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Parkinson’s disease (PD) is the second most common neurodegenerative disease
associated with age. Early diagnosis of PD is key to preventing the loss of dopamine
neurons. Peripheral-blood biomarkers have shown their value in recent years because of
their easy access and long-term monitoring advantages. However, few peripheral-blood
biomarkers have proven useful. This study aims to explore potential peripheral-blood
biomarkers for the early diagnosis of PD. Three substantia nigra (SN) transcriptome
datasets from the Gene Expression Omnibus (GEO) database were divided into a
training cohort and a test cohort. We constructed a protein–protein interaction (PPI)
network and a weighted gene co-expression network analysis (WGCNA) network, found
their overlapping differentially expressed genes and studied them as the key genes.
Analysis of the peripheral-blood transcriptome datasets of PD patients from GEO
showed that three key genes were upregulated in PD over healthy participants. Analysis
of the relationship between their expression and survival and analysis of their brain
expression suggested that these key genes could become biomarkers. Then, animal
models were studied to validate the expression of the key genes, and only SSR1 (the
signal sequence receptor subunit1) was significantly upregulated in both animal models
in peripheral blood. Correlation analysis and logistic regression analysis were used to
analyze the correlation between brain dopaminergic neurons and SSR1 expression,
and it was found that SSR1 expression was negatively correlated with dopaminergic
neuron survival. The upregulation of SSR1 expression in peripheral blood was also found
to precede the abnormal behavior of animals. In addition, the application of artificial
intelligence technology further showed the value of SSR1 in clinical PD prediction. The
three classifiers all showed that SSR1 had high predictability for PD. The classifier
with the best prediction accuracy was selected through AUC and MCC to construct
a prediction model. In short, this research not only provides potential biomarkers for
the early diagnosis of PD but also establishes a possible artificial intelligence model for
predicting PD.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
principally defined by the motor symptoms of resting tremor,
rigidity, and bradykinesia. These symptoms occur mainly
because of the progressive loss of dopaminergic neurons in
the substantia nigra pars compacta (SN; Damier et al., 1999;
Kalia and Lang, 2015). However, the mechanism behind this
neuronal loss remains largely unclear (Dauer and Przedborski,
2003). There is no cure for PD. The mainstay of its management
is symptomatic treatment with drugs that increase dopamine
concentrations or directly stimulate dopamine receptors (Kalia
and Lang, 2015). Clinical diagnosis of PD is based on the
presence of Parkinsonian motor features, but a significant
proportion of nigral neurons are lost before the onset of motor
symptoms (Lang and Lozano, 1998), meaning that clinical
diagnosis is likely to occur too late for the administration of
disease-modifying therapies. Therefore, in the management
of PD, it is urgent to find reliable diagnostic and prognostic
biomarkers of PD to prevent the loss of dopaminergic neurons
at an early stage (Parnetti et al., 2019).

The latest biomarkers mainly detect α-synuclein (Visanji
et al., 2014) and neuroimaging modalities (Brooks and Pavese,
2011). Cerebrospinal fluid (CSF) is close to the central nervous
system, making it an ideal source of diagnostic markers for
ongoing pathological processes. CSF α-synuclein appears to be
reasonably sensitive and specific for PD (Hong et al., 2010;
Mollenhauer et al., 2011). Total α-synuclein levels have been
significantly decreased in PD patients compared with controls
(Mollenhauer et al., 2011, 2013). However, obtaining CSF is
difficult, and repeated lumbar puncture is not conducive to
long-term monitoring. The detection of α-synuclein in plasma
and serum remains controversial; some researchers found that
it was unaffected in PD patients (Smith et al., 2012), while
another study found that it was lower in them than controls
(Besong-Agbo et al., 2013). Dopamine transporter imaging and
magnetic resonance imaging of the SN are sensitive and specific
tools for PD (Benamer et al., 2000; Kagi et al., 2010; Lehericy
et al., 2012). Although these techniques are very sensitive, they
are expensive and involve radiation exposure, and it is not
known how useful they are for the early detection of atypical
PD (Frosini et al., 2017). As blood is easier, cheaper, and less
invasive to obtain than cerebrospinal fluid (Thambisetty and
Lovestone, 2010), people have focused on biomarkers in blood
(Chahine et al., 2014; Lin et al., 2019; Grossi et al., 2021),
especially for longitudinal evaluation. Uric acid, miR-124, and
other molecules can be used as biomarkers for the diagnosis of
PD in peripheral blood (Angelopoulou et al., 2019; Lawton et al.,
2020). However, a single biochemical marker is unlikely to be
sufficient for the early diagnosis of PD, while a combination of
them may be useful. Therefore, there is a need to find more PD
biomarkers in peripheral blood, and the development of reliable
and accurate peripheral-blood biomarkers will greatly promote
the early detection of PD and the identification of its biological
characteristics.

Massively parallel microarray analysis can reliably assess
the relationships between gene expression and clinical

manifestations on a global scale and reveal the etiology of
complex diseases by identifying abnormalities in genes or
pathways (Schadt et al., 2005). Weighted gene co-expression
network analysis (WGCNA) and protein–protein interaction
networks (PPI) were constructed here to identify hub genes
underlying PD. Longitudinal studies over time are a common
method for studying degenerative diseases. We established a
time axis to explore the dynamic changes in hub gene expression
in a PD model and their potential as biomarkers in the early
stage of the model. Finally, machine learning is a key method
of modern medical research, and it is often used to diagnose
diseases or to screen biomarkers of them (Deo, 2015). In this
study, we used random forest (RF), K-nearest neighbor (KNN)
and support vector machine (SVM) to establish a PD prediction
model (Zhang, 2016; Kriegeskorte and Golan, 2019). A previous
study combined KNN with a genetic algorithm to achieve
high classification accuracy (Zhang et al., 2018). Here, after
comparing the AUC and MCC of three classifiers, an SVM was
selected to build an artificial intelligence prediction model of PD
in the early stage.

