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The term ‘personalized medicine’ refers to a medical procedure that consists

in the grouping of patients based on their predicted individual response to

therapy or risk of disease. In oncologic patients, a ‘tailored’ therapeutic

approach may potentially improve their survival and well-being by not

only reducing the tumour, but also enhancing therapeutic response and

minimizing the adverse effects. Diagnostic tests are often used to select

appropriate and optimal therapies that rely both on patient genome and

other molecular/cellular analysis. Several studies have shown that lifestyle

and environmental factors can influence the epigenome and that epigenetic

events may be involved in carcinogenesis. Thus, in addition to traditional

biomarkers, epigenetic factors are raising considerable interest, because

they could potentially be used as an excellent tool for cancer diagnosis

and prognosis. In this review, we summarize the role of conventional

cancer genetic biomarkers and their association with epigenomics. Further-

more, we will focus on the so-called ‘homeostatic biomarkers’ that result

from the physiological response to cancer, emphasizing the concept that

an altered ‘new’ homeostasis influence not only tumour environment, but

also the whole organism.
1. Introduction
The last decade has seen significant advances in the development of biomarkers

in oncology; they play a critical role in understanding molecular and cellular

mechanisms which drive tumour initiation, maintenance and progression.

A cancer biomarker refers to a substance or process that is indicative for the

presence of tumour in the body and therefore it may be a molecule secreted

by the tumour or a specific body response to it [1]. Genetic, epigenetic, proteo-

mic and imaging biomarkers can be used for cancer diagnosis, prognosis and

epidemiology, and some of them can be assayed in organic fluids like blood

or serum [2]. While numerous challenges exist in translating biomarker research

into the clinic, a number of genes and protein-based biomarkers have already

been used for patient diagnosis and care, including BRCA1/BRCA2 (breast-

related cancer antigens), BRAF-V600E (melanoma/colorectal cancer), CA-125

(cancer antigen in ovarian cancer), CA19.9 (cancer antigen in pancreatic
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Table 1. Predictive and prognostic oncological biomarkers of solid tumours.

malignancy
predictive
biomarker gene abnormality drug therapy biological role of biomarker

colorectal EGFR over-expression imatinib signalling protein downstream of primary target

K-ras G13D gene mutation cetuximab

B-raf V600E DPD gene mutation panitumumab

breast no mutated gene none tamoxifen primary target

ER/PR gene deletion/absence of expression aromatase inhibitor drug metabolism

BRCA1/2 mutation or deletion olaparib predictive and prognostic biomarkers

HER2/neu (Erb-B2) gene amplification trastuzumab

NSCLC EGFR over-expression gefitinib DNA repair

ERCC gene mutation erlotinib downstream of primary target

K-ras gene mutation platinum biological

prostate PSA over-expression enzalutamide blocking testosterone

PCA3 gene mutation
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cancer), CEA (carcinoembryonic antigen in colorectal cancer),

EGFR (epidermal growth factor receptor in non-small cell

lung carcinoma), HER-2 (human epidermal receptor in

breast cancer), PSA (prostate-specific antigen in prostate

cancer) and many others [3–6].

Several biomarkers may be used not only to screen for

primary tumour or patients prognosis, but also for monitor-

ing status of disease, recurrence and response to therapy [7].

Currently, cancer biomarker research is rapidly growing to

elucidate the molecular pathways for inter-individual differ-

ences in drug response. Recent technologies and their

application, in the field of cancer therapy, have enabled identi-

fication of genetic variations that may predict patient response

to chemotherapy and targeted therapies [8,9]. These genetic

variations, together with epigenetic alteration (like DNA

methylation and chromatin/histone modifications), can con-

tribute to develop some new biomarkers [10,11].
2. Biomarkers in cancer
Tumour biomarkers are substances present in or produced by

a tumour or by the microenvironment in response to tumori-

genesis or progression processes. They can be virtually used

in early cancer diagnosis, anti-cancer therapy development,

monitoring of treatment responses and detecting individual

risk for cancer development; for example, a woman that,

during a screening, shows to be carrier of a germline

mutation, such as BRCA1, has an increased risk of develop-

ing breast/ovarian cancer [12,13]. They can be used also to

obtain other important information about the various aspects

of the relationship between cancer and patient. Cancer bio-

markers allow predicting the response to therapy, by

evaluating the probable benefits of a particular treatment

selected on the basis of the clinical information given by

the biomarkers. In this way, the choice of the appropriate

treatment leads to the development of increasingly personal-

ized anti-cancer therapies [14] (table 1). There are several

distinct types of tumour biomarker based on different tumour

aspects: genetics, epigenetics, proteomics, metabolomics and

imaging technology.
3. Colorectal cancer
Colorectal carcinoma (CRC) is the most common cancer of the

gastrointestinal tract and the second most frequently diag-

nosed malignancy in adults [15]. Treatments used for CRC

may include some combination of surgery, radiation therapy,

chemotherapy and targeted therapy. Most recently, biologic

agents such as cetuximab/panitumumab (monoclonal anti-

bodies directed against the epidermal growth factor receptor,

EGFR) and bevacizumab (a humanized monoclonal antibody

that targets vascular endothelial growth factor) have been

proven to have therapeutic benefits in CRC alone or in associ-

ation with standard chemotherapy [16].

