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Abstract

Objectives

Bipolar disorder (BD) is a highly heritable disorder with polygenic inheritance. Among the

most consistent findings from functional magnetic imaging (fMRI) studies are limbic hyper-

activation and dorsal hypoactivation. However, the relation between reported brain func-

tional abnormalities and underlying genetic risk remains elusive. This is the first cross-

sectional study applying a whole-brain explorative approach to investigate potential influ-

ence of BD case-control status and polygenic risk on brain activation.

Methods

A BD polygenic risk score (PGRS) was estimated from the Psychiatric Genomics Consor-

tium BD case-control study, and assigned to each individual in our independent sample

(N=85 BD cases and 121 healthy controls (HC)), all of whom participated in an fMRI emo-

tional faces matching paradigm. Potential differences in BOLD response across diagnostic

groups were explored at whole-brain level in addition to amygdala as a region of interest.

Putative effects of BD PGRS on brain activation were also investigated.

Results

At whole-brain level, BD cases presented with significantly lower cuneus/precuneus activa-

tion than HC during negative face processing (Z-threshold=2.3 as cluster-level correction).

The PGRS was associated positively with increased right inferior frontal gyrus (rIFG) activa-

tion during negative face processing. For amygdala activation, there were no correlations

with diagnostic status or PGRS.
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Conclusions

These findings are in line with previous reports of reduced precuneus and altered rIFG acti-

vation in BD. While these results demonstrate the ability of PGRS to reveal underlying

genetic risk of altered brain activation in BD, the lack of convergence of effects at diagnostic

and PGRS level suggests that this relation is a complex one.

Introduction
Bipolar disorder (BD) is a highly heritable disorder with polygenic inheritance. Large, recent
studies with high statistical power have identified several genetic risk variants, most notably
single nucleotide polymorphisms (SNPs) in calcium channel encoding genes [1].

In comparison, functional magnetic resonance imaging (fMRI) studies of BD have yielded
inconsistent results, likely partly due to low statistical power [2]. Among the most consistently
reported findings are hyperactivity of the ventral-limbic brain network and hypoactivity of
dorsal brain structures [3]. A recent quantitative meta-analysis combining results from 65
fMRI studies (N = 1040 BD cases and 1074 healthy controls) found underactivation in the infe-
rior frontal cortex and overactivation in limbic areas in BD patients relative to controls across
emotional paradigms [4].

However, the relation between reported brain functional abnormalities and underlying
genetic risk remains elusive. One of the most studied BD risk variants in fMRI analyses is the
allele A in the CACNA1C SNP rs1006737, which has been related to increased amygdala activ-
ity during emotional paradigms, both in healthy controls (HC) [5], BD patients [6] and healthy
relatives of BD patients [7]. Another study found carriers of the risk variant in the gene ODZ4
(rs12576775) to be associated with increased amygdala activity in HC [8]. The genome-wide
association study (GWAS) approach has also been applied to fMRI studies, of which one impli-
cated a variant near a monoaminergic pathway gene (PHOX2B) in amygdala activity during a
negative faces matching paradigm [9] in a sample of HC and patients.

As each susceptibility variant has been shown to have a negligible effect on the risk of BD
[1], using cumulative risk load instead of single variants increases the statistical power of imag-
ing genetics studies. A polygenic risk score (PGRS) method has been developed, which pro-
vides information on the cumulative genomic risk for BD, and accounts for a larger proportion
of the phenotypic variance than single variants [10,11]). In one recent study, BD PGRS corre-
lated positively with activation in the anterior cingulate cortex and amygdala during an execu-
tive processing/language task (N = 87 BD cases and 71 HC) across groups, with no evidence of
an interaction effect between diagnostic group and PGRS on brain activation [12]. To the best
of our knowledge, this is to date the only study on PGRS and fMRI in BD.

