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Abstract

Synthetic biology aims at (re-)programming living cells like computers to perform new func-

tions for a variety of applications. Initial work rested on transcription factors, but regulatory

RNAs have recently gained much attention due to their high programmability. However,

functional circuits mainly implemented with regulatory RNAs are quite limited. Here, we

report the engineering of a fundamental arithmetic logic unit based on de novo riboregulation

to sum two bits of information encoded in molecular concentrations. Our designer circuit

robustly performs the intended computation in a living cell encoding the result as fluores-

cence amplitudes. The whole system exploits post-transcriptional control to switch on tightly

silenced genes with small RNAs, together with allosteric transcription factors to sense the

molecular signals. This important result demonstrates that regulatory RNAs can be key play-

ers in synthetic biology, and it paves the way for engineering more complex RNA-based bio-

computers using this designer circuit as a building block.

Author summary

In this work, we have engineered a distinctive genetic system, based on regulatory RNAs

that control the process of protein translation, that is able to perform arithmetic logic

computations (additions) in a single bacterial cell. The system expresses as output fluores-

cent proteins according to the molecular concentrations of the inputs (binary code). In

the future, this circuitry might be instrumental to develop smart bacterial cells that can

make appropriate decisions after certain computation for biomedical applications.

Introduction

In 1945, von Neumann established the foundations of the logic architectures behind comput-

ers in his famous “First draft of a report on the EDVAC” [1]. There, the arithmetic logic unit

(ALU) appeared as a principal element in the central processing unit. An ALU is a digital-like

circuit that performs arithmetic and logic operations over bits of information. Certainly,

today’s computers mount complex ALUs to deal with large volumes of information [2]. But in
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an emerging scenario of unconventional modes of computation [3], we could wonder whether

ALUs, even if in simple forms, are implementable by other means. In particular, is it possible

to engineer genetically such a device in a single living cell? Importantly, this question had a

positive answer with the engineering of a genetic half adder in mammalian cells [4], by com-

bining transcription factors (TFs) and RNA-binding proteins. A half adder is a basic imple-

mentation of an ALU to perform the binary sum of two bits of information. This requires

generating two output channels, one for the sum (multiple of 1) and another for the carry
(multiple of 2). Later, a genetic half adder was also engineered in bacterial cells exploiting com-

binatorial transcriptional regulation [5]. However, these designs are centered on regulatory

proteins, which are limited in number, especially those with high propensity for composability

and orthogonality with the host machinery, and do not allow an easy computational design of

de novo sequences. In this regard, and even though ground-breaking work is being accom-

plished on circuit design automation [6], directed evolution of TFs [7], and de novo protein

design [8], alternatives to protein-based regulation are required.

In recent years, RNA has been exploited as an ideal substrate to engineer gene expression

programs that robustly run in vivo, thanks to its functional versatility [9, 10] and model-based

designability at the nucleotide level [11, 12]. Examples of this suitability are novel mechanisms

of gene expression control through the modulation of transcription with non-coding RNAs

[13–15], or chimeric RNA molecules integrating different domains that are able to transduce

molecular signals [16–18]. Moreover, efforts in RNA synthetic biology to increase the sophisti-

cation of the designer systems have led to combinatorial logic gates [19], serial cascades [20,

21], a feed-forward loop [22], and a pulse counter [23]. In this work, we go one step further

with the engineering of a genetic half adder in Escherichia coli centered on regulatory RNAs.

In particular, we focused on riboregulators of translation initiation [24, 25] to implement our

design. The whole system also relies on TF-mediated regulation, especially to sense the molec-

ular signals and express accordingly those riboregulators.

Interestingly, a genetic half adder would allow mounting a common response against two

different molecules acting individually (mediated by the sum), and mounting a new response

when they act together (mediated by the carry). This would be useful, for instance, in scenarios

in which there is synergy between molecules [26].

Results

A half adder receives two input signals and processes them to generate two output responses.