Randomized controlled trials (RCTs) have shown that

colon screening is associated with a reduction in CRC mor-

tality. In fact, some screening detects cancer at an early stage,

when treatment is less arduous and more often results in

cure, while other screening has the ability to detect adenomas

as well as cancer [17]. CRC is a disease in which pathogenesis is

influenced by genetic and epigenetic events that occur with

tumour initiation and progression. Any biomarkers that have

been identified can be used to predict clinical outcome

beyond staging, and to inform treatment selection [18].

The improvements in early detection, thanks to the

screening and the use of prognostic biomarkers, have led to

a decline in the incidence rate of colon cancer for the past 2

years [17]. In clinical routine biomarkers [19] such as EGFR

gene expression, K-ras G13D gene mutation, BRAF-V600E

gene mutation are considered for therapy (table 2).
4. Clinical biomarkers in colorectal cancer
4.1. Human epidermal growth factor receptor 2
Human epidermal growth factor receptor 2 (HER2) is a

member of the EGFR family, having tyrosine kinase activity.

Approximately 70% of human colorectal cancers express

EGFR protein. Receptor dimerization results in the auto-

phosphorylation of tyrosine residues within the cytoplasmic

domains of the two receptors, and in the initiation of a variety



Table 2. Genetic biomarkers in colorectal cancer patients.

biomarkers therapy

EGRF anti-EGFR monoclonal antibody

KRAS cetuximab and panitumumab

BRAF monoclonal antibody

Table 3. Clinical biomarkers for breast cancer.

molecular
subtype biomakers treatment

hormone

receptor

Ki67 index tamoxifen

hormone receptor

expression

loss of ER positivity

HER2þ loss of HER2 monoclonal antibody

gain of ER positivity

triple negative gene mutations CMF or CEF adjuvant

chemotherapy
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of signalling pathways leading to cell proliferation and tumor-

igenesis. Therapies directed against HER2 have revolutionized

the treatment of HER2 overexpressing CRC and gastric

cancers, and they have improved their clinical outcome. Anti-

EGFR monoclonal antibodies (mAb), such as cetuximab and

panitumumab, competitively inhibit EGFR by preventing its

binding to endogenous ligands [20,21].

4.2. K-ras (G13D gene mutation)
K-ras, a member of RAS proto-oncogenes family, is the most

frequently mutated gene in all human cancer and particularly

it is an important oncogene in CRC. The K-ras protein is a

downstream effector of EGFR that signals, through BRAF, the

mitogen-activated protein kinase (MAPK) pathway activation

and promotes cell growth and survival [22]. Mutations in

K-ras codons 12 or 13 occur in approximately 40% of colorectal

cancers and lead to constitutive signalling by impairing the

ability of GTPase activating proteins to hydrolyse K-ras-

bound GTP; these mutations cause resistance to cetuximab

and panitumumab [23]. Recently, published RCTs have estab-

lished the use of K-ras mutational analysis as a predictive

marker for anti-EGFR mAb resistance in patients with

metastatic colorectal cancer [24,25].

4.3. BRAF (V600E gene mutation)
Currently, BRAF mutations are found in 35–45% of colorectal

cancers and they are considered to be a prognostic biomarker

for poor prognosis in patients receiving first-line colon cancer

therapies [26]. The biological evidence for BRAF-V600E

mutations employment as an additional biomarker of anti-

EGFR mAb resistance is strong: (i) BRAF is the immediate

downstream effector of K-ras in the Ras/Raf/MAPK signal-

ling pathway and (ii) BRAF-V600E activating mutations are

100% mutually exclusive of K-ras mutations in colorectal

cancer, implying that the activation of either protein is suffi-

cient for colon tumorigenesis. Previous studies support the

use of BRAF-V600E as a negative predictor of response to

anti-EGFR mAb therapy, leading to the evolving use of

BRAF mutation testing in K-ras/wt patients [27]. This is con-

sidered to be an emerging biomarker of negative response to

K-ras [28].
5. Epigenetic biomarkers in colorectal
cancer

CRC occurs in most cases as a result of both mutations

and epigenetic modifications accumulated in several genes,

particularly DNA mismatch repair genes, which cause the pro-

gression of disease from early adenoma to carcinoma and

eventually to metastatic disease. In CRC, the hyper- or hypo-
methylation events have been observed at each histological

step from the polyps to adenocarcinoma [29].