Here, we applied a whole-brain explorative approach to investigate potential differences in
brain activation between BD cases (N = 85) and HC (N = 121) during an emotional faces
matching fMRI paradigm. We also explored the relation between BD polygenic risk and
whole-brain activity. As amygdala hyperactivity has been frequently reported in BD, we per-
formed an additional targeted region of interest (ROI) analysis in order to investigate correla-
tions between mean amygdala task-related activation and diagnostic status as well as BD
PGRS. Additionally, differences between BD1 and BD2 were investigated, as BD1 and BD2
have been proposed to be separate disorders as well as belonging to the same BD spectrum
[11].
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Materials and Methods

Ethics Statement
The study was approved by the Regional Committee for Medical Research Ethics and the Nor-
wegian Data Inspectorate and was conducted according to the principles of the Declaration of
Helsinki. All participants were informed of the background, purpose, methods, sources of
funding, potential benefits and discomforts as well as the further storage and use of the data
collected in this study. Potential subjects were informed of their right to withdraw their consent
at any time. Each subject provided their freely-given, written informed consent prior to the col-
lection of data. Some patients with BD may have a reduced ability to give informed consent,
but in the current study only participants with a capacity to consent were included. This was
specifically assessed by the clinical recruitment teams, which included experienced clinical psy-
chologists or psychiatrists, according to a procedure approved by the local Regional Committee
for Medical Research Ethics. Potential participants who declined to participate were not disad-
vantaged in any way by not participating in the study, and received same quality and amount
of treatment and care from the hospital as the participants.

Sample characteristics
The total number of individuals in this study was 206, including 43 bipolar disorder type 1
(BD1) cases, 36 bipolar disorder type 2 (BD2) cases, 6 bipolar disorder not otherwise specified
(BDNOS) cases, and 121 healthy controls. Our sample consisted of Northern European Cauca-
sians, mainly Norwegians, and has previously been demonstrated to be genetically homoge-
nous [13,14].

To be included in the study, patients had to be between 18 and 65 years, have a BD diagnosis
according to the Structural Clinical Interview for DSM-IV (SCID) [15], and be willing and able
to provide written informed consent. Exclusion criteria were an IQ score below 70 and report-
ing a history of head injury or neurological disorder. Diagnostic evaluation was performed by
trained psychologists and psychiatrists, of whom all participated regularly in diagnostic meet-
ings supervised by professors in psychiatry. Reliability measures of the diagnostic assessment
in the study were performed, and the overall agreement for the DSM-IV diagnostic categories
tested was 82% and the overall Kappa 0.77 (95% CI: 0.60–0.94) [16].

The healthy control subjects were recruited from the same catchment area as the patient
group, were selected randomly from the national statistics records (www.ssb.no), and they all
underwent an initial interview where demographic and clinical information was obtained. A
history of a medical condition potentially interfering with brain function (hypothyroidism,
uncontrolled hypertension and diabetes), or an illicit drug abuse/addiction diagnosis were also
exclusion criteria. In the healthy control group, we also excluded subjects if they or their close
relatives had a lifetime history of a severe psychiatric disorder (BD, schizophrenia and major
depression).

Information on education, age of onset, number of relapses, medication status, alcohol and
illegal substance abuse was obtained during an initial clinical interview. A three-hour neuro-
psychological test battery, including Wechsler Abbreviated Scale of Intelligence (WASI), was
carried out by trained clinical psychologists.

On the day of scanning, patients underwent an abbreviated re-interview including Young
Mania Rating Scale (YMRS) [17] Inventory of Depressive Symptoms (IDS) [18] and a Positive
and Negative Syndrome Scale (PANSS) [19]. Information on medication status on the day of
scanning was also obtained during this interview. For patients lacking data for this re-inter-
view, we used corresponding data from the clinical interview within a time window of 3
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months from the day of scanning. 26 patients presented with euthymia, 18 were mildly
depressed, 10 were moderately depressed, 3 were severely depressed and 3 had symptoms of
very severe depression. IDS score at scanning was available for 60/85 individuals (70.6%), for
only 3 of these individuals we used information from the 3 month time window. None of the
patients had elevated mood (YMRS>20) during the fMRI scanning session.

Patients and healthy controls were included from 2003 to 2009. Clinical assessment of the
patients and healthy controls participating in this study is described in details in previous
reports [6,20]. Demographic and clinical data are presented in Table 1.