In this work, isopropyl β-D-1-thiogalactopyranoside (IPTG) and anhydrotetracycline (aTc)

are the two molecules that work as input signals. Moreover, the expressions of a superfolder

green fluorescent protein (sfGFP) [27] and a monomeric red fluorescent protein (mRFP1)

[28] constitute the output responses. The computation is accomplished in two different genetic

modules, both receiving IPTG and aTc as inputs, but each producing one different output.

The first genetic module implements a XOR logic gate and generates the sum in the red fluo-

rescence channel. That is, mRFP1 is expressed in presence of IPTG alone or aTc alone. The

second genetic module implements an AND logic gate and generates the carry in the green

fluorescence channel. That is, sfGFP is expressed in presence of both IPTG and aTc. To imple-

ment these logic circuits, we used a synthetic PL-based promoter repressed by LacI, PLlac, and

another PL-based promoter repressed by TetR, PLtet [29]. This way, the genes controlled by

these two promoters can be induced by IPTG and aTc, respectively, in a strain constitutively

expressing the TFs LacI and TetR (here E. coli MG1655-Z1).

We started by engineering the AND logic gate, as this circuit is much simpler than the XOR

logic gate. The AND behavior was conceived as the expression, on the one hand, of a cis-
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repressed messenger RNA (mRNA) coding for a GFP with the PLlac promoter and, on the

other hand, of a small RNA (sRNA) able to trans-activate translation with the PLtet promoter

(Fig 1A); a scheme already proposed [30, 31]. Cis-repression can be achieved by trapping the

ribosome binding site (RBS) in the stem of a strong hairpin formed in the 5’ untranslated

region (5’ UTR) of the mRNA, and trans-activation requires a suitable seed region between the

sRNA and that hairpin [12]. According to our previous work with the riboregulatory system

RAJ11 [31], there is a substantial increase in green fluorescence when both IPTG and aTc are

present in the medium, a result obtained again here in new conditions (section A in S1 Appen-

dix). In this case, a GFPmut3b [32] was used as output, following the original system. The no

apparent expression in the other induction conditions (readouts even below the fluorescence

of cells that do not express GFP) indicated a tight RBS repression. In addition, we considered

the riboregulatory system RAJ12 [31] to implement another AND logic gate. We also observed

in a fluorometer a substantial increase in green fluorescence only with both inducers, now

with sfGFP, but apparently with less dynamic range (Fig 1B). The tight RBS repression was

also noticeable in this case. Indeed, previous single-cell analyses of the systems RAJ11 and

RAJ12 (by flow cytometry) revealed fluorescence distributions almost coincident with the dis-

tribution coming from cells that do not express GFP, even with plasmids of high copy number

[31]. Accordingly, we decided to keep the RAJ12-based AND logic gate (implemented in one

single plasmid, pRHA12) as one final module, and exploit the riboregulatory system RAJ11 for

the engineering of the XOR logic gate.

Our next goal was to engineer an OR logic gate, proposing two trans-activations of transla-

tion in parallel [19]. For that, we placed a cis-repressed mRNA coding for the mRFP1 under

the control of a constitutive promoter (J23119 [33]), and the RAJ11 sRNA under the control of

the PLtet promoter. Subsequently, we designed a minimal version of such sRNA (RAJ11min),

also able to trans-activate the translation of that mRNA. This was done to avoid repeated regu-

latory genes in the circuit, which presumably enhances genetic stability. The RAJ11 and

RAJ11min sRNAs produce the same intermolecular base pairs with the corresponding 5’ UTR.

The RAJ11min sRNA was then expressed with the PLlac promoter (Fig 2A). We found a sig-

nificant expression boost either with IPTG or aTc (Fig 2B). The similar expression levels indi-

cated fully functionality of the RAJ11min sRNA. Moreover, we found that the expression

levels are almost the double upon induction with both IPTG or aTc. This is expected if we

assume that (synthetic) riboregulation, in contrast to transcriptional regulation, rests on

decreased binding affinity in vivo (sRNA-mRNA interaction) and then operates in the linear

regime, without reaching saturation [34–36]. Afterwards, we decided to replace the promoter

that controls mRFP1 expression. In particular, we chose the PR promoter from λ phage [37].