MATERIALS AND METHODS

Gene Expression Data and Subsequent
Processing Based on GEO Databases
The Gene Expression Omnibus (GEO1) is a public functional
genomics data repository of high-throughput gene expression
data, chips, and microarrays. As shown in the flow chart
(Figure 1), we searched GEO with the following keywords:
‘‘(Parkinson’s disease) and (substantia nigra striatum)’’,
which yielded many datasets (Edgar et al., 2002). Four gene
expression datasets [GSE28894, GSE20141, GSE20295, and
GSE20292] were chosen and downloaded from GEO. The
GSE28894 dataset contained 60 PD samples and 86 normal
samples. GSE20141 contained 10 PD samples and eight normal
samples. GSE20295 contained 40 PD samples and 53 normal
samples. First, GSE20141 was chosen to run WGCNA to
identify candidate hub genes. Second, GSE28894, GSE20141, and
GSE20295 were used to construct a PPI network. GSE20292 was
used to do external verification (Supplementary Figure 2).
Then we searched for the keywords ‘‘(Parkinson’s disease)
and (whole blood) and (early stage)’’ and obtained three
datasets: GSE6613 GSE72267, and GSE99039. We performed
whole blood verification of the hub genes in all the three
datasets. GSE6613 was used to calculate the area under the
receiver operating characteristic curve (AUC) of SSR1 and
to build our machine learning model. We finally retrieved
the datasets GSE85426, GSE51759, GSE89093, GSE138118,
and GSE167914 for Alzheimer’s disease (AD), Huntington’s
disease (HD), endometrial carcinoma, bladder cancer, and
thyroid carcinoma, respectively, which were used to calculate the
specificity of SSR1 to PD. Detailed of all data sets can be seen in
Table 1.

1http://www.ncbi.nlm.nih.gov/geo
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FIGURE 1 | Flow chart of the analysis process.

WGCNA
In WGCNA, the correlation between modules and clinical
subtypes is calculated according to the feature vector of each
network module. Module eigengenes actually formulate the

expression patterns of all genes within a given module into
a single characteristic expression profile. Module eigengenes
can be regarded as the first principal component of the gene
module. The correlation between each gene in these modules
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TABLE 1 | The information of Gene Expression Omnibus (GEO) datasets.

GEO datasets Tissue Disease Application

GSE20141 SN Parkinson’s disease WGCNA analysis, PPI network
GSE28894 SN Parkinson’s disease PPI network
GSE20295 SN Parkinson’s disease PPI network
GSE6613 Whole blood Parkinson’s disease External verification machine learning
GSE72267 Whole blood Parkinson’s disease External verification
GSE99039 Whole blood Parkinson’s disease External verification
GSE85426 Whole blood Alzheimer’s disease machine learning (specificity of SSR1 to PD)
GSE51759 Whole blood Huntington’s Disease machine learning (specificity of SSR1 to PD)
GSE89093 Whole blood Endometrial Carcinoma machine learning (specificity of SSR1 to PD)
GSE138118 Whole blood Bladder Cancer machine learning (specificity of SSR1 to PD)
GSE167914 Whole blood Thyroid Carcinoma machine learning (specificity of SSR1 to PD)

was quantified by the gene significance (GS) value. Accordingly,
the module significance (MS) of a certain module is defined as
the averaged GS values of all genes included in it. Modules are
ranked according to the MS score, and the top five modules are
considered key modules relevant to clinical outcomes for further
analysis. Hub genes in the co-expression network are a class
of genes that have high connectivity within a network module
and are significantly correlated with biological function (Chen
et al., 2017). In this study, we measured the absolute value of
the gene significance (GS) score, which represents the correlation
between the genes in these modules and each phenotype (Yang
et al., 2018).We screened candidate genes using the cutoff criteria
|MM| ≥ 0.8 and |GS| ≥ 0.5 because such genes are biologically
meaningful. |MM|≥ 0.8 indicates that the gene is strongly related
to the module, and |GS| ≥ 0.5 requires that the gene expression
profile be closely related to each module.

PPI Network Construction and Module
Analysis
The differentially expressed genes (DEGs) between PD and
normal samples were screened using GEO2R2). GEO2R is an
interactive web tool that allows users to compare two or more
datasets in a GEO series to identify DEGs across experimental
conditions (Edgar et al., 2002). The adjusted P-values (Padj.) and
Benjamini and Hochberg false discovery rates were applied to
provide a balance between the discovery of statistically significant
genes and the limitation of false positives. An absolute value of
the logarithm of the fold change (logFC) >1 and Padj. < 0.01 were
considered statistically significant.

The PPI network was predicted using the Search Tool for
the Retrieval of Interacting Genes (STRING3) online database.
Analyzing the functional interactions between proteins may
provide insights into the mechanisms of the generation or
development of diseases. The PPI network of DEGs was
constructed using the STRING database, and an interaction with
a combined score >0.4 was considered statistically significant.
Cytoscape is an open source bioinformatics software platform
for visualizing molecular interaction networks. The plug-in
Molecular Complex Detection (MCODE) of Cytoscape is an app
for clustering a given network based on its topology to find

2https://www.ncbi.nlm.nih.gov/geo/geo2r/
3http://string-db.org

densely connected regions. The PPI networks were drawn using
Cytoscape, and the most significant module in the PPI networks
was identified using MCODE. The criteria for selection were
as follows: MCODE scores >5, degree cutoff = 2, node score
cutoff = 0.2, max depth = 100 and k-score = 2. The hub genes
in the PPI network were those with degree ≥10.