Genotyping
All participants were genotyped at Expression Analysis Inc (Durham, NC, USA) using the
Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix Inc, Santa Clara, CA, USA).
Quality control was performed using PLINK (version 1.07; http://pngu.mgh.harvard.edu/
purcell/plink/) [21]. As a quality control, exclusions of individuals based on genotyping were
made of (I) one of two duplicates, (II) one of two relatives (identity by descent (IBD)>
0.1875), (III) individuals with a recorded gender differing from that determined by X chromo-
some marker homozygosity, (IV) mixup-samples (calculated by pairwise genome-wide identity
by state (IBS)), (V) individuals with non-European ancestry (calculated with HapMap3 and
MDS) and (VI) individuals with more than 5% missing genotype data. SNPs were excluded
based on (I) deviation from Hardy-Weinberg equilibrium, (II) minor allele frequency below
1% and (III) low yield (<95% in controls).

Imputation of SNPs
Following the above mentioned quality control, the candidate SNPs were imputed with MaCH
[22] (http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G-PhaseI-Interim.html)
using the European samples in the Phase I release of the 1000 Genomes project. SNPs not pres-
ent in the 1000 Genomes reference, and SNPs with ambiguous strand alignments (A/T and G/
C SNPs), were removed from the sample data sets. Imputation was a three stage process,
involving (I) ChunkChromosome where the data set was broken into 2,500 SNP pieces with
500 SNP overlap (http://genome.sph.umich.edu/wiki/ChunkChromosome), (II) MaCH where
each piece was phased (40 rounds, 400 states) (http://www.sph.umich.edu/csg/abecasis/
MaCH/download/), and (III) Minimac where each phased piece was imputed to the 1000
Genomes European reference panel (20 rounds, 400 states) (http://genome.sph.umich.edu/
wiki/Minimac). In the third stage, all imputed SNPs were provided with an estimated r2 score
as quality metric. Exclusions were made of SNPs with an r2 score< 0.5, leaving 9,584,802
SNPs.

Polygenic risk score
The BD PGRS was computed based on imputed SNPs following the method developed by Pur-
cell et al. [10]). Using PLINK version 1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [21]),
we performed a meta-analysis including all PGC substudies [1] except ours (TOP3) (N = 7278
BD cases and 8901 controls) to obtain risk allele effect sizes (ln(OR)) for all imputed SNPs. The
SNPs were subsequently pruned using PLINK’s–clump option (r2 < 0.25, 500 kb windows) to
select representatives with lowest p-values from all LD blocks (209088 SNPs). A PGRS was
then computed for each individual in our sample by summing up the effect sizes of the selected
SNPs multiplied by the number of risk alleles expected to be carried by that individual (dosage).
A total of ten PGRS were computed for BD based on different p-value thresholds (p = 1, 0.5,
0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.001, and 0.0001) for SNP inclusion. Out of the ten PGRS we
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Table 1. Demographic data and clinical characterization of individuals participating in a facesmatching functional MRI study.

