
Research Article
Online Hierarchical Sparse Representation of Multifeature for
Robust Object Tracking

Honghong Yang and Shiru Qu

Department of Automation, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Honghong Yang; yanghonghong0615@163.com

Received 10 April 2016; Accepted 10 July 2016

Academic Editor: Ricardo Aler

Copyright © 2016 H. Yang and S. Qu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers
under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of
visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial
neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary
features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and
stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information
of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then,
the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models.
Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library
are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show
that the proposed algorithm performs well with superior tracking accuracy and robustness.

1. Introduction

The task of visual tracking is to find the interested object and
track it. It is an important research in computer vision due
to its widespread applications in traffic monitoring, vehicle
navigation, and visual surveillance. Robust object tracking in
dynamic environment is still a challenging problem. This is
mainly because the factors such as occlusion, pose variation,
illumination change, and clutter background cause large
appearance change [1, 2].

A robust appearance model is important for dealing with
occlusions or other interferences in the tracking process. A
target object is represented by its visual information like color,
edge, or texture features extracted from the target region.
However, there are numerous trackers only that rely on single
feature to build target appearance, ignore the complementary
representation of different features, usually lack of robustness,
and are sensitive to interferences in dynamic environment
[3]. For example, Ross et al. [4] use the intensity feature to rep-
resent the appearancemodel of the target object and integrate
incremental learning to obtain a low-dimensional subspace

representation. Babenko et al. [5] propose Multiple Instance
Learning (MIL), which employs theHaar-like feature to build
the discriminative appearance model for robust tracking.
Mei and Ling [6] introduce a 𝑙

1
minimization robust visual

tracking method, it uses the intensity feature to represent the
target appearance, and the target appearance is represented
by sparse linear combination of the appearance template
and trivial template in template space. However, the single
feature ignores the complementary characteristic of different
visual information; it is insufficient to describe the drastic
changes of target appearance in complicated environment.
Therefore, the representation ability will decline when there
are occlusions or other interferences in complex background
[3]. As a result, numerous trackers are proposed to represent
the object by fusing the multiple features to describe the
target object and build the object appearance model, which
can better describe the appearance changes and is beneficial
to improve the robustness of trackers in dynamic environ-
ments [7–11]. However, how to effectively use and integrate
multiple features for robust tracking should be tackled
urgently.
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Figure 1: The framework of the proposed tracking algorithm.

Numerous trackers based on sparse representation have
been proposed in recent years [12–17]. Mei et al. [6, 17]
proposed a 𝑙

1
minimization robust tracking method that

regards the tracking as a sparse approximation problem.
Zhang et al. [14] proposed a low-rank sparse representation
tracking method. Liu et al. [15] developed a robust tracking
algorithm using a local sparse appearance model to balance
the requirements of stability and flexibility in the process of
tracking. These trackers are all solved as the sparse approxi-
mation problem by ℓ

1
regularized least squares method and

show promising results against many existing trackers. How-
ever, this sparse coding based on ℓ

1
minimization provides

very sparse representation but ignores the importance of
collaboration representation and the correlation of visual
information; it is vulnerable to interferences and the ℓ

1

minimization is very time-consuming. In [16], Zhang et
al. emphasized the role of collaborative representation with
ℓ
2
regularized least squares, which shows that ℓ

2
RLS is

beneficial for reducing the computation burden. Shi et al. [18]
also demonstrated that ℓ

2
RLS is more accurate, robust, and

faster. In [19], Yu et al. demonstrated that traditional sparse
coding methods ignore the spatial neighborhood structure
of the image because they only encode the local patches
independently; then they proposed an efficient discrimina-
tive image representationmethod by using a two-layer sparse
coding scheme at the pixel level.

Inspired by the challenges mentioned above, this paper
proposes an object tracking algorithm that combines themul-
tiple visual features with hierarchical sparse coding to realize
the tracking. As shown in Figure 1, amultiple complementary
feature representation [20] is used to robustly represent the
object; the target appearance is modeled by exploiting a two-
stage sparse-coded method, which is based on ℓ

2
regularized

least squares to solve the sparse approximation problem.
Then, each tracker is based on the different features to
estimate the object state and build the multiple observation

models. The corresponding reliability of each tracker is com-
puted by the tracking likelihood function of instantaneous
and reconstructed appearance models that take the transient
and stable appearance changes into consideration. Finally, the
most reliable tracker is obtained by a well established particle
filter framework; the training set and template library are
incrementally updated based on the current tracking result.

The main contributions of the proposed tracking algo-
rithm are as follows: (1) we construct the target appearance
by taking account of instantaneous and stable appearance
features; then the transient appearance model and recon-
structed object appearance model are built independently.
(2) A two-stage sparse-coded method is employed to obtain
the reconstructed coefficient vector used to construct the
reconstructed appearance model. The two-stage sparse-
coded method takes the temporal correlation between target
templates and spatial neighborhood structure of the image
patches into consideration and solves the sparse approx-
imation problem by ℓ

2
RLS. This is beneficial for reduc-

ing the computational burden and improving the track-
ing performance. (3) To better describe the object appear-
ance changes, the reliability of each tracker is measured
by the tracking likelihood function of instantaneous and
reconstructed appearance model that take transient and
stable appearance changes into consideration. Experimental
results on challenging sequences show that the proposed
method performs well compared to state-of-the-art methods.