Functional Analysis of Hub Genes and
Enrichment Analysis of DEGs
The overall survival and disease-free survival analyses of
hub genes were performed using Kaplan-Meier curves
in cBioPortal4. The expression levels of six hub genes in
the brain were determined from the NCBI database. The
Database for Annotation, Visualization, and Integrated
Discovery (DAVID5) is an online biological information
database that integrates biological data and analysis tools
and provides a comprehensive set of functional annotation
information on genes and proteins for users to extract
biological information. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a database resource for understanding
high-level functions and biological systems from large-
scale molecular datasets generated by high-throughput
experimental technologies. Gene Ontology (GO) is a major
bioinformatics tool to annotate genes and analyze the
biological processes of these genes. To analyze the functions
of DEGs, biological analyses were performed using the
DAVID online database. P < 0.01 was considered statistically
significant.

Classifier Construction and Machine
Learning
Three ML algorithms, SVM (De Martino et al., 2008), kNN
(Cover and Hart, 1967), and RF (Ho, 1998) were built both to
verify if SSR1 can distinguish PD patients well and to determine
which best classifies SSR1 in PD datasets. The RF method is a
commonly-used classification method containing a number of
decision trees. A final classification label was determined based
on the class with the most votes from all trees. RF is easily
parallelizable and can be enhanced with boosting or bagging.
kNN performs classification by assigning a point to the class that

4http://www.cbioportal.org/
5http://david.ncifcrf.gov
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is most prevalent out of the k points closest to it. At the same
time, kNN is simple to implement and can utilize Multi-task
learning. SVM maps each data item into an n-dimensional
feature space where n is the number of features. It then identifies
the hyperplane that separates the data items into two classes
while maximizing the marginal distance for both classes and
minimizing the classification errors. It is important to note
that each technique has its own advantages and disadvantages.
We hope to use different algorithms for verification with
complementary advantages to more comprehensively verify the
feasibility of SSR1 as a biomarker.

All models were learned from the same training data
generated by selecting 80% of the data, and the remaining
20% were used as validation data to measure and compare the
performance of the model. Each algorithm was also tested with
combinations of parameters; finally, we found that c = 2 for the
SVM, k = 4 for the kNN, 60 trees for RF produced the best results.
To evaluate the overall performance of each model, a 10-fold
cross validation was performed. Of the 10 divided sets from
the data, the process by which the learned model predicts the
remaining one set was repeated 10 times, and eventually, all data
were used for validation. All ML algorithms were implemented
in the python package sklearn.

Performance Evaluation
In order to find out the best classifier for further study, the
performance of data validation was calculated according to the
area under the curve (AUC) from 0.5 to 1 and the Matthews
Correlation Coefficient (MCC) from −1 to 1, a parameter able
to reflect classifier effectiveness (Chicco and Jurman, 2020).

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TP is the number of samples correctly predicted as PD in PD
samples, FN is the number of samples incorrectly predicted
as NORMAL in PD samples, FP is the number of samples
incorrectly predicted as PD in normal samples, and TN is the
number of samples correctly predicted as NORMAL in normal
samples. MCC ranges from −1 to 1, with a completely wrong
classification at−1 and perfect classification at 1.

MCC of classification is defined as:

MCC =
c× s−

∑K
k pk × tk√

(S2 −
∑K

k P2k)× (S2 −
∑K

k t2k)

s is the total number of samples, c is the total number of correctly
predicted samples, tk =

∑K
i Cik is the number of all samples

in class k, and pk =
∑K

i Cki and is the number of correctly
predicted samples in class k. MCC of pan-cancer classification for
perfect prediction is 1, but the minimum is somewhere between
−1 and 0, depending on the number and distribution of the
actual labels (Kim et al., 2020). Eventually, the classifier with the
greatest AUC and MCC value was identified as the optimal PD
classifier.

Animal Experiments
All experimental protocols were performed following the
guidelines on animal research provided by the institutional ethics

committee at Nantong University and were approved by the
committee.

6-OHDA Lesion: Adult C57BL/6J male mice (25–30 g) were
maintained under a 12-h light/12-h dark cycle in cages and
acclimated to the experimental environment for 1 week before
modeling. The mice received a unilateral intrastriatal injection
of 6-OHDA (Sigma-Aldrich, St. Louis, MO, USA). The animals
were pretreated with desipramine (Sigma-Aldrich, St. Louis, MO,
USA). A total dose of 12 µg of 6-OHDA dissolved in 3 µl PBS
(16 µmol/ml) was infused into the right striatum at the following
coordinates: anterior-posterior (AP), +0.09 cm; medial-lateral
(ML), +0.22 cm; dorsal-ventral (DV), −0.25 cm relative to the
bregma.

MPTP model: In the same mice, MPTP (Sigma-Aldrich, St.
Louis, MO, USA) was intraperitoneally injected four times at
an individual dose of 12 mg/kg dissolved in 200 µl PBS with a
2-h interval between the injections. Te control animals received
saline only.

Behavioral Testing: All the tests were performed 0 d, 1 d,
3 d, 5 d, 7 d, 14 d, and 28 d after 6-OHDA injection in
comparison with the normal group. In the pole test, the mice
were placed head-upward on top of a rough-surfaced iron pole
(50 cm in length and 1.0 cm in diameter) and could climb
down to the base of the pole. The time that it took for each
mouse to turn completely downward and then reach the floor
was measured, with a cutoff of 120 s. The average of three
measurements was taken as the result. In apomorphine-induced
rotation, the mice were allowed to habituate for 10 min in a
white 30 × 30-cm chamber. After an intraperitoneal injection
of 0.5 mg/kg apomorphine hydrochloride (Sigma-Aldrich, St.
Louis,MO, USA), the full rotations in the chamber were recorded
with a video camera for 30 min and counted by a blinded
examiner.