BD (N = 85) HC (N = 121) P

Demographics

Education (years), mean (SD) 13.4 (2.1) 14.2 (2.3) 0.012

N (Females, %) 52 (61.2) 53 (43.8) 0.021

Mean age (SD) a 34.8 (11.2) 35.0 (8.8) 0.88

Clinical data

BD PGRS (SD) 0.28 (0.95) 0.2 (0.99) 0.0005

WASI, mean (SD) 110.4 (11.1) 115.3 (10.0) 0.001

IDS, mean (SD) b 17.2 (13.6) - -

YMRS, mean (SD) c 2.5 (3.5) - -

PANSS P score, mean (SD) d 10.4 (4.2) - -

GAF-S, mean (SD) 56.4 (11.0) - -

GAF-F, mean (SD) 55.1 (12.9) - -

Age of onset, mean (SD) 21.4 (8.3) - -

Duration of illness, mean (SD) 13.4 (10.1) - -

No. of depressive episodes, mean (SD) 8.2 (16.5) - -

No. of manic episodes, mean (SD) 2.4 (11.1) - -

No. of hypomanic episodes, mean (SD) 11.9 (34.2) - -

Alcohol abuseb, n (%) e 8 (9.4) - -

Abuse of illegal substancesb, n (%) e 7 (8.2) - -

Behavioral data

Response time, negative faces [ms] 1215.0 [352.5] 1068.0 [228.9] 0.001

Response time, shapes [ms] 1012.3 [252.3] 917.1 [162.2] 0.003

Response time, positive faces [ms] 1177.7 [388.6] 1076.3 [218.7] 0.036

Accuracy rate, shapes (%) 97.0 (0.03) 97.2 (0.03) 0.44

Accuracy rate, negative faces (%) 98.4 (0.09) 99.2 (0.03) 0.44

Accuracy rate, positive faces (%) 99.2 (0.02) 99.1(0.03) 0.78

Medication N (%) - -

Antipsychotics 23 (27) - -

Anticonvulsives 34 (40) - -

Antidepressants 20 (24) - -

Lithium 7 (8) - -

Abbreviations: BD, bipolar disorder; HC, healthy controls; SD, standard deviation; WASI, Wechsler Abbreviated Scale of Intelligence; IDS, Inventory of

Depressive Symptoms; YMRS, Young Mania Rating Scale; PANSS P score, Positive and Negative Syndrome Scale positive subscale; GAF-S, Global

Assessment of Functioning–symptom score; GAF-F, Global Assessment of Functioning–function score; BD PGRS, bipolar disorder polygenic risk score;

ms, milliseconds.

BD PGRS values are reported as z-scores (with SD in brackets).

Complete behavioral data (response times and accuracy rates per condition) were available for 80/85 BD and 119/121 HC. For the remaining individuals

(5 BD, 2 HC), an accuracy rate for each session (i.e. a combined rate for negative faces and shapes, and for positive faces and shapes) was available

and was used to confirm that the participants paid attention to the task (accuracy rate: 97.4% and 96.0%, respectively).
a Mean age at fMRI scanning. Age range was 18 to 63.
b IDS score at scanning was available for 60/85 individuals (70.6%).
c YMRS score at scanning was available for 69/85 individuals (81.2%).
d PANSS P score at scanning was available for 38/85 individuals (44.7%).
e Last six months

doi:10.1371/journal.pone.0134202.t001
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selected the one explaining most variance (Nagelkerke pseudo r2) for further analyses. The
PGRS explaining most variance is the one with p-value threshold of 0.05 (23062 SNPs). The
selected BD PGRS were transformed into standard scores before proceeding with the subse-
quent analyses.

Experimental paradigm
A widely used and validated faces matching paradigm was employed [9,23–25]. In this task
participants select which of two stimuli (displayed at the bottom of the screen) matches a target
stimulus (displayed at the top). There were two different faces matching conditions, where the
images displayed were either human faces expressing anger or fear (negative faces) or faces
expressing happiness (positive faces), as well as a sensorimotor control condition (shapes) in
which geometrical shapes were matched in the same way. The experiment was run in two sepa-
rate sessions with four blocks of either negative faces or positive faces (counterbalanced
between subjects). Interleaved between these blocks, participants completed 5 blocks of the
sensorimotor control task for each session. Each block consisted of 6 emotion-specific face
trios derived from a standard set of facial affect pictures [26]. Each trial (faces or shapes) was
presented for 5.4 seconds with no inter-stimulus interval, for a total block length of 32.6 sec-
onds. The total paradigm lasted 310 seconds. E-prime software (version 1.0 Psychology Soft-
ware Tools, Inc, Pittsburgh, PA, USA) controlled the presentations of the stimuli using
VisualSystem (NordicNeuroLab, Bergen, Norway). Response times and accuracy were
recorded through MR-compatible ResponseGrips (NordicNeuroLab, Bergen, Norway).

Image acquisition
MRI data were obtained with a 1.5T Siemens Magnetom Sonata (Siemens Medical Solutions,
Erlangen, Germany) supplied with a standard head coil at Oslo University Hospital. The pulse
sequence used for co-registration purposes in the present context was a sagittal T1-weighted
magnetization prepared rapid gradient echo (MPRAGE) with the following parameters: time
of repetition (TR)/echo time (TE)/inversion time (TI) = 2730ms/3.93ms/1000ms, flip angle
(FA) = 7°, field of view (FOV) = 240mm, acquisition matrix = 256x192, voxel
size = 1.33x0.94x1 mm3, and 160 slices. The sequence was repeated, and the two runs were
combined during post processing in order to increase signal-to-noise ratio (SNR). Patients and
healthy controls were scanned consecutively.