Hyper-methylation events on CpG islands affect virtually

all signalling pathways, including those of TP53, TGFb/

SMAD, WNT, NOTCH and tyrosine kinase receptors as well

as those involved in cell cycle and transcription regulation,

DNA stability, apoptosis, cell-to-cell adhesion, angiogenesis,

invasion and metastasis [30,31]. Conversely, hypo-methyl-

ation, characterized by the gradual and complete depletion of

methylated cytosine bases (5-methyl-cytosine) in cancer cells,

is observed even in early stages of CRC until its development

and progression [32].

Many studies have investigated the potential role of

expression genes for prognostic use, and unsurprisingly

most of them are similar to those with a high potential for

diagnostic use; in example, promoter CpG methylation of

HLTF and CDKN2A is used with prognostic and diagnostic

functions in tumours [33,34]. More recent studies have

revealed additional epigenetic biomarkers linked to CRC

staging and progression.

Methylation levels of genomic repeats, such as long inter-

spersed nuclear element (LINE-1), have been recognized as

independent factors for increased cancer-related mortality.

LINE-1 hypo-methylation constitutes a potentially important

feature of early onset CRC, and suggests a distinct molecular

subtype [35]. Early onset of CRC represents a clinically dis-

tinct form of CRC that is often associated with a poor

prognosis. LINE-1 enhanced activation through hypo-

methylation is associated with increased genomic instability

and enhanced cancer ability to penetrate surrounding tissues

and metastasize [36,37].
6. Breast cancer
Breast cancer (BC), the most common cancer among women, is

a heterogeneous and complex disease, whose precise pro-

gression mechanisms are less understood [38]. The

molecular subgroups, also known as intrinsic subtypes of

BC, have been defined by gene expression profiles, and they

have distinct clinical features, metastatic behaviour, prognosis

and treatment [39]. Despite the subtype identification, inter-

and intratumour heterogeneity remain the principal causes

of the marked differences observed in patients’ response to

therapy and their prognosis [40] (table 3).

Neo-adjuvant therapy (NAT) has become one of the

standard treatments of patients with locally advanced BC; it
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allows reduction of the tumour mass before surgery. NAT

can be used to turn a tumour from untreatable to treatable

by decreasing the volume. The tumour burden reduction

after treatment with NAT influences disease-free survival

(DFS), or rather the length of time after treatment during

which no disease is found [41].

According to American Society of Clinical Oncology

(ASCO) recommendations, tumour biomarkers like oestrogen

receptor (ER), progesterone receptor (PR) and HER2 expression

should be evaluated in primary invasive BC for diagnosis, dis-

ease recurrence and especially as a guide for therapy, while

increasing levels of CA27.29 or CA15-3 may indicate treatment

failure [42].
Biol.6:160254
7. Clinical biomarkers in breast cancer
7.1. Oestrogen receptor and progesterone receptor gene

expression
The status of a BC is routinely identified by immunohistochem-

istry through identification of both predictive and prognostic

biomarkers [43]. ER-positive status has the best predictive

value for DFS [44], whereas PR-positive status indicates the

presence of a functionally intact oestrogen response pathway,

but it has primarily a prognostic and not predictive value

compared with pharmacological treatment with tamoxifen.

Moreover, high expressions of eR and PR are predictive for

benefit from hormonal therapy in adjuvant treatment in patients

with metastatic disease (Stage VII disease). Current clinical

guidelines suggest that hormonal therapy is recommended for

all patients with ER-positive disease regardless of their level of

ER [45,46], even if not all ER-positive metastatic BCs respond

to it. Recently, some reports have shown a genomic index for

sensitivity to hormonal therapy based on genes associated

with ESR1 (DNA copy of the ER) [47].

7.2. HER2 (Erb-B2)
HER2 is a gene overexpressed or amplified in 15–30% of

invasive BCs, and it has both prognostic and predictive impli-

cations with a reduced survival [44]. HER2-positive tumours

show an over-expression of HER2 protein, which has a pre-

dictive value compared to therapeutic treatment in patients

of newly diagnosed BC. Moreover, over-expression of HER2

protein also shows a favourable response in patients treated

with Trastuzumab, a monoclonal antibody that targets and

blocks HER2 receptor, improving progression free survival

and disease control. Oppositely, HER2-negative tumours do

not respond to Trastuzumab [48,49]. In addition, there is

new evidence that BC patients with HER2-positive tumours

often benefit from Topoisomerase II (encoded by TOP2A

gene) inhibitor-based chemotherapy such as doxorubicin or

epirubicin [45].
8. Epigenetic modifications as biomarkers
in breast cancer

Genetic and epigenetic alterations can control cancer induc-

tion and progression. Epigenetics refers to alterations in gene

expression due to modifications in histone acetylation

(HDAC) and DNA methylation of the promoter regions of
genes. In BC biopsy specimens, HDAC-1 is associated with ER