Tissue Preparation: Perfusion was performed with a cold
saline solution, and fixation was then performed with 4%
paraformaldehyde in 0.1 M phosphate buffer. Each brain was
dissected, postfixed overnight in buffered 4% paraformaldehyde
at 4◦C and stored in a 30% sucrose solution at 4◦C until it
sank. Frozen sectioning was performed on a freezing microtome
(Leica, CM3050S) to generate 20-µm-thick coronal sections.

Mouse Plasma Extraction: The researcher grabbed the scruff
of the mouse with the left thumb, index finger, andmiddle finger,
and the little finger and ring finger fixed the tail. The skin of the
eye that needed to be removed was lightly pressed to make the
eyeball become congested and prominent. Surgical scissors were
used to cut off the beard of the mouse to prevent blood from
leaving the beard and causing hemolysis. The eyeball was grasped
with tweezers and quickly removed, and the blood flowed from
the eye socket into an Eppendorf tube, which was supplemented
with a 1:9 ratio of the anticoagulant. The supernatant obtained
after centrifugation at 3,000 rpm for 5–10 min was plasma.

Immunohistochemistry
The prepared tissue sections were washed with PBS,
permeabilized with 0.25% Triton X-100 for 10 min at RT,
and treated with 10% goat serum blocking buffer for 2 h at RT.
Tissue sections were costained with primary antibody against
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tyrosine hydroxylase (TH; 1:300, Abcam, UK) as a marker for
dopaminergic neurons overnight at 4◦C. After washing, indirect
fluorescence by incubating sections at room temperature in the
dark for 1 h with goat anti-rabbit IgG conjugated with Alexa
Fluor 568 (1:1,000, Life Technologies). The coverslips were
then washed with PBST and treated with an antifade mounting
medium with Hoechst 33342. Images were obtained under a
microscope (Zeiss LSM700, Carl Zeiss Microimaging GmbH,
Jena, Germany). All photographs were taken using the same
exposure time. For immunocytochemistry, six to nine fields
(two to three fields × three independent samples) were selected
randomly from each group, and for immunohistochemistry,
three sections from each animal (three mice) were randomly
selected.

Western Blotting Analysis
The brain tissue was homogenized in RIPA lysis buffer
(EpiZyme, China), protease inhibitor cocktail (MCE, USA),
and phosphatase inhibitor cocktail I (MCE, USA) and then
centrifuged at 1,600× g at 4◦C for 20 min. The supernatant
was collected, and the protein concentration was determined
using a BCA Protein Assay Kit (Beyotime, China). An aliquot
of the supernatant was diluted in SDS-PAGE Sample Loading
Buffer 28 (Beyotime, China), and the proteins were separated
in Omni-PAGETM HEPES-Tris Gels (EpiZyme, China) and
transferred to a polyvinylidene difluoride membrane (Millipore,
USA). The membrane was blocked for 1 h at RT in blocking
buffer comprising TBS with 5% DifcoTM skim milk (Becton,
Dickinson and 606 Company, USA) and 0.1% Tween 20. It
was then incubated with the following primary antibodies
overnight at 4◦C: rabbit anti-GAPDH (Abcam, UK), and
rabbit anti-TH (Abcam, UK). The membrane was washed
in TBST and incubated with goat anti-rabbit IgG (H +
L) and cross-adsorbed secondary antibody (conjugated to
horseradish peroxidase; Thermo Fisher, USA) for 1 h at RT. The
membrane was then washed three times in TBST for 5 min.
The antigen–antibody peroxidase complex was detected using
High-sig ECL Western Blotting Substrate (TanonTM, China)
according to the manufacturer’s instructions, and images were
obtained using the TanonTM 5200CE Chemi-Image System. The
intensity of each band was determined with ImageJ Fiji 1.53c.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA of the SN was extracted using TRIzol reagent
(Tiangen, Beijing, China). The total RNA of plasma was
extracted using an EZ-press Serum/Plasma RNA Purification
Kit (EZBioscience, Beijing, China). The RNA of 3 mice was
filtered through a filter column. Reverse transcription of the RNA
into cDNA and quantitative polymerase chain reaction (qPCR)
were performed according to the instructions of the PrimeScript
RT Reagent Kit with gDNA Eraser (Takara, Dalian, China)
and TB Green Premix Ex Taq II (Takara). Relative expression
levels were obtained by normalizing glyceraldehyde phosphate
dehydrogenase (GAPDH). Each reaction was performed in
triplicate. The relative mRNA expression level was calculated by
the comparative 2−∆∆Ct method.

Statistical Analysis
All data are presented as the means ± SEM and were analyzed
using GraphPad Prism 8.0. The difference between two groups
was analyzed by a two-tailed Student’s t-test, and one-way
ANOVA followed by Tukey’s post hoc analysis was used for
multiple comparisons among two or more groups. Significant
difference among groups was assessed as ns p > 0.05, *p < 0.05,
**p < 0.01, and ***p < 0.001.