Functional T2�-weighted images were scanned with 164 BOLD-sensitive whole brain mea-
surements per condition, using an echo-planar imaging (EPI) pulse sequence. Each EPI volume
measurement consisted of 24 axial slices with TR = 2040 ms, TE = 50 ms, FOV = 224x224 mm,
FA = 90°, matrix = 64x64, a pixel size of 3 mm in the axial plane, and a slice thickness of 4 mm
with 1 mm gap between slices. The first seven volumes were discarded to avoid initial steady-
state effects, and the last volume was also removed, leaving 156 images for analysis.

Image quality control, processing, and statistical analysis
All functional MRI data went through an initial quality check procedure, to detect images with
poor quality due to excessive head motion, slice dropout, radiofrequency (RF) artefacts or
other noise. This procedure included an investigation of the mean variance image and time-
series variance plots (e.g. as suggested by the MRC CBSU, the Medical Research Council
funded Cognition and Brain Sciences Unit, University of Cambridge; http://imaging.mrc-cbu.
cam.ac.uk/imaging/DataDiagnostics). The variance images were examined using the nordi-
cICE software (NordicNeuroLab, Bergen, Norway), while the time-series plots were made
using the TSDiffAna SPM utility (developed by Matthew Brett and Volkmar Glauche; http://
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www.fil.ion.ucl.ac.uk/spm/ext/#TSDiffAna) in Matlab. Data was excluded if there was a sys-
tematic and specific pattern of high variance (bright areas) on the functional images as shown
on the variance image, e.g. dots on axial slices or vertical lines on sagittal slices representing
RF-artefacts, or horizontal lines on sagittal slices representing slice dropout. This analysis was
supplemented by the TSDiffana plots, which highly confirmed the same variance patterns. In
addition, all individuals with translational head motion exceeding 3 mm in either direction
within a task were excluded.

The functional MRI data was preprocessed and analyzed using the fMRIB Software Library
(FSL, http://www.fmrib.ox.ac.uk/fsl) [27]. Individual first-level analyses was made with the fol-
lowing preprocessing steps: motion correction using McFLIRT, segmentation using BET
(brain extraction), spatial smoothing with a 6 mm FWHM kernel, and a high pass filter with
90 s cutoff. In the first-level analysis for each run, the onset and duration of the on blocks (posi-
tive faces and negative faces respectively) were modeled with the off blocks (geometrical
shapes) as implicit baseline using the general linear model (GLM). The task design was filtered
and convolved with a hemodynamic response function before the model fit. A temporal deriva-
tive was added to the model to adjust for differences in acquisition time between slices. Finally,
functional images were registered to each subject’s high resolution T1 image using the FSL
BBR algorithm. Thereafter, a nonlinear registration to MNI-152 standard space was made
using the FSL toolbox FNIRT with 12 Degrees of freedom. Mean relative motion was estimated
for each individual dataset in order to test for load and diagnosis related differences in subject
motion.

Group analyses
Whole-brain group effects were based on a random-effect model. Four contrasts were exam-
ined, Negative faces> Shapes, Positive faces> Shapes, Faces> Shapes ((Negative
faces> Shapes + Positive faces> Shapes)/2) and Positive vs Negative faces. The initial cluster
forming threshold was set to z = 2.3, and the resulting cluster sizes were tested using Gaussian
random field theory at p< 0.05.

Differences between BD cases and HC, as well as correlations between PGRS and brain acti-
vation, were examined for all four contrasts. Additionally, potential differences between BD1
and HC, BD2 and HC, and BD1 and BD2 were explored. Age and sex were used as covariates
in the main analyses of diagnosis, and in the PGRS analyses age, sex and diagnostic group was
included as covariates. For both case-control and PGRS analyses, additional control analyses
were made where also Wechsler Abbreviated Scale of Intelligence (WASI) and educational
level were included in the model (Table 1). Findings were considered significant if they sur-
vived Bonferroni correction for 8 tests (HC vs BD and PGRS analyses for 4 contrasts). For
amygdalae as ROI, average BOLD signal changes (parameter estimates) were extracted from
FSL and entered into a general linear model (GLM) in the statistical software package R
(http://www.r-project.org/), where sex, age, diagnostic category and PGRS where used as
covariates in post hoc tests for potentially significant clusters. The amygdala ROIs were defined
in accordance with the probabilistic Harvard-Oxford subcortical atlas provided with FSL, and
were thresholded at 25% probability. Potential effects of medication status, dichotomized (yes/
no) for antipsychotics, antidepressants, anticonvulsives and lithium, were investigated for sig-
nificant clusters within BD cases. Medication status was dichotomized due to non-normal dis-
tribution of defined daily dosages as assessed by visual inspection of histograms. As some BD
individuals fulfilled criteria for depression according to IDS, IDS category (0–4) was regressed
against significant clusters within the cases to assess putative effect of clinical state on BOLD
activation differences between BD and HC.
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For demographic data, case/control comparisons of age, education, Wechsler Abbreviated
Scale of Intelligence (WASI) and BD PGRS, were made using t-tests, and differences in sex fre-
quencies was tested with the Chi2 test. Explained variance for BD PGRS for cases-control status
was estimated with Nagelkerke pseudo R2. These analyses were performed in R.