2. The Proposed Tracking Algorithm

2.1. Particle Filter Tracking Framework. Given the object
observations in previous 𝑡th frame 𝑧

1:𝑡
= {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑡
}, the

object state in 𝑡th frame is defined as 𝑥
𝑡

= [𝑥
𝑡
, 𝑦
𝑡
, 𝑠
𝑡
, 𝜃
𝑡
,

𝜀
𝑡
, 𝜙
𝑡
]
𝑇, where 𝑥

𝑡
, 𝑦
𝑡
denote the coordinates, 𝑠

𝑡
, 𝜃
𝑡
are the scale

and aspect, and 𝜀
𝑡
, 𝜙
𝑡
are the rotation angle and skew. In order

to robustly represent the object, we use multifeatures to build
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observation models of multiple trackers, let 𝑘
𝑡
∈ {1, . . . , 𝐾}

denote the index of 𝐾 trackers from 𝐾 features, then the 𝑖th
tracker’s index is 𝑘𝑖

𝑡
.

The 𝑖th tracker’s posterior distribution of the state 𝑥
𝑡
is

𝑝 (𝑥
𝑡
| 𝑧
1:𝑡

, 𝑘
𝑖

𝑡
) = 𝑝 (𝑧

𝑡
| 𝑥
𝑡
, 𝑘
𝑖

𝑡
) 𝑝 (𝑥

𝑡
| 𝑧
1:𝑡−1

, 𝑘
𝑖

𝑡
) , (1)

where𝑝(𝑧
𝑡
| 𝑥
𝑡
, 𝑘
𝑖

𝑡
) is the observationmodel and𝑝(𝑥

𝑡
| 𝑧
1:𝑡−1

,

𝑘
𝑖

𝑡
) is the predicted distribution of 𝑖th tracker:

𝑝 (𝑥
𝑡
| 𝑧
1:𝑡−1

, 𝑘
𝑖

𝑡
)

= ∫𝑝 (𝑥
𝑡
| 𝑥
𝑡−1

, 𝑘
𝑖

𝑡
) 𝑝 (𝑥

𝑡−1
| 𝑧
1:𝑡−1

, 𝑘
𝑖

𝑡
) 𝑑𝑥
𝑡−1

,

(2)

𝑝 (𝑥
𝑡−1

| 𝑧
1:𝑡−1

, 𝑘
𝑖

𝑡
)

=

𝐾

∑

𝑗=1

𝑝 (𝑥
𝑡−1

| 𝑧
1:𝑡−1

, 𝑘
𝑗

𝑡−1
) 𝑃 {𝑘

𝑗

𝑡−1
| 𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

} ,

(3)

where 𝑝(𝑥
𝑡
| 𝑥
𝑡−1

, 𝑘
𝑖

𝑡
) is the motion model of 𝑖th tracker be-

tween the 𝑡th and (𝑡−1)th frame, which is restricted to Gaus-
sian distribution 𝑁(𝑥

𝑡
| 𝑥
𝑡−1

𝜎). 𝑝(𝑥
𝑡−1

| 𝑧
1:𝑡−1

, 𝑘
𝑖

𝑡
) denotes

the prior distribution up to frame 𝑡 − 1 and 𝑃{𝑘
𝑖

𝑡
| 𝑧
1:𝑡

} is the
probability of the 𝑖th tracker.

The crossover probability of 𝑖th tracker for multiple
features is

𝑃 {𝑘
𝑗

𝑡−1
| 𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

}

=
𝑃 {𝑘
𝑖

𝑡
| 𝑘
𝑗

𝑡−1
, 𝑧
1:𝑡−1

} 𝑃 {𝑘
𝑗

𝑡−1
| 𝑧
1:𝑡−1

}

∑
𝐾

𝑙=1
𝑃 {𝑘𝑖
𝑡
| 𝑘𝑙
𝑡−1

, 𝑧
1:𝑡−1

} 𝑃 {𝑘𝑙
𝑡−1

| 𝑧
1:𝑡−1

}
.

(4)

In addition, the 𝑖th tracker probability 𝑃{⋅} satisfies

∑

𝑖

𝑃 {𝑘
𝑖

𝑡
| 𝑧
1:𝑡

} = 1,

∑

𝑗

𝑃 {𝑘
𝑗

𝑡−1
| 𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

} = 1.

(5)

Then, we sparsely represent the candidate sample 𝑧
𝑡
with

state 𝑥
𝑖

𝑡
from the template library 𝑓

𝑘

𝑡
; the likelihood of the

observation model is

𝑝 (𝑧
𝑡
| 𝑥
𝑡
, 𝑘
𝑖

𝑡
) = exp (−𝜀

𝑖
) , (6)

where 𝜀
𝑖
= min ‖𝑓𝛼−𝑧

𝑡
‖ is the sparse reconstruction error of

candidate sample 𝑧
𝑡
and 𝛼 is the sparse coefficients.

Therefore, the tracking result �̂�
𝑡
at the 𝑡th frame is the

most reliable tracker with the highest tracker probability:

�̂�
𝑡
= argmax
𝑥
𝑡

𝑝 (𝑥
𝑡
| 𝑧
1:𝑡

, �̂�
𝑡
) ,

�̂�
𝑡
= argmax
𝑘
𝑖

𝑡

𝑃 {𝑘
𝑖

𝑡
| 𝑧
1:𝑡

} , 𝑖 = 1, . . . , 𝐾.

(7)

2.2. Multiple Features Representation for Object Appearance.
The different features have complementary characteristics to
cope with appearance changes, such that the HOG features
are robust to pose variations [21], Haar-like features can
effectively deal with occlusions [22] as the single appearance
model is insufficient to represent the target in a complicated
environment. Therefore, we exploit different types of the
features to build the multiple appearance models to represent
the object robustly. The multiple features with complemen-
tary characteristics are used to handle various appearance
changes, which is beneficial for tracking the target object
robustly.

