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Fabrication of inclined non-
symmetrical periodic micro-
structures using Direct Laser 
Interference Patterning
Sabri Alamri   1, Mikhael El-Khoury1, Alfredo I. Aguilar-Morales1, Sebastian Storm1,2, 
Tim Kunze1 & Andrés F. Lasagni1,2

The direct fabrication of microstructures, having a non-symmetrical morphology with controllable 
inclination, presents nowadays a challenging task. Natural examples of surfaces with inclined 
topographies have shown to provide anisotropic functionalities, which have attracted the interest of 
several researchers in the last years. This work presents a microfabrication technique for producing 
microstructures with a determined and controllable inclination angle using two-beam Direct Laser 
Interference Patterning. Polyimide foils are irradiated with a 4 ns UV (266 nm) laser source producing 
line-like structures with a period varying from 4.6 µm to 16.5 µm. The inclinations, retrieved by tilting 
the sample with respect to the optical axis of the setup, are changed from 0° to 75°, introducing a well 
controllable and defined inclination of the structure walls. The structuring parameters (laser fluence, 
number of laser pulses and interference period) as well as the inclination of the microstructures are 
correlated with the global tilting of the sample. As a result, a determined laser fluence and number 
of pulses are necessary to observe a remarkable non-symmetrical morphology of the structures. In 
addition, the presence of structural undercuts is reported, which opens the possibility for developing 
new direction-dependent properties on polymeric materials. As an example, preliminary results on light 
diffraction are presented, showing a similar behavior as blazed diffraction gratings.

Three-dimensional microstructures have been recently applied in microsystems such as micro-optical electron-
ics, micro electro-mechanical as well as analytical systems1. Several applications of naturally-inspired structures 
exhibit an inclination or even an undercut, associated with remarkable wettability properties2, light extraction3 
and specific friction and adhesion characteristics4,5. In particular, surfaces having a non-symmetrical topogra-
phy, e.g. with a determined inclination angle can be used for instance to produce gecko-like synthetic adhe-
sives, as recently demonstrated on SU-8 molds5. A well-known example from the animal-world where inclined 
structures play an important role is the snakes’ skin. For instance, squamate reptiles exhibit surface textures 
with asymmetric sub-micron and nano-scale features which are responsible for frictional effects, manifested in 
the reduction of adhesion6, increase of abrasion resistance7 as well as anisotropic frictional behavior8. Eventually, 
a well-controllable replication of the snake skin microstructures on technical surfaces therefore allows advanced 
surface functions for products and components.

Among the techniques able to create three-dimensional microstructures, different technologies are utilized 
such as two-photon polymerization9, micro stereo-lithography10, moving mask11 and inclined UV and X-ray 
lithography12–14. However, these methods exhibit some challenges: for instance the inclined exposure suffer from 
non-uniform patterning due to different distances from the energy source (e.g. UV light); the moving mask 
method presents problems with the precision of the moving stage, which affects the final surface morphology 
and micro-lens-based techniques often suffer from aberration effects due to the curvature of the micro-lenses15. 
Another possibility is the fabrication of inclined structures with mechanical techniques such as ultra-precision 
machining. Nevertheless, this method generally presents drawbacks such as the abrasion of cutting tools and a 
poor quality in surface finishing16.
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An example of application of non-symmetrical structures are blazed diffraction gratings17,18. This particular 
type of gratings has the property of diffracting most of the light intensity in a defined diffraction order, which can 
be controlled by the inclination angle of the structures, their depth and periodicity. Such gratings are for instance 
used in spectroscopic applications19. A common production technique for blazed gratings is using a diamond 
tipped tool to cut parallel grooves into the coating on the substrate, or to impress an interference pattern on an 
inclined surface, coated with a photo-sensitive material20.

Although widely used in the microelectronics due to its excellent performances in terms of resolution, pattern 
homogeneity and reproducibility, UV lithography presents some technical drawbacks for specific applications. 
This originates from the fact that photocrosslinkable materials are needed, quartz masks with defined geometries 
must be previously fabricated and at least a subsequent developing process is required, thus increasing the pro-
cessing costs. Moreover, UV lithography requires very clean processing conditions, cannot be easily applied to 
curved or three-dimensional surfaces and only a small set of materials is treatable, which reduces the availability 
of the technique to users dealing with diverse industrial applications and for which clean-room conditions are 
not applicable1,21.