Results

Demographics and behavioral results
BD cases and HC did not differ significantly in age, but there were more females in the BD
group than among HC (P = 0.021). Patients had significantly lower education (P = 0.012) and
lower cognitive function (WASI) (P = 0.001) than HC. PGRS was significantly higher in BD
cases than HC (P = 0.0005) and explained 8.7% of the variance in diagnostic category status
(Nagelkerke pseudo R2. BD patients had significantly longer response times than HC for
Shapes (P = 0.003), Negative Faces (P = 0.001) and Positive Faces (P = 0.04). There were no
diagnostic category differences in accuracy rates (Table 1).

Brain activation
Task-related networks. Across the whole group, the Negative faces> Shapes and Positive

faces> Shapes contrasts revealed BOLD signal activation in amygdala, hippocampus, occipital
cortex, mid frontal gyrus, dorsolateral prefrontal cortex (dlPFC) and right precentral gyrus. A
very similar activation pattern was seen in the Faces> Shapes contrast. Contrasting positive
and negative faces revealed significantly increased activation in right lateral occipital cortex
during negative compared to positive faces (S1 Fig).

Differences between bipolar disorder and healthy controls. At whole-brain level, the
main analyses of diagnosis, including age and sex as covariates, revealed lower brain activation
in the cuneus/precuneus in BD patients relative to HC for the Negative faces> shapes contrast
and the faces> shapes contrast (Table 2) (Fig 1). This effect remained significant only for the
Negative faces> shapes contrast when including WASI (IQ) and education level as covariates,
and the effect also survived Bonferroni correction for 8 test. These correlations were not signifi-
cantly associated with medication status for any of the four categories (antipsychotics,

Table 2. Significant clusters at whole-brain level for diagnostic category and polygenic risk score analyses, corrected for sex and age.

Contrast Group comparison Region Peak voxel (x y z) mm Cluster size Z-max P value

Case-control analyses

Neg faces > Shapes HC > BD Precuneus/cuneus 10, -68, 22 818 3.89 0.00012*#

Faces > Shapes HC > BD Cuneus 0, -80, 24 555 3.58 0.0038*

Neg faces > Shapes HC > BD1 L Postcentral gyrus -26, -40, 72 472 3.70 0.008

Pos faces > Shapes HC > BD1 R prefrontal cortex 20, 70, 12 431 4.63 0.015#

Faces > Shapes BD2 > HD R Lateral occipital cortex 56, -70, 12 410 4.31 0.024

PGRS analyses

Neg faces > Shapes PGRS+, total sample R Inferior frontal Gyrus 52, 18, 12 424 3.28 0.016#

Neg > Pos faces PGRS-, total sample R postcentral gyrus 54, -20, 50 322 3.60 0.046#

*Remains significant after Bonferroni correction (8 independent tests)
#P < 0.05 with IQ and education in model

Abbrevations: Pos, Positive; Neg, Negative; HC, healthy controls; BD, bipolar disorder; PGRS, polygenic risk score; L, left; R, right. ‘+’, positively

associated; ‘-’, negatively associated.