In the proposed method, we use three trackers based on
HOG,Haar-like feature, and intensity feature to represent the
object appearance, which can effectively deal with occlusions,
illumination changes, and pose variations. For the 𝑡th frame,
we extract the multiple features to form feature sets as 𝑓

𝑘

𝑡
∈

R𝑚𝑘 , where 𝑘 is the index of the feature and 𝑚
𝑘
is the

dimension of the 𝑘th feature. Normalize the feature sets 𝑓𝑘
𝑡

∈

R𝑚𝑘×𝑛 to form the target template 𝑓
𝑘

𝑡
∈ R𝑑𝑘 and 𝑑

𝑘
denotes

the dimension of 𝑘th multiple features.

2.3. Object Representation by Hierarchical Sparse Coding. In
the proposedmethod, we use the transient and stable features
to describe the abrupt and stable object appearance changes.
The stable features are sparsely represented by the current
template with hierarchical sparse coding.Then, the reliability
of each tracker is measured by the tracking likelihood func-
tion of instantaneous and reconstructed appearance models.

The transient features up to 𝑡th frame is 𝑓𝑘
𝐼,𝑡

= [𝑓
𝑘

𝐼,𝑡−𝑙
, . . . ,

𝑓
𝑘

𝐼,𝑡−1
]. Then the transient appearance model 𝑓

𝑘

𝐼,𝑡
is achieved

by averaging the recent 𝐿 appearance features as

𝑓
𝑘

𝐼,𝑡
=

1

𝐿

𝐿

∑

𝑙=1

𝑓
𝑘

𝐼,𝑡−𝑙
. (8)

The stable object appearance 𝑧
𝑖,𝑘

𝑡
is represented by sparse

coding the stable features 𝑓𝑘
𝑅,𝑡

as

𝑧
𝑖,𝑘

𝑡
≈ 𝑓
𝑘

𝑅,𝑡
𝛼
𝑖,𝑘

𝑡
+ 𝜀
𝑖,𝑘

= 𝑓
𝑘

1,𝑡
𝛼
𝑖,𝑘

1,𝑡
+ 𝑓
𝑘

2,𝑡
𝛼
𝑖,𝑘

2,𝑡
+ ⋅ ⋅ ⋅ + 𝑓

𝑘

𝑟,𝑡
𝛼
𝑖,𝑘

𝑟,𝑡
. (9)

Because the tracking algorithm based on sparse represen-
tation is to find samples with minimal reconstruction errors
from the templates library, a target can be reconstructed
from several templates [23]. Therefore, there are only some
features having the discriminative capability to separate the
target from its background. In order to achieve the goals
that discriminatively separate the target from its background
and minimal reconstruction errors from its template library,
we utilize the hierarchical sparse coding to minimize recon-
struction errors and maximize the discriminative capability
of features. In addition, we use ℓ

2
RLS to solve the sparse

approximation problem, which is beneficial for reducing the
computation burden.

Let 𝑓
1

= [𝑓
𝑘

𝑅,𝑡
I𝑘], 𝛼1 = [

𝛼
𝑖,𝑘

𝑡

𝛽
𝑖,𝑘

𝑡

], where 𝛼𝑖,𝑘
𝑡

= [𝛼
𝑖,𝑘

1,𝑡
, . . . ,

𝛼
𝑖,𝑘

𝑟,𝑡
]
𝑇

∈ R𝑟 is the sparse coefficient vector, 𝛽𝑖,𝑘
𝑡

= [𝛽
𝑖,𝑘

1,𝑡
, . . . ,

𝛽
𝑖,𝑘

𝑑
𝑘
,𝑡
]
𝑇

∈ R𝑑
𝑘

is the noise coefficient vector, and I𝑘 ∈ R𝑑
𝑘
×𝑑
𝑘
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is an identity matrix. The candidate sample 𝑧
𝑖,𝑘

𝑡
is sparsely

represented by linear combination of the features 𝑓𝑖,𝑘
𝑡

as

𝑧
𝑖,𝑘

𝑡
= 𝑓
𝑘

𝑅,𝑡
𝛼
𝑖,𝑘

𝑡
+ 𝜀
𝑖,𝑘

= [𝑓
𝑘

𝑅,𝑡
I] [
𝛼
𝑖,𝑘

𝑡

𝛽
𝑖,𝑘

𝑡

] . (10)

For a new arriving frame, we can achieve 𝐾 tracking
results {�̂�

𝑖

𝑡
| 𝑖 = 1, . . . , 𝐾}. For 𝑖th tracker, 𝑧

𝑖,𝑘

𝑡
denotes

the candidate image patch represented by 𝑘th features and
𝑓
𝑘

𝑅,𝑡
𝛼
𝑖,𝑘

𝑡
is the reconstructed appearance for 𝑧𝑖,𝑘

𝑡
.

Then, a two-stage sparse-codedmethod by ℓ
2
RLS is used

to obtain the coefficient vectors 𝛼𝑖,𝑘
𝑡
and 𝛽𝑖,𝑘

𝑡
as follows:

𝛼
1
= argmin
𝛼
𝑖,𝑘

𝑡
,𝛽
𝑖,𝑘

𝑡


𝑓
1
𝛼
1
− 𝑧
𝑖,𝑘

𝑡

2
,

s.t. 
𝛼
𝑖,𝑘

𝑡

2
≤ 𝐾
1
,


𝛽
𝑖,𝑘

𝑡

2
≤ 𝐾
2
,

(11)

where 𝐾
1
and 𝐾

2
are nonzero components.

