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A B S T R A C T   

Since Epstein-Barr virus (EBV) was discovered in 1964, it has been reported to be associated with various ma-
lignancies as well as benign diseases, and the pathogenicity of EBV has been widely studied. Several databases 
have been established to provide comprehensive information on the virus and its relation to diseases and 
introduce convenient analysis tools. Although they have greatly facilitated the analysis of EBV at the genome, 
gene, protein, or epitope level, they did not provide enough insight into the genomic variants of EBV, which have 
been suggested as relevant to diseases by multiple studies. Here, we introduce dbEBV, a comprehensive database 
of EBV genomic variation landscape, which contains 942 EBV genomes with 109,893 variants from different 
tissues or cell lines in 24 countries. The database enables the visualization of information with varying global 
frequencies and their relationship with the human health of each variant. It also supports phylogenetic analysis 
at the genome or gene level in subgroups of different characteristics. Information of interest can easily be reached 
with functions such as searching, browsing, and filtering. In conclusion, dbEBV is a convenient resource for 
exploring EBV genomic variants, freely available at http://dbebv.omicsbio.info.   

1. Introduction 

EBV was discovered by Anthony Epstein’s team from a Burkitt 
lymphoma (BL) biopsy In 1964 [1]. As the first human virus to be 
implicated in cancers, it has been reported to be associated with naso-
pharyngeal carcinoma (NPC), gastric carcinoma (GC), several kinds of 
lymphomas, and also benign diseases such as infectious mononucleosis 
(IM) [2–6]. Despite this, more than 90% of the world’s adult population 
are infected by the virus and asymptomatic life-long carriers of it [7]. 

Since the first EBV genome sequence B95–8 was published in 1984 
[8], many other EBV strains have been sequenced successively, such as 
AG876, GD1, GD2, Akata, M81, and so on [9–15], which are divided 
into EBV type 1 and 2 according to the diverged alleles of 
EBV-determined nuclear antigen (EBNA) 2 and 3 [16–18]. EBV type 1 is 

predominantly distributed in most parts of the world and has greater 
transforming potential with a genome like B95–8. In contrast, EBV type 
2 is equally prevalent to EBV type 1 in Central Africa, which resembles 
AG876 [19,20]. 

The heterogeneity of these EBV strains has been further explored, 
and multiple variants contributing to the pathogenicity of the virus have 
been clarified. EBNA2 of EBV type 2 is substantially different from that 
of EBV type 1 in both length and single nucleotide polymorphism, 
producing proteins with less B cell transformation potential [21,22]. A 
single amino acid difference in EBNA2 between EBV type 1 and 2 has 
been found to be related to B lymphoblastoid cell line growth mainte-
nance [23]. Deletion of EBNA2 is commonly detected in several Burkitt 
lymphoma-derived cell lines, along with the expression of EBNA3 pro-
teins and increased resistance to apoptosis [17,18]. Besides, truncated 
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EBNA3B has been detected in B cell lines from EBV-positive human 
lymphoma samples with similar characteristics to tumors-derived lines 
induced by EBNA3B-knocked-out EBV, suggesting that defective 
EBNA3B may promote lymphomagenesis [24]. Another crucial gene 
involved in the pathogenicity of EBV is latent membrane protein (LMP) 
1, and a natural variant CAO-LMP1 derived from NPC induces impaired 
LMP1-mediated upregulation of CD40 and CD54, which is attributed to 
sequences outside the CTAR-2 domain rather than a common 30-bp 
deletion within its C-terminal region [25]. Variation of miRNA regions 
also affects the development of EBV-associated diseases. Deletion of 
BamHI-rightward transcript (BART) regions is observed in some kinds of 
lymphomas and accelerated tumor growth [26–28], while the high 
expression level of BART miRNA in NPC and EBVaGC suggests its po-
tential role in carcinogenesis as well [26]. 

Although multiple studies have provided insight into critical 
genomic variants of EBV, most of them focused on only a few variant loci 
of their interest, and it is difficult for others to get the full variant 
profiles. 