In absence of the TF cI, this promoter is also constitutive in E. coli. We found a similar expres-

sion pattern as before, but with less than half expression levels (Fig 2C). This is in tune with

previous work on promoter characterization showing that the J23119 promoter is stronger

than the PR promoter [33]. Running the EFM calculator, devised for assessing evolutionary

failure modes [38], we obtained a RIP score (lower is more stable) of 270.7 for this last OR

logic gate (implemented with the RAJ11 and RAJ11min sRNAs and the PR promoter); while it

would be 773.0 if this gate were implemented with two copies of RAJ11 or 373.9 with two cop-

ies of RAJ11min.

In addition, we conceived the XOR behavior as the combination of such an OR logic gate

and an additional AND logic gate. To this end, we expressed, on the one hand, a cis-repressed

mRNA coding for cI with the PLlac promoter and, on the other hand, of a sRNA able to trans-
activate translation of that gene with the PLtet promoter (Fig 3A). This way, cI is only

expressed in the presence of both IPTG and aTc (AND behavior). In turn, cI represses the PR

promoter, which expresses mRFP1. To implement this system, we tried two different
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riboregulatory systems, RR12 [24] and RAJ21 [31], knowing that the apparent dynamic range

is much larger for RR12. However, we only found the intended behavior with the system

RAJ21, as mRFP1 was not expressed with the system RR12 (Fig 3B and 3C). We argued that cI

was relatively expressed with only IPTG or aTc when the system RR12 implements the logic

Fig 1. RNA-based AND logic gate. a) Scheme of the gene regulatory circuit. A gene coding for a GFP, initially

repressed (OFF state), is activated by a riboregulator (ON state). Solid lines denote regulations, while dashed lines

correspond to transcription or translation processes. b) Normalized green fluorescence for each induction condition

(IPTG, aTc) when the circuit is implemented with the RAJ12 sRNA and sfGFP. Error bars correspond to standard

deviations over three replicates (b. indicates fluorescence below cell autofluorescence). The truth table of AND reads

00|0, 10|0, 01|0, and 11|1.

https://doi.org/10.1371/journal.pgen.1007548.g001
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circuit, and that this cI expression was sufficient to repress the PR promoter. As cI is a potent

repressor [39] and the circuit was expressed from a high-copy plasmid, any expression leakage,

Fig 2. RNA-based OR logic gate. a) Scheme of the gene regulatory circuit. A gene coding for an RFP, initially

repressed (OFF state), is activated in parallel by two riboregulators (ON state). Solid lines denote regulations, while

dashed lines correspond to transcription or translation processes. b, c) Normalized red fluorescence for each induction

condition (IPTG, aTc). Error bars correspond to standard deviations over three replicates. The promoter that controls

the RFP expression (mRFP1 in both cases) is J23119 in b) and PR in c). The truth table of OR reads 00|0, 10|1, 01|1, and

11|1.

https://doi.org/10.1371/journal.pgen.1007548.g002
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Fig 3. RNA-based XOR logic gate. a) Scheme of the gene regulatory circuit. On top of the OR logic gate, a gene coding for cI, initially repressed, is activated

by a riboregulator to switch off RFP (OFF state). Solid lines denote regulations, while dashed lines correspond to transcription or translation processes. b, c)

Computation based on RNA
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due to inefficient transcriptional or translational control, can end in repression of mRFP1. In

terms of translation, previous single-cell analyses (by flow cytometry) revealed a small expres-

sion leakage from the cis-repressed mRNA in the case of RR12 [24], but not in the case of

RAJ21 [31]. Hence, the RAJ11/RAJ21-based XOR logic gate (implemented in one single plas-

mid, pRHA40) resulted in the other module.