To effectively tackle the high-dimensional data in feature
space, we use the diagonal matrix 𝑊 to decrease the dimen-
sion of the feature space. For a set of samples𝑋 = {𝑥

𝑖

𝑡
∈ R1×𝑝 |

𝑖 = 1, . . . , 𝐾}, the joint sparse solution is shown as follows:

(𝛼
1
,𝑊) = argmin

𝛼
1
,𝑊

𝜆

𝑊𝑓
1
𝛼
1
− 𝑊𝑧
𝑖,𝑘

𝑡



2

2
+ 𝛾𝐹 (𝑊,𝑋)

+ 𝜏
1

𝛼1

2

2
+ 𝜏
2

diag (𝑊)

2

2
,

(12)

where 𝐹(𝑊,𝑋) is the loss function and 𝜏
1
, 𝜏
2
are the sparse

parameters. If 𝑊
𝑖𝑖

̸= 0, the 𝑖th feature is activated.
The loss function is computed as

𝐹 (𝑊,𝑋) = 𝑒
−∑
𝐾

𝑖=1
(𝑥
𝑖

𝑡
𝑤
𝑖

𝑡
)
, (13)

where {𝑤
𝑖

𝑡
∈ R𝑝×1 | 𝑖 = 1, . . . , 𝐾} is the sparse vector. If 𝑤

𝑖
̸=

0, the 𝑖th feature is selected.
Then, the solution to theminimum loss function𝐹(𝑊,𝑋)

is achieved by solving the sparse problem as

(𝑤
𝑖

𝑡
)
∗

= argmin
𝑤
𝑖

𝑡


𝑋𝑤
𝑖

𝑡

2
,

s.t. 
𝑤
𝑖

𝑡

2
≤ 𝐾
0
,

(14)

where 𝐾
0
denotes the maximum number of features that can

be selected.
Considering the spatial neighborhood information of the

image patch, let 𝑁
𝑤
𝑖

𝑡

(𝑖, 𝑗) denote the 𝑗th neighbor of 𝑖th
feature; then the vector set is

𝑧
𝑖

𝑡
= (𝑤
𝑖

𝑡
)
2

+

𝜏

∑

𝑗=1

𝜃
2

𝑗
𝑁
2

𝑤
𝑖

𝑡

(𝑖, 𝑗) , 𝑖 = 1, . . . , 𝑝, (15)

where 𝜃 is the weight of the neighbors.

The diagonal matrix𝑊 is formed as

(𝑊
𝑖

𝑡
)
𝑗,𝑗

=
{

{

{

1, (𝑤
𝑖

𝑡
)
∗

𝑗
̸= 0

0, otherwise.
(16)

From the above first-stage sparse representation coding,
we take account of the spatial relationship of neighbor-
hood features, which is beneficial for selecting a set of
discriminative features to separate target from its background
and reducing the computational burden by ℓ

2
RLS to solve

the sparse approximation problem, as the target templates
always contain some features from background, which is not
the same as its neighbors. By doing discriminative feature
selection as above, we can efficiently eliminate the features
from background in the target templates. Therefore, we can
construct a more efficient and robust target template library.

In the second sparse reconstruction stage, 𝛼𝑖,𝑘
𝑡
and 𝛽𝑖,𝑘

𝑡
in

(12) can be computed as follows:

(𝛼
𝑖,𝑘

𝑡
,𝛽
𝑖,𝑘

𝑡
) = argmin
𝛼
𝑖,𝑘

𝑡
,𝛽
𝑖,𝑘

𝑡


𝑊𝑓
1
𝛼
1
− 𝑊𝑧
𝑖,𝑘

𝑡

2
,

s.t. 
𝛼
𝑖,𝑘

𝑡

2
≤ 𝐾
1
,


𝛽
𝑖,𝑘

𝑡

2
≤ 𝐾
2
.

(17)

The nonzero row of matrix 𝑊 forms the matrix 𝑊


∈

R𝐾0×𝑝; let 𝑓
1
= 𝑊𝑓
1
, 𝑧
𝑡
= 𝑊

𝑧
𝑡
, and 𝛽


= 𝑊

𝛽.

Then,

((𝛼
𝑖,𝑘

𝑡
)
∗

, (𝛽
𝑖,𝑘

𝑡
)
∗

) = argmin
𝛼
𝑖,𝑘

𝑡
,𝛽
𝑖,𝑘

𝑡



[𝑓


1
,𝑊

] [
𝛼
𝑖,𝑘

𝑡

𝛽
𝑖,𝑘

𝑡

] − 𝑧


𝑡

2

,

s.t. ‖𝛼‖2 ≤ 𝐾
1
,

𝛽
2 ≤ 𝐾

2
,

(18)

where 𝐾
1
, 𝐾
2
are the sparsity parameters that control the

sparse representation of the target template and the tolerance
of interference in complicated environment, respectively.