Among the mask-free and single-step fabrication methods, laser micromachining achieved a dominant posi-
tion in several industry-oriented fields. The conventional laser fabrication technique, known as Direct Laser 
Writing (DLW), is frequently used in the production of functional surfaces both on metals and polymers employ-
ing ultra-short laser pulses22–27. If coupled with scanning devices, DLW can achieve impressive performances 
in terms of scanning speed (e.g. 10–15 m/s) and tightly focused laser pulses enable micromachining with high 
precision and a spatial resolution down to a few tens of micrometers (10–30 µm)28–30. Nevertheless, like in other 
manufacturing techniques that employ a top-down structuring approach, the fabrication of inclined microstruc-
tures is a challenging task. However, projecting the laser beam at an oblique angle on the sample enables the 
fabrication of 2.5D features. This was shown by Wang et al., which introduced a turning mirror in the optical 
setup which resulted in surface textures with a defined inclination31. Although this approach enables an effective 
micro-sectioning with non-vertical sidewalls profiles and high penetration depths (up to 380 µm), the minimal 
achievable lateral feature resolution is strongly limited by the focal length (75 mm) and thus restricted to some 
hundreds of micrometers31.

An innovative technique that allows the fabrication of periodic microstructures on different materials is Direct 
Laser Interference Patterning (DLIP). DLIP relies on the overlap of multiple coherent laser beams in order to gen-
erate interference patterns within the laser beam profile, with resolutions in the micro- and sub-micrometer scale. 
The direct application of the generated interference pattern on materials results in a well-defined surface textures. 
It can be demonstrated that the number of interfering laser beams, their geometrical arrangement, individual 
angle of incidence, phase and polarization influence the shape of the interference pattern32. The lateral dimen-
sion of the periodic pattern (spatial period Λ) can be controlled by the intercepting angle between the individual 
sub-beams, as described in Eq. 1 for a two-beam DLIP setup by

Λ λ
β

=
2 sin( ) (1)

where λ and β denotes the laser wavelength and half-angle between interfering beams, respectively. The DLIP 
technology is capable of treating a wide number of materials, ranging from metals to polymers and coatings33–39 
with processing speeds up to 0.9 m²/min40. Moreover, this method has been employed in many application fields, 
such as to reduce friction on metals, to improve the adhesion of bone cells for dental implants, to fabricate nan-
oparticles for photocatalysis enhancement, for growing ZnO nanowires for sensing applications, to change the 
wettability on metals and polymers as well as for improving the conductivity in spot welding37,41–45.

In this work, the fabrication process of inclined DLIP microstructures is introduced, employing a conven-
tional setup for interference structuring and a manual tilting stage for controlling the sample inclination. The 
aim of the work is to show the fabrication feasibility of periodical microstructures with a controllable inclination, 
depth and spatial period. As example of non-symmetrical properties, preliminary results on light diffraction are 
presented. The treated surfaces are characterized using confocal and scanning electron microscopy.

Results and Discussion
Fabrication of inclined structures using DLIP.  A two-beam DLIP setup has been employed for the 
structuring of Polyimide (PI) foils which results in the fabrication of line-like surface structures. The employed 
laser source emits UV radiation (266 nm), which ensures a high absorption by the PI foils. Furthermore, due to 
the short wavelength used, the produced radiation  have a high photon energy, leading to the photochemical 
ablation of the polymer with a negligible contribution of photothermal processes46,47.

The processing parameters were fixed to a laser fluence of 1.32 J/cm² and 20 laser pulses per area, while the 
setup was adjusted to have an interference angle 2β of 3.28°, which results in a spatial period of 4.6 µm. As Eq. 1 
shows, larger interference angles produce smaller spatial periods. However, a compromise between the interfer-
ence periods and the inclination angles must be found. In fact, considering for example an interference angle 2β 
of 90°, the maximal possible inclination angle would be 45°. In addition, for large interference angles larger dif-
ferences in the projected areas of the sub-beams occur, meaning that additional optical elements (such cylindrical 
lenses) are needed for compensating the variation in the areas (and thus fluences).