Finally, we integrated the two modules in a single cell to generate the RNA-based half adder

(Fig 4A). That is, E. coli was co-transformed with pRHA12 and pRHA40. Importantly, the

riboregulatory systems RAJ11, RAJ12, and RAJ21 were shown computationally, with the

NUPACK web application [11], to not suffer cross-talk, i.e., a given sRNA is not able to release

the RBS of a non-cognate 5’ UTR. We measured again red (sum) and green (carry) fluores-

cence with IPTG and aTc, demonstrating the biological computation (Fig 4B and 4C). Never-

theless, we observed that sfGFP was marginally expressed with aTc, perhaps because the

transcriptional repression exerted by LacI (less potent than TetR [29]) was slightly abated due

to multiple PLlac promoters in the system [40] (section B in S1 Appendix). Further work

might try to reduce this leakage to enhance the digital behavior of the system. We quantified

the performance of the system as the minimal fold change (f) between the ON and OFF states.

We obtained f = 9.4 for mRFP1 (aTc vs. IPTG + aTc) and f = 5.2 for sfGFP (IPTG + aTc vs.
aTc). An overall fold change was obtained by averaging geometrically these two values, result-

ing in f = 7.0. Moreover, we inspected the possibility of getting a visual outcome of the circuit

computation. For that, we monitored different cell cultures induced with IPTG and aTc with a

microscope, showing that the two bits of processed information, corresponding to the sum

and the carry, can be easily recognized (Fig 4D and 4E).

To study whether each E. coli cell was able to perform the computation (i.e., respond to the

inducers in a relatively homogeneous manner), we further characterized the functionality of

our genetic half adder at the single cell level by flow cytometry. Certainly, cell-to-cell variability

in gene expression within a clonal population (noise) is an inherent feature of biology [41].

This assay revealed that the whole population significantly shifted its fluorescence in both

channels according to the induction condition (Mann-Whitney U-tests, P� 0; Fig 5). Again,

we quantified f = 16.3 for mRFP1 (now the minimal fold change was in IPTG vs. none) and

f = 4.9 for sfGFP (IPTG + aTc vs. aTc) using mean values of fluorescence. The overall fold

change was in this case f = 8.9. These values are in tune with those reported at the population

level. The single cell data also revealed that the slight increase in GFP with only aTc was associ-

ated with an increase in cell-to-cell variability regarding sfGFP expression (3.3 times more

deviation with aTc than with IPTG). Definitely, more theoretical work is needed to recognize

how noise performs in systems of increasing complexity based on intricate transcriptional and

post-transcriptional regulation [42].

Discussion

We have programmed a bacterial cell so that it can perform the binary sum of two bits of infor-

mation, encoded into the concentrations of IPTG and aTc (signal molecules). The bacterial

cell reports the sum of this computation as red fluorescence and the carry as green fluores-

cence, a sort of minimal biocomputer. To achieve this dynamic behavior, we engineered a

genetic system exploiting riboregulation [24]. The whole system consists of four synthetic

riboregulators (RAJ11, RAJ11min, RAJ21, and RAJ12), three TFs (LacI, TetR, and cI), and two

fluorescent proteins (mRFP1 and sfGFP), which work together within the cell in an articulate

Normalized red fluorescence for each induction condition (IPTG, aTc). Error bars correspond to standard deviations over three replicates. The riboregulator

that activates cI is the RR12 sRNA in b) and the RAJ21 sRNA in c). The truth table of XOR reads 00|0, 10|1, 01|1, and 11|0.

https://doi.org/10.1371/journal.pgen.1007548.g003
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manner. Such a system did not require fine-tuning promoters or RBSs to perform as designed,

in contrast to what might happen in other cases [43, 44]. Moreover, one important advantage

of our designer circuit over the two previous genetic half adders [4, 5] is that the reporter gene

conveying the sum is not duplicated. This makes the architecture to be better organized and

more scalable, as already pointed out [1].