Therefore, the reconstructed object appearance 𝑓
𝑖,𝑘

𝑅,𝑡
for

𝑧
𝑖,𝑘

𝑡
is represented as

𝑓
𝑖,𝑘

𝑅,𝑡
= 𝑓
𝑖,𝑘

𝑅,𝑡
𝛼
𝑖,𝑘

𝑡
. (19)

After above sparse reconstruction, the feature dimension
reduced from 𝑝×𝐿 to𝐾

0
×𝐿 and 𝐿 is the number of templates

in the target library.
The predicted reliable object state for 𝑖th tracker at frame

𝑡 is

�̂�
𝑖

𝑡
= argmax
𝑥
𝑡

𝑝 (𝑥
𝑡
| 𝑧
1:𝑡

, 𝑘
𝑖

𝑡
) . (20)

Then the corresponding tracking likelihood function of
the 𝑖th tracker at frame 𝑡 is

𝑝 (𝑧
𝑡
| 𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

) = 𝑝 (𝑧
𝑡
| �̂�
𝑖

𝑡
) . (21)
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In the proposedmethod, we use instantaneous and recon-
structed features to describe the transient and stable appear-
ance changes. The reliability of each tracker is

𝑝 (𝑧
𝑡
| �̂�
𝑖

𝑡
) = 𝑝
𝐼
(𝑧
𝑡
| �̂�
𝑖

𝑡
) 𝑝
𝑅
(𝑧
𝑡
| �̂�
𝑖

𝑡
)

=

𝐾

∏

𝑘=1

𝑝 (𝑧
𝑡
| �̂�
𝑖

𝑡
, 𝑓
𝑘

𝐼,𝑡
) 𝑝 (𝑧

𝑡
| �̂�
𝑖

𝑡
, 𝑓
𝑘

𝑅,𝑡
) ,

(22)

where 𝑝
𝐼
(𝑧
𝑡
| �̂�
𝑖

𝑡
) is the instantaneous appearance likelihood

based on the transient object appearance𝑓
𝑘

𝐼,𝑡
, which is formed

by a set of recent frames features 𝑓
𝑘

𝐼,𝑡
. 𝑝
𝑅
(𝑧
𝑡

| �̂�
𝑖

𝑡
) is the

reconstructed object appearance likelihood based on the
reconstructed object appearance𝑓

𝑖,𝑘

𝑅,𝑡
and𝑓

𝑖,𝑘

𝑅,𝑡
comes from the

stable object appearance, which is formed by 𝑘th feature and
the tracking result 𝑧𝑖,𝑘

𝑡
from the 𝑖th tracker:

𝑝
𝐼
(𝑧
𝑡
| �̂�
𝑖

𝑡
, 𝑓
𝑖,𝑘

𝑅,𝑡
) = exp(−𝜌
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𝑡



2

) ,

(23)

where 𝜌 is the control parameter.

2.4. Predication and Update. To robustly track the target
object, we update the tracker probability of the multiple
trackers and the reliability of each tracker.

The tracker probability is updated as follows:

𝑃 {𝑘
𝑖

𝑡
| 𝑧
1:𝑡

} =
𝑝 (𝑧
𝑡
| 𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

)

𝑝 (𝑧
𝑡
| 𝑧
1:𝑡−1

)
𝑃 {𝑘
𝑖

𝑡
| 𝑧
1:𝑡−1

} , (24)

where

𝑃 {𝑘
𝑖

𝑡
| 𝑧
1:𝑡−1

} =
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1:𝑡−1
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𝑡−1
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1:𝑡−1

}

𝑝 (𝑧
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1:𝑡−1
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𝑝 (𝑧
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1:𝑡−1
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⋅

𝐾

∑

𝑗=1
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𝑖
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| 𝑘
𝑗
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1:𝑡−1

} 𝑃 {𝑘
𝑗

𝑡−1
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1:𝑡−1

} .

(25)

The corresponding observation model 𝑝(𝑧
𝑡

| 𝑥
𝑡
, 𝑘
𝑖

𝑡
) for

each tracker is updated based on the incremental subspace
model in [4]. Then, the particle filter is used to approximate
the state posterior distribution 𝑝(𝑥

𝑡
| 𝑧
1:𝑡

, 𝑘
𝑖

𝑡
) by a set of 𝑁

particles [24], the particles size 𝑁 = 600:

𝑝 (𝑥
𝑡
| 𝑧
1:𝑡

, 𝑘
𝑖

𝑡
) ≈

𝑁

∑

𝑞=1

𝑤
𝑖

𝑞,𝑡
𝛿 (𝑥
𝑖

𝑞,𝑡
− 𝑥
𝑡
) , (26)

where 𝛿(⋅) is a delta function and {𝑤
𝑖

𝑞,𝑡
}
𝑁

𝑞=1
is the sample

weight associated with {𝑥
𝑖

𝑞,𝑡
}
𝑞=1,...,𝑁

.

The particles 𝑥𝑖
𝑞,𝑡
are obtained from state prediction𝑝(𝑥

𝑡
|

𝑥
𝑡−1

, 𝑘
𝑖

𝑡
), which is simplified by first-order Markov model

𝑥
𝑖

𝑞,𝑡
∼ 𝑝 (𝑥

𝑡
| 𝑥
𝑡−1

, 𝑘
𝑖

𝑡
) . (27)

The weights are updated as

𝑤
𝑖

𝑞,𝑡
= 𝑤
𝑖

𝑞,𝑡−1
𝑝 (𝑧
𝑡
| 𝑥
𝑡
, 𝑘
𝑖

𝑡
) . (28)

Then, we achieve a set of 𝐾 reliable states by maximizing
the posterior estimates:

�̂�
𝑖

𝑡
= 𝑥
𝑖

�̂�,𝑡
,

�̂� = argmax
𝑞

({𝑤
𝑖

𝑞,𝑡
| 𝑖 = 1, . . . , 𝐾, 𝑞 = 1, . . . , 𝑁}) .