Significant efforts have been made to integrate a rapidly increasing 
number of EBV genome sequences and related information and 
comprehensively characterize the virus. GenBank incorporates DNA 
sequences from all available public sources, with most EBV genomic 
sequences uploaded to this database [29]. ViPR is a more professional 
database focusing on viruses, providing additional information, 
including genes, proteins, and immune epitopes, and fundamental 
analysis tools such as sequence alignment, phylogenetic inference, and 
BLAST comparison [30]. EBVdb is explicitly built for EBV-associated T 
cell immunology and vaccinology, with 2622 curated EBV antigenic 
proteins, 610 verified T cell epitopes, 26 verified human leukocyte an-
tigen (HLA) ligands, and several computational tools for analysis, which 
facilitates data mining for EBV [31]. 

These databases have greatly facilitated the systematic analysis of 
EBV at the genome, gene, protein, or epitope level. However, they all 
failed to depict the geographical and pathological distribution of vari-
ants all across the EBV genome and among different EBV strains. 

In this study, we developed dbEBV (http://dbebv.omicsbio.info), a 
comprehensive database of EBV genomic variation landscape, which 
contains 942 EBV genomes with 109,893 variants from different tissues 
or cell lines in 24 countries, as well as the global frequency and rela-
tionship with human health of each variant. The dbEBV also supports 
phylogenetic analysis at the genome or gene level in subgroups of 
different characteristics. The statistic results and variant profiles are 
visualized, supporting functions like searching, browsing, and filtering. 

2. Materials and methods 

2.1. Public EBV genome collecting 

Until May 2019, we had carefully selected 559 public EBV genomes 
from GenBank with detailed information, including location, sample 
type, NPC incidence, EBV type, and host phenotype. The genomes were 
downloaded in FASTA format, and loci within repeat regions or repre-
sented with letters other than A, T, C, and G were considered poor 
quality and not included in subsequent variant calculating. Related in-
formation, including GenBank accession, strain or isolate name, genome 
definition, and genome reference name, was also extracted from Gen-
Bank. Moreover, each gene’s coding sequence (CDS) regions in the 
reference genome B95–8 (NC_007605.1) were collected for further 
analysis. 

2.2. Self-generated EBV genome sequencing 

Three hundred eighty-three strains were isolated from the recruited 
participants, and 270 were included in a study we carried out before 
[15]. Our private cohort mainly involves patients in South China with 
EBV-related cancers, including NPC, BL, HL, NKTCL, and GC, as well as 

healthy subjects. The whole genome sequencing (WGS) was performed 
using the Illumina HiSeq 2000 platform. Then, the raw reads were 
mapped to the reference genome B95–8 through Burrows-Wheeler 
Aligner (BWA, version 0.7.5a) [32,33] after pre-processing and quality 
control. The variants were called following the GATK best practice 
workflows (version 3.2–2) after base and variant recalibration [33], and 
those with low depth (<10 ×) were filtered out. Then, the variants were 
annotated with gene, variant function, and locus coverage. Besides, the 
related information was collected, including geographical origin (loca-
tion), pathological origin (sample type), NPC incidence, EBV type, and 
host phenotype. 

2.3. Multiple sequences alignment and variant calling 

The FASTA sequences of self-generated EBV genomes were created 
with custom scripts, and loci with missing genotype information, being 
heterozygous, with the allele frequency of 40–60%, within repeat re-
gions, or represented with a letter other than A, T, C, and G were 
considered poor quality and not included in subsequent analysis. The 
results were subsequently combined with the 559 public EBV genomes, 
and then rapid multiple sequence alignment was performed using 
MAFFT software tools (version 7) [34]. Considering most of the EBV 
genomes are assembled in accordance with B95–8, we defined the var-
iants based on the difference between each aligned EBV genome and the 
reference genome B95–8, and the variant ID was determined as 
described in Fig. 1. 

2.4. Detecting disease-associated variants 

After carefully detecting the variant profiles of each EBV, the number 
and the proportion of variants in different phenotypes were made sta-
tistics, and Fisher’s exact tests were performed to distinguish disease- 
associated variants between disease and healthy phenotype. FDR was 
calculated to reduce false positive results, with an acceptable cut-off 
value of 0.05. Moreover, we evaluated the OR of each variant to 
determine whether it was a risk or a protective factor. Considering the 
limits on the number of EBVs in each phenotype, we removed the dis-
eases that contained less than 5 EBVs, and thus, LCL, LC, DLBCL, and 
nasopharyngitis were not taken into analysis. 