The choice of the initial structuring conditions employed in this work (laser wavelength, spatial period and 
laser fluence) derives from the necessity to obtain well-defined and regular ablation profiles. In fact, at a wave-
length of 266 nm (corresponding to the laser radiation) this material presents a high absorption coefficient and 
the main interaction mechanism with the laser beam results in a photochemical ablation process without thermal 
heating, leading to high-quality patterns, as already reported by Lasagni et al.36. Moreover, the used laser fluence 
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ensured a high ablation depth within a single laser pulse (~0.5 µm). The reference values have been taken from 
previous works34,48. The interference period was set to 4.6 µm, in order to avoid undesired effects, such unselective 
ablation (resulting from the expansion of the plasma plume) as previously investigated on polycarbonate and 
PET49,50, or lowering of the structure quality employing sub-micrometer patterns51–53.

The effect of interference pattern inclination on the material surface was investigated for inclination angles 
of 0, 30, 45, 60 and 75°. Examples of the produced structures with different inclination angles are shown in the 
Scanning Electron Microscope (SEM) images and confocal profiles depicted in Fig. 1. As it can be easily recog-
nized, a tilt in the shape of the line-like structures is significantly visible for inclination angles ϕ greater than 30°. 
The SEM images also indicate the presence of an undercut of the inclined walls, which cannot be evaluated from 
confocal microscopies because of the top-view approach of the optical measurement itself.

From the confocal measurements presented in Fig. 1, a detailed analysis of the topography shape evolution in 
dependence on the inclination angles was performed, as shown in Fig. 2. Beside the tilt of the surface textures, the 
inclination of the interference pattern with respect to the sample surface also influences the periodicity and depth: 
for increasing inclination angles the spatial period increases and the structure depth decreases.

Both the change in spatial period and structure depth can be explained by considering the projection of the 
interference pattern on an inclined plane. The relation between the spatial period Λ and the inclination angle ϕ 
can be described by Eq. 2, where Λ0 is the spatial period for zero inclination (ϕ = 0°).

Λ ϕ =
Λ

ϕ
( )

cos (2)
0

Figure 1.  SEM micrographs (left) and confocal topography (right) of the structured polyimide foils using a 
spatial period of 4.6 µm, a laser fluence of 1.32 J/cm², 20 pulses per laser spot and different sample inclinations: 
(a) 0°, (b) 45° and (c) 75°.
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Figure 3a shows the relationship between the measured periodicities and the tilting angle, which exemplifies that 
larger inclination angles ϕ result in a larger spatial period. It can be seen, that the experimental results are in very 
good agreement with the predicted periodicities using Eq. 2. The same projection principle can be also applied in 
order to calculate the effective interference area A as a function of the inclination angle, as given by Eq. 3:

ϕ
ϕ

=A A( )
cos (3)

0

where A0 is the area of the interference region for zero inclination (ϕ = 0°). The change in the interference area 
impacts also the effective laser fluence F irradiating the material’s surface, as described by Eq. 4 as a function of 
the inclination angle:

Figure 2.  Change of the topography shape as a function of the inclination angle for fixed DLIP processing 
conditions (spatial period: 4.6 µm, fluence: 1.32 J/cm² and 20 pulses per laser spot).

Figure 3.  (a) Spatial period and (b) structure depth as a function of the sample’s inclination. The solid lines in 
(a) and (b) are fits corresponding to Eqs 2 and 5, respectively. The used laser fluence was 1.32 J/cm² with 1 pulse 
per laser spot.
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where E is the pulse energy and F0 is the laser fluence for zero inclination (ϕ = 0°).
It is known that for polymers, which are ablated following a photo-chemical ablation process, the structure 

depth is directly related to the wavelength-specific absorption depth and the employed laser fluence through the 
Lambert-Beer law54. Thus, the change in the laser fluence introduced by the different inclination angles results in 
changes in the structure depth d. Consequently, by considering Eq. 4, the Lambert-Beer law can be rewritten as:

ϕ
α

ϕ
α

ϕ
α

ϕ= =










= +d F
F

F
F

d( ) 1 ln ( ) 1 ln cos 1 ln(cos )
(5)th th

0
0

where α is the absorption coefficient at the used laser wavelength and d0 is the depth for a defined laser fluence 
F0 at ϕ = 0°.