(29)

In the proposed method, the target appearance is con-
structed by multiple features that take account of transient
and stable appearance changes to cope with occlusion and
other interferences in complicated environments. For exam-
ple, in a dynamic environment with drastic occlusion or
illumination changes, the stable features are rarely updated,
but the transient features can effectively describe the fre-
quent appearance changes, while in a static background, if
a background sample is added into the template, it usually
has a good reconstruction with high likelihood because
background is static atmost of the time. Because the incorrect
template is nonlinear, which is not the same as its neighbors,
the two-stage sparse coding method taking account the
spatial relationship of neighborhood features can prevent it
from being selected. Therefore, we can construct a more
efficient and robust target template library.

In addition, we update the template library based on
the current tracking result as done in IVT method [4]; the
samples with high likelihood and near the target are added to
the template library. We repeat this procedure for each frame
in the entire sequences. The tracking based on joint multiple
feature representation and hierarchical sparse coding can
provide a robust and accurate tracking result.

3. Tracking Based on Online Hierarchical
Sparse Representation of Multifeature

As described above, the main step of the proposed tracking
algorithm is shown in Algorithm 1.

Algorithm 1 (tracking based on hierarchical sparse represen-
tation of multifeature).

Input. There are the initial states of target {𝑥
𝑖

0
= 𝑥
0

| 𝑖 =

1, . . . , 𝐾}.

Initializing. Construct 𝐿 training samples𝑋 ∈ R𝐿×𝑝, the set of
samples for particle filter is {𝑥𝑖

𝑞,0
, 𝑤
𝑖

𝑞,0
= 1/𝑁 | 𝑞 = 1, . . . , 𝑁},

and the tracker probability is {𝑃𝑖
0
{⋅} = 1/𝐾 | 𝑖 = 1, . . . , 𝐾}.
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For 𝑡 = 1 to the end of video sequence, consider the
following:

For 𝑖 = 1 : 𝐾,
(1) achieve the solution to minimize loss function

𝐹(𝑊,𝑋) by (14),
(2) construct diagonal matrix 𝑊 by (16),
(3) for candidate sample 𝑧

𝑖
in state 𝑥

𝑖

𝑡
, achieve the

sparse representation coefficients𝛼𝑖,𝑘
𝑡
and𝛽𝑖,𝑘

𝑡
by

performing (18),
(4) predict the reliable object state of each tracker at

frame 𝑡 by (20),
(5) compute the state posterior distribution 𝑝(𝑥

𝑡
|

𝑧
1:𝑡

, 𝑘
𝑖

𝑡
) by a set of 𝑁 particles as (26),

(6) predict state samples {𝑥𝑖
𝑞,𝑡

, 𝑤
𝑖

𝑞,𝑡
}
𝑁

𝑞=1
by (27),

(7) update the sample weights 𝑤𝑖
𝑞,𝑡

as (28),

(8) achieve a set of 𝐾 reliable states �̂�
𝑖

𝑡
from the 𝑖th

tracking by (29),
End

(9) compute the tracking likelihood function 𝑝(𝑧
𝑡
|

𝑘
𝑖

𝑡
, 𝑧
1:𝑡−1

) of the 𝑖th tracker at frame 𝑡 by (21),
(10) update the tracker probability 𝑃{𝑘

𝑖

𝑡
| 𝑧
1:𝑡

} using
(24),

(11) the tracking result at the 𝑡th frame is achieved
by (7),

(12) update the training set and template library with
the tracking results.

End.

4. Experiments

To analyze the performance of the proposed trackingmethod,
we compared our method with other five state-of-the-art
trackers [25] such as IVT [4], L1 [6], MIL [5], OAB [26], and
VTD [27] on several challenging video sequences. The target
objects in the test videos are either nonrigid or rigid objects
that suffered significant pose variation, heavy occlusion,
in-plane and out of plane rotation, or motion blur. The
video sequences are available in https://sites.google.com/site/
trackerbenchmark/benchmarks/v10. The proposed tracker
algorithm is implemented inMATLAB, which is run on a PC
with 2CPU, 2.5 GHz, and 3.1 GB RAM, at around 20 frames
per second.

4.1. Parameters Setting. For all test video sequences, we
manually select the initial target location. Each image patch
is normalized to 32 ∗ 32 pixels and sparsity parameters 𝜏

1
=

𝜏
2

= 0.001 and 𝛾 = 0.1 and the dimensions of intensity
features, HOG features, and Haar-like feature is 1024, 1296,
and 1760, respectively. The number of particles is 𝑁 = 600,
and the number of template samples is 𝐿 = 16. Table 1 lists
the characteristics of the evaluated sequences used in the
experiments of this paper.

4.2. Qualitative Comparison

Experiment 1 (illumination variation, occlusion, scale change,
and fast motion of rigid object). The sequence of Car4 is
to track a car in an open road with illumination variation
and partial occlusion as shown in Figure 2(a). At frame 86,
the OAB tracker appears to slightly drift due to the trees
and bridge occlusion and fails to track the car at frame
233. The L1, MIL, and VTD trackers start to drift away
from the target when drastic illumination changes occur at
frame 195 and fail to track the target at frame 255. The IVT
and the proposed method can successfully track the target
because they dynamically updated the template, which is
beneficial for coping with the occlusion and illumination
changes. However, the result of IVT is less satisfied because
the tracking box is larger than the target object from frame
195 to the end sequences.

In the CarScale sequence, the tracking target is a fast
motion car in an open road. Compared with the Car4
sequence, this sequence is more challenging because the
tracked car undergoes large scale changes and fast motion
on the entire sequence. Due to the fast motion accompanied
with the tree’s occlusion, IVT, L1, MIL, and VTD trackers
drift with different degree at frame 164 and finally lost the
target at frame 171.Theproposedmethod gives the best results
followed by the OAB tracker.