In addition, the location, the sample type, the dataset of each EBV 
strain, and the combination of these factors were used to establish 
generalized linear models (GLM) to reduce the potential impacts of co- 
variants at the association tests. 

2.5. Distinguishing EBV types 

EBV types 1 and 2 differ mainly in EBNA2 and EBNA3s [16,18]. 
B95–8 is a typical strain of EBV type 1, while AG875 (DQ279927.1) 
represents EBV type 2. Thus, to determine the EBV type of the strains we 
collected, we compared each to the strains B95–8 and AG876, respec-
tively, and counted the nucleotide differences of CDS in ENBA2 (36216 
to 37679) and ENBA3s (ENBA3A, 79955 to 80293; ENBA3B, 80382 to 
82877; ENBA3A, 86517 to 89135). EBV strains containing an acceptable 
number of variants in EBNA2 (≤ 100) and EBNA3s (≤ 500) were defined 
as the corresponding EBV types. 

2.6. Evolutionary tree building 

According to the CDS region information of B95–8, segments of each 
gene were obtained from the results of multiple sequence alignment. 
After masking the repetitive regions and removing the poor coverage 
regions, we used Randomized Accelerated Maximum Likelihood 
(RAxML version 8) with a general time reversible (GTR) model to infer 
the maximum likelihood of the phylogenetic relationship [35]. After 
building the evolutionary trees at the whole genome level or a single 
gene, the subtrees were generated by deleting unnecessary branches and 
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nodes. 

2.7. Implementation of a web server 

The data of dbEBV were stored in a MySQL database. In the front 
end, the website’s framework was built with HTML, CSS, and Bootstrap, 
while the interactive functions were implemented using JavaScript and 
JQuery. The interactive map of the global distribution of variant fre-
quency was created with Leaflet, and the evolutionary trees were 

presented with Archaeopteryx.js. The visualization of statistical results 
and variant profiles were displayed by Echarts. In the back-end, PHP was 
used to receive and process the input from the front-end. To ensure its 
stability, we also tested the dbEBV website on various web browsers, 
such as Mozilla Firefox, Google Chrome, and Internet Explorer. 

Fig. 1. Construction process of dbEBV.  

Fig. 2. Statistics of EBV characteristics. (A) The number of EBV strains in the top 5 phenotypes. (B) The number of EBV strains in the top 5 locations. (C) The statistics 
of NPC incidence. (D) The statistics of EBV type. 
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3. Results 

3.1. Summary of dbEBV data 

The database was built as described in Fig. 1. As an integration of 
public EBV genomes from GenBank and self-generated EBV sequencing 
data, dbEBV finally hosted 942 EBV genomes, covering 12 EBV- 
associated diseases and two lymphoblast cell lines, as well as healthy 
subjects. NPC, healthy subjects, GC, BL, and natural killer (NK) or T cell 
lymphoma (NKTCL) were the top five host phenotypes, accounting for 
363, 253, 69, 55, and 55 EBV genomes, respectively (Fig. 2A). Others 
included Infectious mononucleosis (IM), post-transplant lymphoproli-
ferative disease (PTLD), Hodgkin lymphoma (HL), chronic-active EBV 
infection (CAEBV), lung carcinoma (LC), nasopharyngitis and diffuse 
large B-cell lymphoma (DLBCL), as well as non-cancer spontaneous 
lymphoblast cell lines (sLCL) and non-cancer lymphoblast cell lines 
(LCL). 