The model outlined in Eq. 5 was verified by measuring the experimental structure depths as a function of the 
inclination angle for single DLIP pulses, as shown in Fig. 3b. Note that the theoretical prediction and the experi-
mental results are in fair agreement. By fitting the experimental results to Eq. 5, an absorption coefficient of 
. ± . ⋅ −cm3 7 0 77 104 1 can be calculated which is comparable to other reported data in the literature55–57.

Using a rectangular mask and a constant intensity distribution to irradiate the material, very well defined areas 
could be processed, especially for low inclination angles. However, for large angles (>60°) the outer regions of 
the treated areas present some irregularities (see Fig. S1 in the supplementary information section). For an incli-
nation angle of 75°, these defects were observed in ~100 µm (for each side) of the total treated length (1.95 mm), 
representing around 10% of the total area. This effect can be attributed to the different size of the two interfering 
beams, while being projected on the same inclined surface. In particular, since the beams illuminate the surface 
with an interference angle β, the projection of the single beams is equivalent to a projection with angles ϕ + β 
and ϕ − β, where ϕ is the sample’s inclination angle. This produces a difference in the projected area of the beams 
and thus the overlap area is smaller than the size of single beams, lowering the interference contrast in the outer 
regions of the DLIP-treated areas.

Control of the structure inclination.  In order to evaluate the most adequate processing conditions to 
obtain deep and well-defined non-symmetrical patterns with a sawtooth morphology, further DLIP experiments 
were performed with variations in the number of laser pulses. Microstructures with high depths are commonly 
achieved either by overlapping sequential pulses58,59 or by means of multiple irradiations in the same area60. While 
the first approach is preferable when using small laser beam sizes and covering large areas in a homogeneous 
way61, the latter is used in case of large beam sizes and with laser-systems employing low repetition rates, like the 
system employed in this work.

Figure 4a shows the topography of irradiated PI samples with varying number of laser pulses (between 1 and 
20), a constant laser fluence of 1.32 J/cm² and for perpendicular irradiation conditions (ϕ = 0°). As it can be seen, 
increasing the number of laser pulses results in an increase of the structure depth while the shape of the peri-
odic structures evolves from sine-like to square-like with aspect ratios higher than 1. Note that the aspect ratio 
is defined as the quotient between the structure depth and the spatial period. For example, by applying 20 laser 
pulses, a structure depth of 5.3 µm was obtained for a spatial period of 4.6 µm, resulting in an aspect ratio of 1.15 
(compare the profiles in Fig. 4a).

Figure 4b show the structure shapes of the DLIP patterns under an inclination angle of 60° for different num-
ber of pulses. It can be seen that the pattern morphology changes from sine-like to sawtooth-like. Furthermore, 
the sawtooth morphology character is more defined when three or more laser pulses are used to irradiate the 
sample. However, for a low number of pulses (in this case below three pulses) the inclination of the structure is 
not clearly recognizable. This behavior is attributed to the fact that for low laser fluences, the amount of ablated 
material is limited to a few hundreds of nanometers under the polymer surface, which makes not possible to fol-
low the incoming inclined sine-like intensity distribution during the ablation process.

For a better description of the inclination of the produced topographies, two different angles were defined 
for the produced profiles, which are related to the structure shape. These angles consider the inclination angle of 
the structures (θ1) and the undercut angle (θ2). A scheme describing these two angles is shown in Fig. 5a and b 
for the case of a symmetrical (sinusoidal) and an asymmetrical (sawtooth-like) profile geometry, respectively. In 
the case of a sinusoidal curve, θ1 and θ2 have the same value of 67.3°, while θ1 is higher than θ2 for right-oriented 
saw tooth-like structures (compare Fig. 5b). The structure angles θ1 and θ2 have been retrieved directly from the 
measured confocal profiles. Figure 5c summarizes θ1 and θ2 for the case of normal incidence (squares) and an 
inclination angle of 60° (triangles) as a function of the number of pulses.