RESULTS

Determination of Hub Modules and Genes
in WGCNA
The expression profiles of several modules are included in
Figure 2E, and each gene was classified into different modules
(Figure 2A). We processed the gene expression profiles using
variance analysis on the GSE20141 dataset, which included the
most genes. The top five gene modules were used to select the
hub gene module. To ensure that the network was a scale-free
network, we ran an empirical analysis to choose an optimal
parameter β. Both the scale-free topology model fit index and
mean connectivity reached the steady state when β was equal to
4 (Figures 2B,C). A total of five gene modules were identified
via average link age hierarchical clustering, and each module is
represented in different colors. We drew a heat map to explore
the correlations between module eigengenes and clinical traits
(Figure 2D). Each column in Figure 2D displays the correlation
and corresponding p-value: the darker the color, the stronger the
correlation coefficient. We found that five module eigengenes
had the highest correlations. Scatter plots of the degree and
P-value of Cox regression in the five modules are shown in
the Supplementary Figure. Accordingly, we selected the genes
that had cutoff criteria |MM| ≥ 0.8 and |GS| ≥ 0.5, which are
SSR1, RNF130, GTF2H5, HMGA2, and CD79B. WGCNA can
reflect the continuity of potential co-expression information and
avoid information loss by setting artificial threshold parameters
(Langfelder andHorvath, 2008). However,WGCNAonly focuses
on a single dataset, so it lacks universality. To make up for this,
we also performed a PPI network analysis.

PPI Network Analysis and Hub Gene
Selection
After standardization of the microarray results, DEGs were
identified. The overlap between the three datasets contained
226 genes, as shown in the Venn diagram (Figure 3B),
consisting of 154 downregulated genes and 72 upregulated
genes in PD patients vs. healthy controls. We performed KEGG
and GO analysis on the 226 genes and listed the top eight
pathways in both analyses (Figure 4). GO function annotation
results displayed that changes at the biological process (BP)
were observably focused in dendrite morphogenesis, dendrite
development, negative regulation of catabolic process, neuron
projection organization, axonogenesis, and negative regulation
of protein catabolic process (Figure 4A). Changes of DEGs
significantly in cell component (CC) were mostly in transport
vesicle, transport vesicle membrane, membrane raft, membrane
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FIGURE 2 | Determination of soft-thresholding power in WGCNA analysis. (A) Dendrogram of all differentially expressed genes clustered based on a dissimilarity
measure. (B) Analysis of the scale-free fit index for various soft-thresholding powers β. (C) Analysis of the mean connectivity for various soft thresholding powers. (D)
Heatmap of the correlation between module eigengenes and clinical traits of Parkinson. (E) Clustering of module eigengenes.

microdomain, synaptic vesicle, and membrane region. The
most enriched molecular function (MF) annotations were
hormone receptor binding, dystroglycan binding, vinculin
binding, ATPase regulator activity, nuclear hormone receptor

binding, and protein transmembrane transporter activity. In
addition, the results of the KEGG pathway analysis in the bubble
chart revealed that DEGs were remarkably concentrated in the
Viral myocarditis, Adherens junction, Arrhythmogenic right
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FIGURE 3 | Venn diagram and PPI network. (A) The PPI network of DEGs was constructed using Cytoscape. Upregulated genes are marked in light red;
downregulated genes are marked in light blue. (B) DEGs were selected with the absolute value of fold change >1 and P-value <0.01 among the mRNA expression
profiling sets GSE28894, GSE20141, and GSE20295. The three datasets showed an overlap of 226 genes.

ventricular cardiomyopathy (ARVC), Vasopressin-regulated
water reabsorption, Vascular smooth muscle contraction, and
protein processing in the endoplasmic reticulum (Figure 4B).
The pathways of hub genes were further investigated to

determine the mechanism by which hub genes can act as
biomarkers of PD. The PPI network of DEGs was constructed,
and the most significant module was obtained using Cytoscape
(Figure 3A). The results showed that the network contained six
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FIGURE 4 | The Go terms and KEGG pathways enrichment analysis of 226 DEGs in PD. (A) The Go terms conclude the biological process, cellular component, and
molecular function. (B) KEGG pathway revealed that DEGs were remarkably concentrated in the viral myocarditis, adherens junction, arrhythmogenic right ventricular
cardlomyopathy (ARVC), vasopressin-regulated water reabsorption, vascular smooth muscle contraction, and protein processing in endoplasmic reticulum.

TABLE 2 | Three hub genes and functions.

No. Gene symbol Full name Function

1 RNF130 ring finger protein 130 The protein encoded by this gene contains a RING finger motif and is similar to g1, a Drosophila zinc-finger
protein that is expressed in mesoderm and involved in embryonic development. This gene may regulate growth
factor withdrawal-induced apoptosis of myeloid precursor cells.

2 SSR1 signal sequence receptor
subunit 1

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor
associated with protein translocation across the ER membrane. This gene generates several mRNA species as
a result of complex alternative polyadenylation.

3 GTF2H5 general transcription factor
IIH subunit 5

This gene encodes a subunit of transcript!on/repair factor TFIIH, which functions in gene transcription and DNA
repair. This protein stimulates ERCC3/XPB ATPase activity to trigger DNA opening during DNA repair, and is
implicated in regulating cellular levels of TFIIH.

hub genes. These genes were identified as hub genes by virtue
of having a degree ≥10. The genes shared in common by the
WGCNA and PPI analysis were SSR1, GTF2H5, and RNF130.
Since these genes were identified by two analytical methods, they
will be the most reliable and representative of genes for our
purposes. The names, abbreviations and functions of these hub
genes are listed in Table 2.

Whole-Blood Sample Verification and Hub
Gene Analysis
To further explore whether the abnormally expressed hub genes
in the brain could be detected in peripheral blood in patients at
an early stage (at the onset of motor symptoms), we observed
the difference in expression between the normal group and
PD group in three whole-blood datasets and found that all
three genes showed significantly upregulated in peripheral blood
(Figures 5A–C). Their differential expression in peripheral
blood was basically consistent with that in the brain. The

overall survival analysis of the hub genes was performed
using Kaplan-Meier curves. PD patients whose period blood
highly expressed these genes showed good overall survival
and disease-free survival (Figures 5D–F). SSR1, GTF2H5, and
RNF130 were expressed highly in brain tissue (Figure 5G), which
means they meet the fundamental requirements of biomarkers
of PD.