Although our data involved EBV genomes from 24 countries world-
wide, most were obtained from China (658 of 942). The other four major 
countries from which we collected EBV genomes were the USA, UK, 
Kenya, and Indonesia, accounting for 74, 32, 31, and 27 EBV genomes, 
respectively (Fig. 2B). Considering NPC, the most closely associated 
malignancy of EBV, is rare in most regions of the world while relatively 
common in Southeast Asia and North Africa, especially Southern China 
[36], we further annotated whether they were from the NPC-endemic 
areas. As for the 658 EBV genomes from China, 539 were from 
NPC-endemic regions (57.22%), 37 were from the NPC-median areas 
(3.93%), and 77 EBV genomes were from NPC-non-endemic regions 
(8.17%) (Fig. 2C). Other EBV genomes were distributed in the 
NPC-endemic areas in southeast Asia (40, 4.25%), NPC-endemic regions 
in north Africa (8, 0.85%), and regions with rare or low NPC incidence 
out of China (196, 20.81%; 38, 4.03%) (Fig. 2C). 

Among all EBV genomes, 791 EBV genomes were classified as type 1 
(83.97%), while only 33 EBV genomes were of type 2 (3.50%), and the 
remaining 118 EBVs failed to be divided into either of the two types 
(12.53%) (Fig. 2D). 

3.2. Variant characteristics and phylogenetic trees 

All EBV genome sequences were aligned to the reference genome 
B95–8, and 238,339 variants were detected. The variant loci were 
further incorporated according to the principle of complementary base 

pairing. Six types of single nucleotide variants (SNVs) and two types of 
deletions were counted, with 12,215, 5714, 5736, 3684, 3558, 2401, 
44,235 and 32,350 loci in C>T, C>A, T > C, C>G, T > G, T > A, C> - 
and T > - mutations, respectively (Fig. 3A). The number of SNVs in each 
EBV genome ranges from 30 to 3681, while the percentage of each SNV 
shows no significant difference (Fig. 3B). We found that most of the 
SNVs are C>T transition, accounting for over 30% of all SNVs. Addi-
tionally, the functions of disease-associated variants were analyzed, and 
the proportion of noncoding or synonymous variants is small (Fig. S1). 
Disease-associated variants were defined by Fisher’s exact test, showing 
the specific genomic background of each disease. Interestingly, EBV 
genomes from NPC possess more variants with protective tendencies, 
while others contain more variants with a high disease risk (Fig. 3C). 
Further analyses considering co-variants were performed with GLMs, 
and the tendency still persists (Fig. S2). Disease-associated variants at 
the gene level were also analyzed using Fisher’s exact test, with EBNA 
genes possessing the most variants in different diseases (Fig. S3). We 
then explored the evolutionary relationship of the EBV genomes through 
phylogenetic analysis at the whole genome and single gene level. In the 
evolutionary tree based on whole genomes, the EBV genomes are 
divided into two branches, which is consistent with the EBV types we 
predicted before (Fig. 3D). 

3.3. Website function and result presentation 

The dbEBV mainly provides three functions for users to explore the 
database and access information of interest, including search, browse, 
and evolutionary tree building. Users can query a specific EBV strain on 
the home page by entering its sample ID or strain name. Moreover, they 
can get the visualized distribution of each variant by entering its variant 
ID or find all variants of a specific locus by entering its chromosome 
location (Fig. 4A). 

The result page of each EBV strain is accessed by searching the strain 
on the home page, which contains related information, classified in-
formation, and variant profile of the strain (Fig. 4B). The related infor-
mation involves sample ID, strain name, GenBank accession, GenBank 
definition, and GenBank reference. The classified information consists of 
five characteristics, including location, phenotype, NPC incidence, EBV 
type, and sample type. The variant profile part presents mutation in-
formation, including single nucleotide variants and deletions. 

After querying on the home page, users can further click one locus of 
the genome to see the global distribution of the particular variant 

Fig. 3. Statistics of genomic variants. (A) The total number of variants at single nucleotide level (B) The number and proportion of variants in EBV strains. (C) The 
number of risk and protective variants in EBV-associated diseases. (D) The evolutionary tree of 942 EBV strains at whole genome level. 
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visualized along with its frequencies, and the detailed data are listed in 
the table below. (Fig. 4C). The association with diseases of the variant is 
further displayed at the bottom, with a drop-down selection box for co- 
variants selecting and sortable columns including variant ID, disease, 
frequency in disease, frequency in health, odds ratio (OR), p-value, false 
discovery rate (FDR), gene, variant function, and locus coverage. This 
page can also be reached from the home page using the variant ID 
mentioned above. 