The CarDark sequence is challenging because the target
object undergoes the motion blur in a night environment
with low contrast and strong reflection interference. Due to
the strong reflection interference, the MIL tracker drifts a
little from the target at frame 122 and lost the target at frame
202 and then regards the other car as the tracked target.
The IVT, L1, and VTD trackers drift away from the target at
frame 277. The OAB tracker performs well on this sequence
and yields the second best results. The proposed method can
accurately track the target object in the whole sequence with
small center position error and high overlap rate.

Experiment 2 (occlusion, scale change, and rotation of non-
rigid object). The target object in FaceOcc2 sequence under-
goes the drastic occlusion and in-plane rotation. As shown
in Figure 3(a), when there is a small occlusion with a book
at frames 128∼185 and frames 245∼279, all methods perform
well. But when partial occlusion and in-plane rotation occur
together at frames 392∼510, most of trackers have poor
performances. When the target almost fully occludes by a
book and a hat at frames 688∼740, all methods except this
paper method drift away from the target at different degrees.
Since the proposed method uses multiple complementary
features to build transient and stable appearance models and
update the template library online, it can effectively handle
the occlusion and give satisfactory tracking results.

The Freeman1 sequence is challenging because the inter-
ested man’s face undergoes large scale changes and view
variations. Due to the large scale changes, MIL drifts away
from the target at frame 32. As the view changes from the
left to right, the L1 and OAB trackers totally lost the target
at frames 131 and 176, respectively. The tracking methods like
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Table 1: Tracking sequence in the experiments.

Sequence Frame Main challenge
(1) Car4 659 Occlusion and illumination change
(2) CarScale 252 Occlusion and scale change
(3) CarDark 393 Illumination change, occlusion, and motion blur
(4) FaceOcc2 812 Occlusion and in-plane rotation
(5) Freeman1 326 Scale change and view change
(6) Girl 500 Out of plane rotation, occlusion, and scale and pose change
(7) Shaking 365 Illumination change and pose change
(8) Woman 569 Scale change, view variation, and occlusion
(9) Jogging 307 Occlusion, abrupt motion, and scale change

IVT
L1
MIL

OAB 
VTD
Our method

(a) Car4

IVT
L1
MIL

OAB 
VTD
Our method

(b) CarScale

IVT
L1
MIL

OAB 
VTD
Our method

(c) CarDark

Figure 2: The tracking results of the rigid object undergoing severe occlusion, illumination, and scale change.

IVT, VTD, and the proposed method perform well on this
challenging sequence and can track the target accurately.

The Girl sequence has drastic appearance changes
because of the out of plane rotation and similar target
occlusion. When out of plane rotation occurs at frames 90∼
122 and 169∼260, IVT tracker totally fails to track the Girl’s
face; other trackers drift at different degrees. The OAB and
VTD trackers fail to track the target object and track the
similar target when the Girl’s face is occluded by a man’s face
at frames 420∼470. MIL tracker can successfully track the

target except some errors like frames 303 and 433. L1 tracker
and the proposed method perform well on this sequence.

Experiment 3 (illumination, scale change, and occlusion of
nonrigid object). The track target in shaking sequence
undergoes drastic illumination and poses changes on the
whole video sequence. It bringsmore challenges to accurately
track the target because the color of object appearance is
similar to the stage lighting. IVT andOAB almost fail to track
the target at frame 23 and cannot recover at the rest frames.
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IVT
L1
MIL

OAB 
VTD
Our method

(a) FaceOcc2

IVT
L1
MIL

OAB 
VTD
Our method

(b) Freeman1

IVT
L1
MIL

OAB 
VTD
Our method

(c) Girl

Figure 3: The tracking results of object undergoing occlusion, scale change, and rotation.

The MIL tracker drifts a little at frame 61 due to the drastic
illumination changes. Although the stage lights change dras-
tically accompaniedwith the serious head shaking, the L1 and
VTD trackers performwell except some errors.The proposed
method can effectively adapt to the severe object appearance
changes when those variations occur together and achieve
satisfactory results.

The Woman sequence is very challenging because the
target object undergoes large scale changes, view variations,
and occlusions simultaneously. As shown in Figure 4(b),
all trackersmerely performwell except the proposedmethod.
The results of the proposed method show slight drift;
other methods like IVT, L1, MIL, OAB, and VTD track-
ers totally lose the target when heavy occlusion occurs at
frame 130 and never recover to track the target in the
subsequent video sequence except the OAB tracker. The
OAB tracker recaptures the target at frame 337 and keeps
to track the target until the end of sequence with a little
drift.

The Jogging sequence is more challenging to track
because the tracked target is fully occluded by a stem and

undergoes large scale change and fast motion simultaneously.
The IVT, L1, MIL, OAB, and VTD trackers completely fail to
track the target when the target is fully occluded by a stem
at frames 50∼62, and the OAB tracker recaptures the target
at frame 106. The proposed method can accurately track the
target on the entire sequence.

From some sampled tracking results of the proposed
method and other five methods on 9 image sequences, we
can conclude that the algorithm in this paper can accurately
and robustly track the target under the environment with
illumination variation, scale change, and motion blur.

4.3. Quantitative Comparison. Twometrics are used to evalu-
ate the proposed tracker with reference trackers in gray-scale
videos. The first is the center position error, which is applied
to evaluate the distance between the ground-truth center 𝑅

𝑔

and tracked object center 𝑅
𝑡
(in pixels) at each frame by the

Euclidean distance. The other metric is the overlap rate [28],
which is defined as score = area(𝑅

𝑡
∩𝑅
𝑔
)/area(𝑅

𝑡
∪𝑅
𝑔
), where

𝑅
𝑡
denotes the bounding box generated by a trackingmethod

and 𝑅
𝑔
is the ground-truth bounding box.
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IVT
L1
MIL

OAB 
VTD
Our method

(a) Shaking

IVT
L1
MIL

OAB 
VTD
Our method

(b) Woman

IVT
L1
MIL

OAB 
VTD
Our method

(c) Jogging

Figure 4: The tracking results of object undergoing severe occlusion, illumination, and pose changes.