Coordinates are given in MNS space.

doi:10.1371/journal.pone.0134202.t002
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antidepressants, anticonvulsives, and lithium) or with clinical state (IDS category) within the
cases. For analyses of BD1 and BD2 separately, no analyses reach a Bonferroni corrected signif-
icance threshold (8 tests). At an uncorrected level, HC had increased brain activation relative
to BD1 in the right prefrontal cortex for Positive faces> shapes, and in the left postcentral
gyrus for Negative faces> shapes. Finally, BD2 patients had higher brain activation than HC
for the Faces> shapes contrast in the lateral occipital cortex (Table 2). For ROI analyses of
amygdala activity, there were no correlations with diagnostic category and no differences
between BD1 and BD2 (S1 Table).

Polygenic risk score. PGRS was positively correlated with brain activation in the right
inferior frontal gyrus (rIFG) (Table 2) (Fig 2). This effect remained significant also when WASI
(IQ) and education level were used as covariates, but did not reach the Bonferroni corrected
significance threshold. No significant associations between amygdala activation and PGRS
were observed (S1 Table).

Discussion
The main findings of the current study were reduced cuneus/precuneus activation in BD rela-
tive to HC, and increased rIFG activation with increasing genetic risk for BD during emotional
face processing. The findings at diagnostic category level are in line with previous reports of
attenuated activity in dorsal brain regions in BD, including precuneus [3]. Alterations in precu-
neus activity have also been reported in healthy first-degree relatives of patients with BD, as
well as in paediatric BD patients [28]. These findings might indicate a genetic basis of the pre-
cuneus dysregulation in BD, although we did not find correlations between BD PGRS and pre-
cuneus activity in the current study. Another interpretation of these findings could be that
dysregulations in BD patients are not due to genetics but rather secondary to the disease, and
that the same pattern is seen in relatives because they manifest some of the clinical features as

Fig 1. Decreased brain activation in cuneus/precuneus in bipolar disorder cases (N = 85) compared to healthy controls (N = 121) for the Negative
Faces > Shapes contrast. Color bar indicates z values. Coordinates are given in MNI space. X = 4 (sagittal view), Z = 22 (transversal view). Abbreviations:
R, right; A, anterior.

doi:10.1371/journal.pone.0134202.g001
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BD patients but to a more subtle degree. Reduced functional connectivity between precuneus
and the left amygdala has also been reported in BD subjects [29], potentially pointing to alter-
ations in the default mode network (DMN). Precuneus has been suggested to be the 'core node'
or 'hub' of the DMN, a network which is thought to be activated during ‘resting consciousness’.
Proposedly, this function is related to its role as a central, well connected ‘hub’ located between
parietal and prefrontal regions [30]. Interestingly, hypo-connectivity was found in several
DMNs with an independent component analysis (ICA) approach in BD in a large recent fMRI
study [31]. In the same study, the identified connectivity patterns from these fMRI analyses
were subsequently related to genes regulating specific neurodevelopment/transmission pro-
cesses. As our main finding was located partly in precuneus, partly in cuneus, it is also of inter-
est that altered activation has been reported in posterior visual and face-processing regions
(i.e., right precuneus/cuneus, fusiform gyrus) in pediatric BD patients compared with HC [32].

The correlation between PGRS and increased rIFG activation (although not surviving the
relatively conservative Bonferroni correction, Table 2) is in accordance with previous findings
of enhanced right frontal gyrus activation in euthymic BD patients, whereas decreased activa-
tion has been reported in manic BD patients [33]. Further, hyperactivation in the IFG among
BD-youths has been found to be more pronounced than in BD-adults, potentially pointing to a
genetic basis [34]. At structural level, rIFG volume has been shown to be larger in BD patients
than HC, but this enlargement decreased with duration of illness and was reversed with Lith-
ium treatment [35]. IFG might be an interesting structure in BD, as it has been shown to be
involved in inhibition of risk-taking behaviour [36,37], although the current findings seem
rather counterintuitive in this regard, as we found enhanced IFG activation with increasing BD
PGRS. However, the PGRS did not explain the identified diagnostic category differences in
brain activation in the cuneus/precuneus. This indicates that underlying genetic risk for BD
and diagnostic category differences in neuronal recruitment as assessed using fMRI might be
of a more complex nature. Moreover, reduced cuneus/precuneus activity could be related to
state processes in BD and not to underlying genetically influenced trait characteristics, as

Fig 2. Bipolar disorder polygenic risk score is positively correlated with BOLD activation in the right
inferior frontal gyrus in the entire sample (N = 206) including bipolar disorder cases and healthy
controls for the Negative Faces > Shapes contrast. Color bar indicates z values. Coordinates are given in
MNI space. Y = 18 (coronal view), Z = 12 (transversal view). Abbreviations: R, right; A, anterior.

doi:10.1371/journal.pone.0134202.g002
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suggested in a previous report for amygdala dysregulation in schizophrenia [38]. However,
level of depression was not correlated with the significant clusters distinguishing BD from HC
in this sample, nor with significant clusters in the PGRS analyses.