The browse page is divided into five subpages according to the five 
characteristics on the result page. On each subpage, the distribution of 
one characteristic of the EBV strains is displayed in a bar chart (Fig. 4D). 
Users can click one bar to see the matched EBV strains in a table beside 
the bar chart. They can also view detailed information on a particular 
strain on the result page mentioned above by clicking the ’More’ button 
on the right side of the table. In addition, the distribution of the other 
four characteristics among the chosen EBV strains is displayed in the pie 
charts at the bottom of the subpage. 

The evolution page allows users to build evolutionary trees with EBV 
strains filtered by the five characteristics on the result page (Fig. 4E). 
Additionally, users can make the tree at the whole-genome level, which 
is the default setting, or at the level of a particular gene. There are two 
control panels for modification of the tree. The left one allows users to 
change the style, labels, size, and direction of the image, as well as 
scaling and collapsing. Users can also search for particular nodes by 
entering a specific characteristic. The right panel facilitates visualization 
by providing options to annotate a particular characteristic with label 
color, node color, or node size. Users can also download the evolu-
tionary tree they create in several file formats. 

4. Discussion 

The relationship between EBV and various diseases has been 
demonstrated for decades [2–6], and this relationship varies among 
different EBV strains [9–15], which may be partially explained by the 
genomic variants. Multiple studies have clarified the pathogenic 

mechanism of some variants by conducting in vitro or in vivo experiments 
[17,18,21–27]. However, there are also variants reported frequently 
appearing in certain diseases while not contributing a lot to pathogen-
esis, and the high frequency might reflect the incidence of the variants in 
the geographical location studied [25]. Interestingly, the C > T transi-
tion is the most abundant variant type in the EBV genome, which is 
consistent with the variant distribution in the human genome. One 
reason may be that transitions cause more minor changes in the shape of 
a DNA backbone, thus having less influence on gene expression [37], 
leading to smaller selection pressure. Another reason may be that 
methylated pyrimidine is more prone to deamination and becomes 
thymine, thus causing CG suppression [38], which helps viruses escape 
from the immune system of their hosts and survive. Besides, samples 
obtained from different tissues or with other approaches may also 
contain different variants [39]. Therefore, it’s necessary to consider 
characteristics such as geographical locations and sample type and 
expand the sample size when exploring the influence of genomic vari-
ants on diseases. 

As a comprehensive database of the genomic variation profile of 
EBV, dbEBV has carefully collected up to 942 available EBV genomes 
involving all diseases correlated with the virus as well as 253 of them 
derived from healthy populations as controls, and 109,893 variants have 
been detected at single nucleotide level with statistical test information. 
Besides, each variant’s geographical origin and sample type have also 
been integrated. Furthermore, the database supports phylogenetic 
profiling, indicating the variants’ mutual relation. With these efforts, 
dbEBV has dramatically facilitated the exploration of the potential sig-
nificance of the variants in diseases, with disruption factors taken into 
consideration. 

However, the database remains to be improved in some aspects. 
Although massive EBV genomes have been collected, their distribution 
among various characteristics is unbalanced, possibly leading to biased 
variant profiling. Thus, continual update of newly sequenced EBV ge-
nomes is needed. In addition, the genomic variation of EBV may also be 
affected by immune selection, suggesting that information such as HLA 

Fig. 4. Database presentation of dbEBV. (A) Search function of dbEBV. (B) Query result of an EBV strain. (C) Query result of a variant. (D) Browse function of dbEBV. 
(E) Evolutionary tree building function of dbEBV. 
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types of hosts and T-cell epitope should be integrated into the database. 
Overall, despite the improvement to be achieved, dbEBV is still a 
convenient and comprehensive resource for users to explore the 
genomic variation landscape. 

5. Conclusion 

The dbEBV depicts variant profiles of a large number of EBV strains 
integrated with comprehensive phenotypic information, which are 
visualized for convenient browsing and filtering. It also supports 
phylogenetic analysis with adjustable output formats. In conclusion, the 
database serves as a convenient resource for exploring EBV genomic 
variants. 
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