extraordinary therapeu-
tic and industrial roles throughout our life. In this way, we assessed the concentration levels of bioactive amino 
acids in protein hydrolysates extracted biotechnologically from tilapia fish product with every settled parameter 
aside from the water temperature, planning to optimize their concentration and their interactions with each 
other. In addition, it is entirely costly and time-consuming to know these concentrations by the real experimental 
tests, especially to conduct a large-scale project. In this paper, we have introduced a new intelligent algorithm for 

ANFIS
ANFIS 
GA

ANFIS 
PSO SMO

ANFIS 
WO SVM IBK RF

aspartic acid
AAPRE 28.60 15.77 17.92 4.04 4.33 4.26 7.99 3.72

RMSE 24.27 7.12 9.38 1.89 1.94 1.87 3.49 7.82

glutamic acid
AAPRE 22.27 12.71 13.65 5.03 2.09 5.18 6.96 2.39

RMSE 32.71 11.38 12.07 3.95 1.55 4.07 5.35 4.62

serine
AAPRE 20.76 14.44 14.43 8.50 2.85 7.77 7.06 3.79

RMSE 9.36 3.77 3.86 2.07 0.71 1.84 1.67 2.40

glycine
AAPRE 23.09 15.19 14.99 7.95 3.21 7.03 9.20 4.18

RMSE 29.20 12.65 12.39 5.97 2.35 5.12 7.17 4.63

alanine
AAPRE 10.32 12.41 6.93 1.78 1.91 1.94 3.15 1.52

RMSE 9.13 9.15 3.86 0.92 0.94 0.98 1.58 2.95

cysteine
AAPRE 67.00 48.32 45.84 62.05 40.41 88.54 40.25 23.42

RMSE 1.47 0.93 0.92 0.84 0.69 1.15 0.75 1.60

tyrosine
AAPRE 18.35 9.29 9.98 6.43 2.78 7.36 5.82 3.00

RMSE 5.39 1.69 1.71 0.99 0.43 1.09 0.94 0.72

Arginine
AAPRE 15.07 11.21 10.90 7.08 2.39 7.27 9.79 4.49

RMSE 7.96 4.09 3.99 2.38 0.79 2.35 2.88 2.00

proline
AAPRE 26.31 15.41 16.09 5.89 4.35 6.30 8.96 8.32

RMSE 19.68 9.47 7.34 2.33 1.76 2.54 3.53 2.62

valine
AAPRE 7.71 4.66 4.64 1.41 1.44 1.43 2.91 2.62

RMSE 3.80 1.40 1.40 0.40 0.37 0.40 0.75 4.11

Methionine
AAPRE 14.60 10.14 10.29 7.00 3.13 6.20 7.57 4.86

RMSE 4.15 1.88 1.91 1.19 0.55 1.05 1.21 1.37

Isoleucine
AAPRE 22.12 13.46 13.24 9.66 1.88 8.36 7.06 3.73

RMSE 8.14 3.08 2.97 1.94 0.40 1.64 1.58 2.54

leucine
AAPRE 15.52 9.31 9.75 3.77 2.13 3.50 6.52 3.37

RMSE 12.03 4.85 4.91 1.60 0.96 1.42 2.69 4.49

Histidine
AAPRE 47.81 25.34 27.88 8.11 6.19 9.94 13.96 6.74

RMSE 7.83 2.86 3.13 0.71 0.59 0.84 1.34 1.22

Table 3.  Comparison between algorithms based on RMSE and AAPRE using 10fold cross validation. From 
the previous results, it can be concluded that the prediction results, nearly, for all algorithms based on the 
10fold cross-validation are better than the prediction through dividing the data randomly. Also, by comparing 
the results of the proposed algorithm overall target data (label) that given in Figures S17–S30 with previous 
Figures S2–S15, it can notice the high performance in Figures S17–S30; which indicates the high efficiency of 
the 10fold cross-validation. Moreover, the proposed ANFIS-WO algorithm is the better over the two methods 
(randomly and 10fold cross-validation) of constructing the training and testing sets.
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predict the amino acids concentration. The proposed algorithm is the ANFIS based whale optimization algo-
rithm, in which the whale is used to improve the performance of ANFIS. The results indicate that the higher 
performance of ANFIS-WO algorithm when compared with other algorithms in terms of RMSE and AAPRE.

For future work, further investigations are required to identify the behavior of the proposed algorithm in 
different applications such as water quality and other food applications. According to the potential of the pro-
posed method, it can be applied to, other related problems such as DNA-binding protein prediction36, detection 
of tubule boundary37, methylation site prediction37, 38, phosphorylation site prediction39, and protein-protein 
interaction prediction40, 41. Moreover, since user-friendly and publicly accessible web-servers represent the future 
direction for developing practically more useful models42–46, we shall make efforts in our future work to provide 
a web-server for the method presented in this paper.
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