Expression Levels of Hub Genes In vivo
To analyze the accuracy and reliability of the above bioinformatic
analysis, Quantitative Real-Time PCR was used to detect the
expression levels of the hub genes in the SN and period blood
of PD model mice. We used 6-OHDA and MPTP models for
tissue verification. Compared with the value in normal SN tissue
(non injected mice) and SHAM group, the expression level of
SSR1 was significantly upregulated (P < 0.05) after 6-OHDA,
as well as after MPTP injury (Figures 6A,D). GTF2H5 showed
no significant difference in the 6-OHDA model and MPTP
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FIGURE 5 | Analysis of the correlation between three hub genes and PD based on bioinfarmatics. (A–C) Verification of hub genes based on peripheral blood
datasets: GSE72267, GSE99039, and GSE6613. (D–F) Overall survival and disease-free survival analyses of three hub genes were performed using cBioPortal
online platform. P < 0.05 was considered statistically significant. (G) Expression level of three hub genes in brain.

model (Figures 6C,F). RNF130 was not different in either
model (Figures 6B,E). Considering the results above, we chose
the 6-OHDA model to detect blood changes in hub genes.

Surprisingly, SSR1 and GTF2H5 were both upregulated to
varying degrees (Figures 6G–I). However, because they showed
no obvious change in brain tissue, we thought that the changes
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FIGURE 6 | The mRNA relative expression levels of SSR1, GTF2H5, and RNF130 in PD model mice. (A–C) The expression levels of SSR1, GTF2H5, and
RNF130 in SN (substantia nigra) in vivo in PD animal model constructed with 6-OHDA. (D–F) The expression levels of SSR1, GTF2H5, and RNF130 in SN (substantia
nigra) in vivo in PD animal model constructed with MPTP. (G–I) The expression levels of SSR1, GTF2H5, and RNF130 in whole blood in vivo in PD animal model
constructed with 6-OHDA. Norrnal group (non injected mice), SHAM group (PBS injected mice); ns p > 0.05, *p < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs.
each group.

in peripheral blood of GTF2H5 might not be directly related to
PD. The imbalance of SSR1 both in the tissues and in peripheral

blood after injury suggested that it may play an important role in
the occurrence and progression of PD.
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Longitudinal Study of SSR1 Expression
In vivo
To further explore the relationship between the hub gene
SSR1 and dopaminergic neurons in the SN, we established
a time axis of 0, 3, 5, 7, 14, and 28 d (Figure 7A).
We detected TH and SSR1 in the SN tissue of 6-OHDA-
injured mice and with PBS-injected mice. We used Western
blot and immunohistochemistry to analyze the change in
TH. Immunohistochemical fluorescence showed that on day
7 after injury, dopaminergic neuron number began to decrease
significantly. In the following days, the number of dopamine
neurons remained low (Figure 7B). Western blot showed
similar results: TH decreased below 60% of the control level
at day 7, and from day 14 to day 28, it was lower than
20% (Figure 7C). Using qPCR to detect the expression trend
of SSR1 at the same time, we found that the increase in
SSR1 was divided into three stages (Figure 7D). It increased
significantly from 0 d to 3 d, remained stable from 3 d
to 7 d, and increased again from 7 d to 28 d, which was
consistent with the decreasing trend of dopamine neurons.
Then we performed a correlation analysis of SSR1 and TH
in SN (Figure 7E). Regression of TH neuron number on
SSR1 concentration showed a negative correlation, with a
goodness of fit (R2) of 0.8834. The results show that in
animal models, SSR1 has a strong negative correlation with
TH neurons. SSR1 may be related to damage to TH neurons
and to a certain extent can reflect the degree of damage
to them.

To explore whether SSR1 could be a biomarker in the early
stage of PD, we measured the correlation between changes
in animal behavior and SSR1 expression in blood. Most
preclinical experiments have focused on late-stage, chronic,
fully DA-depleted states (Stanic et al., 2003; Grealish et al.,
2010; Boix et al., 2015; Zhang et al., 2017). Few studies have
focused specifically on the early-phase behavioral responses after
6-OHDA lesions in the SNc (Fornaguera and Schwarting, 1999;
Rosa et al., 2020). In the 6-OHDA model, few researchers
have focused on behavioral disorders in the first week after SN
striatum injury. We thought it would be interesting to study
the early time course of changes occurring in the emergence
of the parkinsonian lesion in the standard 6-OHDA model and
whether SSR1 might be predictive of the severity of the lesion.
Behavioral changes began to appear at 7 days after 6-OHDA
injection, and significant differences appeared from 14 days
to 28 days. There were few abnormalities in 3D and 5D (in
apomorphine-induced rotation, when the number of rotations is
>7 r/min, it is considered a successful model; Figure 7F). The
rotation experiment induced by apomorphine further suggested
that the number of dopamine neurons decreased to less than
20% of the control level at 14D-28D. The expression of SSR1 in
peripheral blood began to be upregulated as early as day 3,
when behavioral disorders were not obvious (Figure 7G). As
the course of the disease progressed, the expression of SSR1 in
peripheral blood stayed high. These results show that in the early
stage of a PD model (with few or no behavioral abnormalities),
SSR1 is significantly upregulated in both the brain and blood.
This abnormal expression may indicate the degree of damage to

dopaminergic neurons and make SSR1 a promising biomarker of
early PD.