Table 2: The average position errors (pixels).

Video IVT L1 MIL OAB VTD Our method
Car4 16.31 209.22 55.10 103.49 34.46 2.97
CarScale 42.64 53.52 43.63 15.66 29.35 8.44
CarDark 22.03 19.85 48.41 3.90 23.29 1.92
FaceOcc2 16.21 15.54 18.17 24.32 10.69 8.42
Freeman1 6.85 61.74 18.98 25.44 10.71 7.44
Girl 29.37 3.76 14.11 8.55 11.70 3.63
Shaking 87.90 21.05 9.59 144.66 13.42 7.11
Woman 186.70 151.79 128.08 63.76 119.01 3.27
Jogging 128.29 148.81 131.14 24.29 121.31 6.54
Average 59.58 76.14 51.91 46.01 41.54 5.53
Note: the optimal result is shown as bold and the suboptimal one as italic.

Table 2 and Table 3 show the average center position
errors and the average overlap rate for all trackers. Figures
5 and 6 show the center position error curve and overlap rate
evaluation curve of different trackers on 9 video sequences
at each frame. It can be seen that the proposed algorithm
has the optimal or suboptimal performance in terms of

average center position errors and average overlap rate in
most test video sequences compared with other methods.
Most competing tracking methods do not give a satisfactory
result; the center position error is larger and the overlap rate
is lower. The average position error of this paper at 9 videos
is only 5.53 pixels, which is far less than other trackers; the
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Figure 5: The center position errors of different trackers on 9 video sequences.
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Figure 6: The overlap rate evaluation of different trackers on 9 video sequences in each frame.
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Table 3: The average overlap rate for all of trackers.

Video IVT L1 MIL OAB VTD Our method
Car4 0.570 0.196 0.257 0.151 0.357 0.873
CarScale 0.469 0.515 0.421 0.451 0.408 0.768
CarDark 0.480 0.513 0.153 0.741 0.461 0.868
FaceOcc2 0.572 0.641 0.611 0.549 0.70 0.723
Freeman1 0.493 0.234 0.241 0.288 0.343 0.587
Girl 0.147 0.676 0.404 0.577 0.521 0.710
Shaking 0.032 0.50 0.663 0.017 0.613 0.735
Woman 0.129 0.145 0.147 0.217 0.144 0.654
Jogging 0.139 0.142 0.127 0.60 0.134 0.711
Average 0.337 0.396 0.336 0.399 0.409 0.736
Note: the optimal result is shown as bold and the suboptimal one as italic.

average central position errors of other trackers like IVT, L1,
MIL, OAB, and VTD trackers are 59.58 pixels, 76.14 pixels,
51.91 pixels, 46.01 pixels, and 41.54 pixels, respectively. The
average overlap rate of the proposed method reaches 73.6%,
which is higher than other trackers; the average overlap rates
of IVT, L1, MIL, OAB, and VTD trackers are 39.9%, 34%,
40%, 33.7%, and 32.7%, respectively. They both highlight
the advantages of the algorithm in this paper. Overall, the
effectiveness of the proposed tracker method is verified.

5. Conclusion

In this paper, we propose a robust tracking algorithm that
leverages hierarchical sparse coding to optimize the image
representation from multifeature. We compare our tracking
method with other five state-of-the-art trackers on nine
sequences to validate the robustness and accurateness of the
proposed method. The experiment results show that our
method can effectively and robustly handle the challenging
scenes where the target object undergoes drastic variation in
pose, scale, rotation, occlusion, and illumination.The success
of our method can be attributed to constructing multiple
observationmodels that form themultifeature by hierarchical
sparse coding, which takes the spatial relationship of neigh-
borhood features into consideration and solves the sparse
approximation problem by ℓ RLS. The appearance model
constructed by instantaneous and stable appearance features
with two-stage sparse representation coding is more robust
to cope with appearance change in complex environment
and more effective to select a set of discriminative features
to separate the target from its background. In the proposed
method, we compute the reliability of each tracker by the
tracker likelihood function that accounts for transient and
reconstructed appearance model and select the most reliable
one among multiple trackers. The training set and the
template library are both incrementally online updated. All
of these are beneficial to cope with the appearance change
and can improve the tracking performance in dynamic
environments.

However, the limitation of the proposedmethod ismainly
focused on the following. (1) The tracking system is not
effective enough for real-time tracking because multifeatures

are calculated at the same time for test video sequences,
which is time-consuming. In addition, it cannot be adapted
to extract the feature according to the video attribute. (2)

The ability of each feature to describe the target cannot
be effectively measured. (3) It cannot successfully track the
target when the object leaves out the scene but reappears in
subsequent frames.

In the future, we will improve the proposed method in
some aspects. (1)We will improve the algorithm in real-time
by proposing amethod to adaptively extract themultifeatures
according to the video attribute, which can reduce the time
and computation load of the feature extraction. (2) We
would improve the tracking performance by introducing
the occlusion mechanism and drift mechanism, which can
alleviate updating the template with wrong samples when the
target object is occluded or drifted. Both strategies are useful
to deal with appearance changes and beneficial to robustly
track the target in complex environments.
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