As it can be seen from Fig. 5c, the structures exhibit similar slopes in both directions in the case of the single 
pulse structuring and its values approach the theoretical ones for a sinusoidal profile (67.3°). Then, the two angles 
evolve in different directions when the number of pulses is increased, depending on the imposed sample inclina-
tion. For the symmetrical structures, both structure angles decrease with the number of pulses indicating that the 
structure shape changes towards a square-wave-like profile (similarly to what has been presented in Fig. 4a). On 
the other hand, for the structures fabricated with an inclination angle of 60°, the θ1 angle slightly decreases while 
the θ2 angle reaches very low values (~10°) when several laser pulse are used to irradiate the PI foil, which indi-
cates a shape change from sinusoidal to saw-tooth like. It has to be mentioned that due to the characteristics of the 
optical method (confocal microscopy) used for measuring these angles, the undercut angle θ2 reaches a saturation 
towards 10° for increasing laser pulses, since undercuts cannot be evaluated (negative values).
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As it can be seen from the profiles in Fig. 4b, the shape of the microstructures is affected with increasing num-
ber of laser pulses, changing from a sine to a saw tooth-like morphology. However, due to the ablation process, at 
the base positions of the saw tooth geometry, the profiles are smoother compared to a perfectly triangular wave. 
In order to quantify any deviation from a perfect saw tooth wave (see Fig. 5d,e), the profiles showed in Fig. 4a 
were fitted with a saw tooth wave function and their respective coefficient of determination (R²) was plotted as 
function of the number of laser pulses in Fig. 5e (R2 = 1 denotes a perfect saw tooth wave). It can be noticed that 
with increasing number of laser pulses the R² values uniformly rises up to 0.9 (for 20 pulses), denoting a strong 
saw tooth-like morphology. In addition, the fit of a perfect sine function (Fig. 5d) yields a R² of approximately 
0.59 (dashed line in the graph), which is very similar to the R² value calculated for the surfaces treated with only 
1 laser pulse (R² = 0.64).

For a better visualization of the undercut structures (with negative θ2 angles), a PI sample processed at a laser 
fluence of 1.32 J/cm² with 20 pulses and an inclination of 45° was re-irradiated using the same DLIP setup after 
sample rotation of 90°. In this way, an inclined pillar-like pattern was produced which permits observing the 
undercuts (θ2 < 0) of the micro-pillars, as shown in Fig. 6.

Due to the remarkable inclination of the obtained patterns when using 20 laser pulses, the analysis of the 
structure angles has been performed also other inclination angles. In particular, the evolution of the structure 
inclination (angle θ1) as a function of the sample inclination (ϕ) was studied. The results shown in Fig. 7 indicate 
a linear correlation between these two angles. Furthermore, it can be seen that the measured structure inclination 
angle (θ1) is slightly higher than the sample inclination (ϕ). In fact, the results indicated that for the normal irra-
diation conditions (inclination angle ϕ = 0°), a structural angle θ1 of 10° was observed. This behavior is attributed 
to the fact that for perpendicular irradiation, although the structures have a high depth and the structure walls are 
steep, the irradiation through a sine-like intensity distribution creates smoother profiles than the ones achievable 
with an ideal square-wave profile.

In order to show an example of asymmetrical macroscopic properties, the optical diffraction properties of the 
treated surfaces were evaluated using linearly polarized and monochromatic laser light (λ = 632 nm).