In addition, the genetic footprint of our designer circuit was greatly reduced thanks to the

use of regulatory RNAs, with respect to circuits fully implemented with TFs [6]. The RAJ11,

RAJ12, and RAJ21 sRNAs are of 55–71 nucleotides (excluding the terminators), and the

RAJ11min sRNA is even of 30 nucleotides. Certainly, the DNA sequence required to encode a

protein of average size is much longer. The cis-regulating regions at the DNA or RNA levels,

by contrast, are of similar size. The PLlac and PLtet promoters are of 54 nucleotides and the 5’

Fig 4. RNA-based half adder. a) Scheme of the computer cell highlighting the different layers. b, c) Normalized red

and green fluorescence for each induction condition (IPTG, aTc) when the cell is transformed with the two logic gates.

Error bars correspond to standard deviations over three replicates (b. indicates fluorescence below cell

autofluorescence). d, e) Images of cell cultures expressing the full system showing red and green fluorescence. Scale, 1

mm. The corresponding bright field image is shown on top.

https://doi.org/10.1371/journal.pgen.1007548.g004

Fig 5. Single cell behavior of the RNA-based half adder. Scatter plots of red and green fluorescence events for each

induction condition (IPTG, aTc) when cells harbor the two logic gates. Dashed lines define arbitrary quadrants.

https://doi.org/10.1371/journal.pgen.1007548.g005
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UTRs involved in riboregulation of 52 nucleotides. Beyond this, by only mutating the seed

region between the sRNA and the 5’ UTR it is possible to create riboregulatory systems that

perform orthogonally in vivo [45]. This way, we might easily scale up our designer circuit. Fol-

lowing this strategy, of note, we already created a RAJ11-derived orthogonal system [36].

Definitely, we chose a given molecular implementation, but other implementations might

be possible maintaining the same regulatory architecture. As the system does not rely on com-

binatorial promoters, nothing prevents the use of other input signals (e.g., endogenous sub-

stances of the cell) to perform the computation replacing the PLlac and PLtet promoters by

suitable responsive promoters [43, 44]. Alternatively, LacI and TetR might be computationally

redesigned to sense new compounds [46]. The riboregulatory mode, here characterizing an

internal layer of gene expression activation, is also flexible. Cis-repression of translation might

occur by trapping the start codon, instead of the RBS, in the 5’ UTR structure [25]. More dis-

tinctly, the activation might be transcriptional with sRNAs that act in trans as anti-terminators

[14]. In addition to LacI and TetR (working in the sensory layer), our system also involves the

TF cI to implement an internal repression in the XOR logic gate. We tried to implement this

repression by antisense RNA [47] or CRISPR interference [15], without successful results (sec-

tion C in S1 Appendix); arguably, because the expression of mRFP1 was from a high-copy

plasmid. This reveals the necessity of pursuing the development of novel RNA-based mecha-

nisms and circuits. All in all, our genetic implementation of an ALU promises to be important

in the future to develop smart cells (e.g., diagnostic bacteria for clinical use) that can make

appropriate decisions after certain processing (computation) of the signals perceived from the

medium [48].

Materials and methods

Regulatory sequences

Synthetic PL-based promoters regulated by the TFs LacI and TetR [29] were used as elements

to sense the input signals (IPTG and aTc). Riboregulatory sequences (sRNAs and 5’ UTRs) of

systems RAJ11, RAJ12, and RAJ21 were obtained from previous work [31], as well as the

sequences of system RR12 [24]. A minimal version of the sRNA RAJ11 was designed by

removing the nucleotides not contributing to the intermolecular interaction. The structural

models of these systems are shown in S2 Appendix. The PR promoter and a codon-optimized

version of the TF cI from λ phage [37] were also used.

Plasmid construction

Six plasmids were characterized in this work: pRAJ11, pRHA12, pRHA25, pRHA36, pRHA37,

and pRHA40. First, pRAJ11 (ampR, pUC ori) and pRAJ12 (kanR, pSC101m ori) were taken

from previous work [31]. pRHA12 was constructed by removing the mRFP1 gene from

pRAJ12. pRAJ11 expresses in a controlled way GFPmut3b and pRHA12 sfGFP. Moreover,

pRHA25 (ampR, pUC ori) was synthesized by IDT. This expresses in a controlled way mRFP1.

pRHA36 was constructed by inserting in pRHA25 an expression cassette of cI regulated by

ribosystem RR12 (synthesized by IDT), also changing the J23119 promoter by the PR pro-

moter. pRHA37 was constructed by removing the expression cassette of cI from pRHA36.