As several studies have reported amygdala hyperactivity in BD during emotional paradigms,
our lack of association suggests that this effect might have been overestimated, potentially due
to small samples and the so-called ‘winner’s curse’ phenomenon [2]. Different experimental
designs might also have played a role in this discrepancy, although we investigated various con-
trasts in this faces matching paradigm [23], as well as whole-brain activation with cluster-size
correction in addition to mean amygdala activity as ROI.

With respect to the current paradigm, we applied an explorative, data-driven approach, in
order to increase the possibility of identifying novel alterations in brain activation in BD, and
to assess the reproducibility of previously reported patterns in a whole-brain perspective. As
expected, the main effects of negative faces, positive faces, and faces in general compared to
shapes across groups, all revealed strong and overlapping effects in regions comprising the
amygdala, hippocampus, occipital cortex, middle frontal gyrus, dorsolateral prefrontal cortex
and right precentral gyrus. Contrasting the two faces conditions, however, only revealed signif-
icant differences for negative compared to positive faces in a cluster including the right lateral
occipital cortex. Thus, this paradigm seems better suited for identifying brain activation pat-
terns during general face processing than for discriminating brain patterns during processing
of faces with different emotional valence, although the task could still detect potential interac-
tion effects between diagnostic group and activation differences between positive and negative
faces. The current findings might point to dysregulated brain activation in networks underlying
face processing as a characteristic of BD. This interpretation is in accordance with reports of
precuneus being involved in face processing [39], as well as with impaired face recognition in
BD [40]. Moreover, IFG has been implied in the face processing network [41].

There are some potential limitations to the current study, including relatively low statistical
power, at least compared to recent multicenter GWAS [1]. Also, data describing emotional
state at the time of scanning are lacking for some individuals (IDS data is available for 60 out of
85 BD cases (70.6%)) (Table 1), and using data from the initial clinical interview prior to scan-
ning is an imprecise measure with the potential of giving rise to difficulties when discerning
state from trait characteristics. As for the currently used PGRS, a potential limitation might be
the low explained variance observed at clinical level (8.7%), leaving a large part of the genetic
underpinnings of BD unaccounted for. However, this lack of explanatory power is even more
problematic when using single genetic variants, with hardly observable effect sizes on clinical
phenotypes [1]. Further, even though we used demographic variables as covariates, significant
group differences might still influence the results.

In summary, we have found reduced relative cuneus/precuneus activation in response to
emotional faces compared to shapes in BD compared with HC during a faces matching para-
digm. These results are in accordance with some earlier findings, and support a model of rela-
tive hypo-activation in dorsal brain structures in BD. We also found a correlation between
increased right IFG activation and increasing BD PGRS. To the best of our knowledge, this was
the first study applying a whole-brain explorative approach to investigate potential influence of
polygenic risk on brain activation with a face processing paradigm. However, we were not able
to replicate the previously reported amygdala hyper-activation in BD. The lack of convergence
of effects at case-control and PGRS level suggests a complex relation, warranting further explo-
ration. Low explained variance for the PGRS might also limit the interpretability of the current
analyses, although 8.7% is higher than the ~3% previously reported at case-control level [1,11].
Moreover, novel statistical genetic methods have already shown the potential of increasing the
explained variance of cumulative genetic risk scores [42]. Future functional imaging genetics
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studies could also be more precise when designing fMRI paradigms, in order to disentangle
trait from state characteristics, and for the purpose of combining several studies into larger,
multicenter collaborative analyses.
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P = 0.00012. Parameter estimates have been selected for cluster mean value. Abbreviations:
BD, bipolar disorder; NOS, not otherwise specified.
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