Measurements of light diffraction of the textured PI foils.  After their fabrication, the inclined micro-
structures were characterized in terms of their optical diffraction properties, using monochromatic laser light 
(λ = 632 nm). The diffractograms reported in Fig. 8b, show the evolution of the diffraction pattern as a function 
of the used number of laser pulses and thus depending on the inclination angle of the structures. Note that the 
patterns correspond to the same structures presented in Fig. 4b (i.e. fluence of 1.32 J/cm², 20 pulses per area and 
ϕ = 60°). In Fig. 8a,b it can be seen that an increase of the number of pulses results in a shift of the intensity of the 
overall diffracted light towards the negative diffraction orders (left direction). This effect can be clearly correlated 
with the decrease of the slope of the inclined structures (see Fig. 5). In order to quantify the magnitude of the 

Figure 4.  Variation of the structure morphology as a function of the number of laser pulses (1–20) for (a) 
normal irradiation and (b) 60° inclined irradiation, using a laser fluence of 1.32 J/cm².

https://doi.org/10.1038/s41598-019-41902-x
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shift, the diffractograms were fitted with Gaussian peaks and the intensity of each peak was used for calculating 
the amount of intensity diffracted into the negative and positive orders, as described in Eqs 6 and 7:

= ∑
∑

−
−

I
I
I (6)

i i

i i

Figure 5.  Schematic representation of the structure angle θ1 and undercut angle θ2 for a sine-like wave (a) and 
a saw tooth-like structure (b); evolution of the structure θ1 and undercut angles θ2 as function of the number of 
laser pulses (c) (dotted and solid lines serve as guides to the eye only); schematic representation of the fit of a 
sine-like wave (d) and a saw tooth-like wave (e) with a saw tooth wave function; variation of the R² coefficient 
as a function of the laser pulses for the fit of the structure profiles obtained with an inclination of 60° with a saw 
tooth wave function (f).

Figure 6.  Inclined pillar-like structures obtained by a double irradiation setup employing a laser fluence of 
1.32 J/cm², 20 pulses per area and an inclination of 45° for both irradiation steps.
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Figure 7.  Variation of the structure inclination angle θ1 as a function of the sample inclination ϕ.

Figure 8.  (a) CCD-Images of the diffraction and (b) diffractograms of the inclined structures produced with an 
inclination of 60° for different laser pulses, and (c) relative diffraction intensity of the negative (I−) and positive 
(I+) orders as a function of the laser pulses.
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= ∑
∑

+
+

I
I
I (7)

i i

i i

where, −Ii  and +Ii  are intensities of the negative and positive diffraction orders, respectively, while ∑ Ii i is the sum 
of the intensity of all diffraction orders.

Consequently, I− and I+ represent the amount of diffracted light directed in the negative and positive orders, 
respectively. The variation of the relative intensities I− and I+ has been plotted as a function of the number of 
pulses employed for the inclined structuring, as depicted in Fig. 8c. Similarly to the behavior of blazed gratings, 
part of the diffracted light shifts towards the negative orders, which corresponds to the same direction in which 
the structures are inclined. In particular, it can be seen that for a high number of pulses, where the structure incli-
nation is more defined, more than 70% of the diffracted light is directed in the negative orders, while ~15% of the 
light generates positive diffraction orders.

Summary and Conclusions
In this work, asymmetrical line-like patterns with a sawtooth morphology were produced on polyimide foils by 
tilting the samples under irradiation with a two-beam interference setup. Compared to the orthogonal irradiation 
condition, an increase of the inclination angle resulted in larger periodicities. Since the size of the irradiated area 
also increases with the inclination angle, lower laser fluences are obtained at the material’s surface and thus a 
decrease in the structure depth is produced.

In order to quantify the inclination of the structures, two angles were defined, namely the structure and under-
cut angle. A direct correlation between the number of laser pulses and the two angles has been found, making 
possible to correlate the structuring process with the fabricated microstructures. On the other hand, a linear cor-
relation between the sample inclination and the structure angle was observed, demonstrating the direct relation 
between structuring conditions and the shape of the structures.

As a direct result of the asymmetrical morphology of the structures, the optical properties of the structured 
samples were affected. In particular, non-symmetrical diffraction patterns were collected, with more than 70% of 
the diffracted light in the negative orders. In future experiments, the relationship between the surface morphol-
ogy with additional surface functions such wettability and friction will be investigated in detail.