Machine Learning
RF, KNN, and SVM were used to construct classifiers to
distinguish PD patients from healthy controls based on
GSE6613, which shows the best performance in both classifiers
(Supplementary Figure 1). To identify the best predictors
of each classifier, we added these upregulated genes to each
classifier one by one in order of rank. The RF classifier based
on SSR1 had good predictive power (AUC: 0.91; Figure 8A).
In addition, we validated the PD specificity of our gene
expression classifier by testing it on two different protein
aggregation disease datasets: one Alzheimer’s disease dataset
(GSE85426) and one Huntington’s disease expression dataset
(GSE51799). The AUCs of SSR1 for AD and HD were low
(Figures 8B,C), which indicates that our expression classifier
has no prediction power for Alzheimer’s disease or Huntington’s
disease but is efficient and specific for PD. Given that the
expression level of SSR1 in other organs (Figure 6B), such
as the bladder, thyroid, and endometrium, was similar to that
in the brain, we chose three datasets of these diseases and
tested the AUC power of SSR1 in cases not specific to PD. As
expected, these curves had AUCs lower than 0.6 (Figures 8D–F),
which means that SSR1 has extreme specificity to Parkinson’s
disease, while it behaves normally in other diseases. The KNN
and SVM classifier yielded similar results as the RF classifier
(Figures 8A–F). By comparing the AUC value of three classifiers:
RF(AUC:0.91), KNN (AUC:0.89), SVM(AUC:0.93), we can find
SVM classifier behaviors best. To confirm the results above,
MCC was implemented to select the optimal classifier to use in
clinical applications. As illustrated in Figure 9, SVM had the
highest MCC all the time, which represents high recognition
accuracy and precision. To sum up, the SVM classifier has the
best precision of SSR1 in PD.

DISCUSSION

Studies on PD biomarkers based on the GEO datasets
have mostly used the peripheral-blood datasets (Wang
et al., 2017, 2019; Wu et al., 2020; Yuan et al., 2020).
Biomarkers corresponding to PD molecular neuropathological
characteristics based on its pathogenesis can not only predict
PD at an early stage but also assess the condition of PD patients
and judge their prognosis. Therefore, it would b valuable to
find biomarkers that are not only related to the pathogenesis
of PD but also abnormally expressed in peripheral blood.
This study is the first to combine brain tissue and peripheral-
blood datasets to find potential biomarkers of PD. We used
WGCNA to select five hub genes and constructed a PPI
network through GEO data analysis to find six key genes that
are abnormally expressed in the brain tissue of PD patients.
We selected the three upregulated genes shared by the two
analytical methods for further study. Since the ultimate goal
was to find peripheral-blood markers, we verified the expression
of the three hub genes in the peripheral-blood datasets. This
combined with survival analysis showed that all three hub genes
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FIGURE 7 | Longitudinal study of SSR1 expression in vivo. (A) The flowchart of the construction of the 6-OHDA subacute model, behavioral tests, and sacrifice. (B)
Tyrosine hydroxylase (TH) staining of the substantia nigra (SN) of the above mice. Scale bars: 200 µm. (C) Western blot analyses of TH in SN of the above mice. (D)
The mRNA relative expression levels of SSR1 in SN of the above mice. (E) The correlation analysis of SSR1 and TH in SN. (F) Pole tests and apomorphine-induced
rotation were conducted by a blinded observer after 6-OHDA treatment. (G) The mRNA relative expression levels of SSR1 in the whole blood of the above mice.
ns p > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. Control group.
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FIGURE 8 | SSR1 in artificial intelligence prediction model. (A) The ROC curve of the sensitivity for the diagnosis of PD based on SSR1 from RF (left), KNN analysis
(middle), and SVM analysis (right). (B–F) The ROC curve of the specificity for the diagnosis of PD based on SSR1 in AD (B), HD (C), Bladder cancer (D), Thyroid
carcinoma (E), and Endometrial carcinoma (F).

were significantly upregulated and were associated with the
overall survival of patients. Through bioinformatics analysis,
we further confirmed the applicability of the hub genes in

animal models, which suggests they can be useful in the clinic.
Through qPCR verification, we successfully reproduced the
SSR1 disorders in the mouse SN, which was consistent with the
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FIGURE 9 | Graphs show the performance of the three ML models according to the number of genes for binary classification. The red curves indicate SVM
classifiers. The green curves indicate KNN classifiers. The blue curves indicate RF classifiers. The SVM classifier had the highest Matthews correlation coefficient
(MCC) value, which means the highest recognition accuracy and precision.

bioinformatic analysis. However, GTF2H5 and RNF130 were
verified in only one model, and we were unable to verify
their value in both models, so we will not further study
them in PD.

From the loss of dopamine neurons and the time curve
of SSR1 brain expression, the imbalance of SSR1 expression
is closely related to the loss of dopamine neurons. The more
dopamine neurons are lost, the higher the expression of SSR1.
Although we have not fully proven that SSR1 is involved in the
damage to TH neurons, our experimental results do show that
SSR1 is highly correlated with the damage to TH neurons and
may indicate the severity of TH damage. Our results also show
that when TH neuronal damage was below 20%, SSR1 expression
was maintained to a certain degree. This suggests that the
expression of SSR1 may be the response of glial cells to TH
neuron damage. We also compared the behavioral curve with

the curve of SSR1 expression in peripheral blood. SSR1 was
upregulated in the early PD model or even when there is no
obvious abnormality in behavior. SSR1 showed a certain degree
of predictive power for PD in animal models.