Finally, pRHA40 was constructed by inserting in pRHA37 an expression cassette of cI regu-

lated by ribosystem RAJ21 (synthesized by IDT). See sequences in S3 Appendix.
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Strains, cell cultures, and reagents

For cloning purposes, E. coli Dh5α was used following standard procedures [49]. To express

the circuits, E. coli MG1655-Z1 (F-, λ-, rph-1, lacIq, PN25:tetR, SpR) was used (i.e., a strain that

is lacI+ and tetR+). LB medium was used for overnight cultures, while M9 minimal medium

(1x M9 salts, 2 mM MgSO4, 0.1 mM CaCl2, 0.4% glucose, 0.05% casamino acids, and 0.05%

thiamine) for characterization cultures. IPTG was used at the concentration of 1 mM and aTc

at 100 ng/mL. Ampicillin and kanamycin were used as antibiotics at the concentration of

50 μg/mL. Compounds provided by Sigma-Aldrich.

Fluorescence quantification

Cultures (2 mL) inoculated from single colonies (three replicates) were grown overnight in LB

medium at 37˚C and 200 rpm. Cultures were then diluted 1:200 (1:100 in the case of cells

expressing pRHA40) in M9 minimal medium (2 mL) with appropriate inducers (IPTG, aTc)

and were grown for 5–8 h, depending on the genetic system and induction condition, at 37˚C

and 200 rpm to reach an OD600 around 0.5. Cultures were then used to load the wells (200 μL)

of the microplate (96 wells, black, clear bottom; Corning). This was assayed in a fluorometer

(Perkin Elmer Victor X5) to measure absorbance (600 nm absorbance filter), green fluores-

cence (485/14 nm excitation filter, 535/25 nm emission filter), and red fluorescence (570/8 nm

excitation filter, 610/10 nm emission filter). Mean background values of absorbance and fluo-

rescence, corresponding to M9 minimal medium, were subtracted to correct the readouts.

Normalized fluorescence was calculated as the ratio of fluorescence and absorbance. The mean

value of normalized fluorescence corresponding to cells transformed with control plasmids

was then subtracted to obtain a final estimate of expression.

Culture imaging

A culture (2 mL) inoculated from a single colony was grown overnight in LB medium at 37˚C

and 200 rpm. The culture was then diluted 1:100 in M9 minimal medium (2 mL) and was

grown for 5 h at 37˚C and 220 rpm to reach exponential phase. The culture was then diluted

1:40 in M9 minimal medium (2 mL) with appropriate inducers (IPTG, aTc) and was grown

for 8 h at 37˚C and 220 rpm to reach an OD600 around 0.7. 200 μL of each culture were trans-

ferred to small tubes. Culture images were acquired with a light microscope (Leica DFC7000T)

with the fluorescence filters for GFP and DsRed. Exposition parameters were manually

adjusted to enhance the quality of the image.

Flow cytometry

A culture (2 mL) inoculated from a single colony was grown overnight in LB medium at 37˚C

and 200 rpm. The culture was then diluted 1:100 in M9 minimal medium (2 mL) and was

grown for 5 h at 37˚C and 200 rpm to reach exponential phase. The culture was then diluted

1:50 in M9 minimal medium (200 μL) and placed in a microplate with appropriate inducers

(IPTG, aTc) and was grown for 5 h at 37˚C and 1,000 rpm in a plate shaker (Biosan PST-

60HL). Cultures were spun down at 13,000 rpm for 2 min and resuspended in PBS (2 mL).

Fluorescence was measured with a flow cytometer (BD LSRFortessa, lasers of 488 nm and 561

nm) with the emission filters for GFP (530/30 nm) and DsRed (585/15 nm). Events were then

gated and compensated (~15,000 after this process). The mean value of the autofluorescence of

the cells was subtracted in each channel to obtain a final estimate of expression.
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