Materials and Methods
For the DLIP structuring experiments, commercial polyimide (PI) foils (thickness of 125 µm, Goodfellow GmbH, 
Germany) were used. This material has been chosen due to the already reported photochemical ablation charac-
teristic at UV wavelengths, permitting to obtain periodic structures with a remarkable quality53. For all the con-
ducted experiments, a two-beam interference setup was utilized to produce line-like surface patterns, using a UV 
(266 nm) multimode Q-switched Nd:YAG solid state laser (Spectra Physics, Quanta Ray) with a pulse duration of 
4 ns and a repetition rate of 10 Hz. In the experimental setup shown in Fig. 9, the primary laser beam was divided 
into two coherent beams using a 50% reflective beam splitter (BS). The mirrors (M) were positioned to ensure that 
the laser beams overlap on a ceramic mask (MK), which crops a homogenous squared area of 0.5 mm × 0.5 mm. 
The beams continue the path diverging from the mask and are parallelized through a converging 100 mm lens 
(L) and re-overlapped by another converging lens with a 100 mm focal distance. This configuration permitted 
to form the image of the mask over the sample surface. No control of the feedback of the interference phase has 
been applied, since the interference is generated by the intersection of the wave-fronts and the angle generating 
this is not varying during the irradiation processes. The distance between the mirrors as well as the position of 
the lenses, has been adjusted in order to achieve a spatial period of 4.6 µm. To cover larger areas, the substrate was 
translated by means of three motorized linear stages (Aerotech PRO165LM) in X, Y and Z directions. The optical 
configuration was placed on an optical table equipped with vibration isolators (NewPort S-2000)  and  laminar 
flow damping, which guarantees horizontal and vertical isolations of 85% and 94% at 5 Hz, respectively. During 
the irradiation process, the sample was translated at constant speed of 10 mm/s. Taking into consideration a pulse 
duration of 4 ns, this corresponds to a distance of 0.04 nm, and thus the movement of the sample during the laser 
treatment is negligible. In addition, for multiple laser pulses the sample is not moved until the completion of the 

Figure 9.  Top-view of the experimental setup used to irradiate the polymer samples with a two-beam 
interference pattern under an inclination angle ϕ.
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firing events. Although vibrations of the optical components, fluctuations in the air refraction index and thermal 
drifts can occur, and thus leading to a shift of the interface phase (i.e. a lateral shift of the interference pattern)62, 
any additional system for locking the interference phase has been used in the experimental setup. The reason is 
mainly due to the very short duration of the used laser pulses (4 ns), which means that the interaction time during 
exposure is much shorter than any possible vibration period taking place on the employed setup.

For the experiments, the tilting of the sample was imposed by inclining the sample plane by means of a manual 
tilting stage (Thorlabs AP180/M). Although this requires that the axis movements must be coordinated in order 
to keep the interference area on the sample surface, this procedure allows using conventional DLIP setups, with-
out any optical modification. The morphology of structured samples was characterized using confocal micros-
copy (Sensofar S Neox) employing a 50x magnification objective with a nominal lateral and vertical resolutions 
of 340 nm and 4 nm, respectively. Topographical inspections have been carried out also by means of Scanning 
Electron Microscopy (JEOL JSM 6610LV), coating previously the PI samples with a 30 nm thick gold layer. The 
measurements of the angles associated to the produced structures have been performed from the acquired con-
focal profiles. Using the software LeicaMap, six single profiles were analyzed, retrieving the slopes for both angles 
as well as their standard deviations, employed as error bars on the plots. The angles are obtained by fitting the 
profile of the ridges (cross-sections of the line-like structures) on both sides using linear equations and calculating 
their slopes. The structure profiles were compared to a saw tooth wave function by fitting their shape, keeping 
the spatial period constant as a fit parameter and retrieving the R² coefficient. This procedure was repeated on 
six different profiles and the standard deviation of the obtained R² values have been taken in consideration and 
plotted as error bars.

The diffraction properties of the laser treated polymers were measured by irradiating the samples with a red 
(He-Ne, 632 nm, linearly polarized) laser source, with a beam diameter of ~1 mm. The red laser beam hit the pat-
terned areas orthogonally to the sample surface and its polarization was parallel to the DLIP line-like structures. 
The intensity distribution of the diffraction spectra was recorded in transmission on a CCD camera, employing 
an imaging system consisting on a focusing lens (with 50 mm focal length) and an objective with a magnification 
factor of 20X.
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