The signal sequence receptor subunit (SSR) is a glycosylated
endoplasmic reticulum (ER) membrane receptor associated with
protein translocation across the ER membrane. The SSR consists
of two subunits, one of which is SSR1. The main function
of the endoplasmic reticulum is the synthesis and folding of
secretory proteins. Changes in ER functionwill increase oxidative
stress or protein N-glycosylation dysfunction, leading to the
accumulation of misfolded proteins in the ER and triggering
ER stress. Through KEGG analysis, we found that SSR1 was
involved in ER stress. In a recent model of ER stress, it was
found that long-term endoplasmic reticulum stress can induce
the upregulation of mRNA encoding TARPa, namely, SSR1
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(Nguyen et al., 2018). However, the significance of SSR1 in the
PD model has never been confirmed. The impact of ER stress in
PD has been a concern in recent years. It was first discovered
in the PD model induced by MPP + rotenone. Long-term
ER stress participates in the unfolded protein response (UPR)
through high expression of genes involved in the pathological
process of PD (Ryu et al., 2002). UPR-related signaling pathways
are an adaptive cellular mechanism designed to restore ER
homeostasis. Misfolded proteins can activate it to limit ER stress
(Hetz et al., 2011). The activation of the UPR is controlled by
the PERK, IRE1α, and ATF6 receptors on the ER membrane.
Under normal circumstances, BiP binds to related receptors to
inhibit its phosphorylation and the activation of downstream
pathways. Under pathological conditions, α-synuclein directly
interacts with BiP to trigger the phosphorylation of BiP, promote
the dissociation of BiP from related receptors, and activate the
UPR (Cooper et al., 2006; Jiang et al., 2010; Bellucci et al.,
2011), thereby inducing downstream activation of the PERK
axis, the IRE1α-XBP1 axis, and the EIF2α axis (Prell et al.,
2012). Autopsy analysis of Parkinson’s patients has found that
compared with the control group, patients with PD showed
more phosphorylated PERK in the SN dopaminergic neurons.
eIF2α, phosphorylated PERK, and α-synuclein coexist in the
dopaminergic neurons of PD patients (Hoozemans et al., 2007),
which further suggests that α-synuclein and long-term ER stress
in PD patients are closely linked. The ER stress induced by
tunicamycin can also lead to the accumulation of oligomeric
α-synuclein (Jiang et al., 2010), indicating that the ER stress
may also reversely aggravate the aggregation and toxicity of
α-syn, forming a vicious cycle and exacerbating PD deterioration.
We speculate that SSR1 may be a UPR-related mRNA that
reflects the degree of ER stress. In the early stage of injury,
abnormally aggregated α-synuclein activates the UPR to promote
the upregulation of the SSR1 gene by binding to BiP to relieve
acute ER stress. Therefore, the compensatory effect of dopamine
neuron damage is not obvious at this time. When the ER stress
becomes chronic, it exacerbates the accumulation of oligomeric
α-synuclein, and the compensatory effect of the UPR cannot
counteract the increasing accumulation of abnormal α-synuclein,
which further triggers inflammation. At this time, dopamine
neurons are significantly reduced, and animal behavior is
also significantly abnormal. The expression of SSR1 continues
to be upregulated. α-Synuclein activates the PERK axis in
astrocytes, and the regulation of the UPR by α-synuclein is
not limited to neurons. Considering that astrocytes participate
in a variety of brain functions and support neuronal activity,
activation of the UPR in these cells by α-synuclein may lead
to harmful consequences. This may explain why SSR1 is still
highly expressed when the expression of TH neurons in late
PD is extremely low. Therefore, SSR1, which has abnormal
expression in the early stage of PD (before obvious movement
disorders), can be used not only as an early marker but also as
an effective indicator of the severity, progression, and prognosis
of PD.

For the first time, we applied the timeline of an animal
model to the verification and exploration of hub genes, instead
of knocking out target genes in an organelle. Exploration in

mice may also lay the foundation for the next step toward
clinical application. The most commonly used machine learning
includes SVM, KNN, RF, and ANN (Artificial Neural Network).
Since ANN is a multivariate input, it has no way to predict
only SSR1. So we choose the other three classifiers to analyze
SSR1 temporarily. Based on our analysis, we selected SVM
to construct a computer model for clinical prediction. The
application of artificial intelligence to the medical industry
has gradually progressed, especially in the fields of early PD
prediction and severity prediction (Zhan et al., 2018; Gupta
et al., 2020). Recent advances in SVM have enabled the creation
of computer models that can accurately perform many tasks
involving prognosis of the disease and early diagnosis (Kaya,
2019). SVM has identified PD patients’ dopaminergic imaging
markers (Prashanth et al., 2016), walking protocols (Rehman
et al., 2019) and idiopathic REM sleep behavior disorder
(Christensen et al., 2014) for early prediction. In this study, we
established a SVM classifier model by identifying the peripheral-
blood data of different samples that were from healthy or
PD patients and continuously consolidated and improved the
accuracy of the model through continuous calculation and
screening of the data. In the future, as the number of clinical
data samples increases, we can further improve the training
results.

In future studies, we would like to further investigate whether
the abnormal expression of SSR1 in PD patients is dominated by
dopaminergic neurons or astrocytes. We also plan to study the
possible mechanisms within cells. To improve the accuracy and
sensitivity of diagnosis, the combination of neuroimaging and
peripheral-blood biomarkers can provide better discrimination
between parkinsonisms. The SVM can combine peripheral-
blood data and images and differentially weight the two kinds
of data to form an accurate judgment classifier model. This
method is easily accessible and clinically applicable. It provides
opportunities to develop an early diagnostic tool for PD
patients, helping to save their dopaminergic neurons as early
as possible.
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