and PR expression; its gene expression levels gain during the

earlier stage of neoplasia, representing a good marker of

improved DFS [50]. HDAC-6 messenger RNA (mRNA) is

more frequently expressed in ER- and PR-positive BC patients

with small lesions (less than 2 cm) and low aggressiveness

grade. However, different analyses failed to confirm that

HDAC-6 expression is an independent prognostic factor for

survival [50].

In BC, CpG island methylations of gene promoter regions

play a major role in regulation of gene expression involved in

a large spectrum of biological processes. Aberrant DNA

hypo- or hyper-methylation should be useful as prognostic

or diagnostic markers.

DNA methylation in RASSF1A, DCR2APC and PTEN

genes is observed in snap-frozen primary breast tumour

associated with different stages of BC progression [51].

Therefore, DNA hyper-methylation of PITX2 (paired-like

homeodomain transcriptor factor-2) was recently considered

as a marker linked to tamoxifen response [52].

A recent study [53] assessed methylation levels of CpG

islands promoter of tumour suppressor genes, RARb2,

MINT17 and MINT13 during key steps of BC development.

They have showed that DNA hyper-methylation of selected

biomarkers occurs early in BC development, and may present

a predictor of malignant potential [53].

Different epigenetic profiles have also been identified in

hormone receptor-positive and -negative tumours [54–56].

The methylation of HIN-1 and RASSF1A strongly correlate

with ER and/or PR expression, whereas RIL and CDH13

methylation closely link to negative ER and/or PR. Subsequent

studies have shown that the differences of methylation profiles

between hormone receptor-positive and -negative breast

tumours can also influence tumour response to hormonal

therapy like tamoxifen [56,57].
9. Lung cancer
Lung cancer (LC) is the most common reason of cancer deaths

and [58,59] about 85% of LCs are non-small cell lung cancers

(NSCLCs), traditionally divided into three major cell types:

adenocarcinoma (�50%), squamous cell carcinoma (�35%)

and large cell carcinoma (�15%). The overall 5-year survival

rate for LC has risen only 4% (from 12 to 16%) over the past

4 decades, and late diagnosis is a major obstacle in improving

LC prognosis [60]. The most common symptoms are coughing

(including coughing up blood), weight loss, shortness of breath

and chest pains [61].

The presence of biomarkers in the plasma of patients with

LC has aroused great clinical interest, since, with a simple

blood test, a valid biomarker could be used for screening, diag-

nosis, prognosis, progression assessment and monitoring of

therapeutic response [62]. A number of diagnostic biomarkers

for LC have been suggested [63], including carcino-embryonic

antigen, neuron-specific enolase, Cytokeratin 19 (CYFRA-

21.1), alpha-feto protein, serum carbohydrate antigen-125

(CA-125), carbohydrate antigen-19.9 (CA-19.9) and ferritin.

These biomarkers have varied sensitivities for different

subtypes of LC [64,65].

The major advance in the treatment of NSCLC developed

from the recognition that specific genetic alterations define sub-

sets of NSCLC; these subsets are characterized by genetic and
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molecular alterations in the EGFR [66]. However, the lack of a

uniform approach to extraction and quantification has made

the standardization of any particular biomarker difficult [67].
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10. Clinical biomarkers in lung cancer
10.1. The epidermal growth factor receptor
EGFR is a 170-kDa plasma membrane glycoprotein consisting

of a large extracellular region, a single transmembrane domain

and an intracellular domain with tyrosine kinase activity

and a C-terminal tail. The EGFR family consists of four closely

related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/

ErbB3 and HER-4/ErbB4 with significant homology in their

kinase domains, but differences in the coding regions for

the extracellular domain and the C-terminal tails [68]. The

molecular analysis of mutations in EGRF gene, its correspond-

ing downstream signalling cascade and the related mutations

have led to the development of novel therapies [69]. Data

from this biomarker, when combined with analysis of histo-

logical material, are becoming very important in LC

diagnosis as well as in patient stratification for therapy.

EGFR is a widely used therapeutic target to treat patients

with NSCLCs. There are mutations that are specific to

NSCLCs that activate EGFR. They are deletions in exon 19

and exon 21 point mutation, L585R. These mutations result

in ligand-independent activation of EGFR signalling [68].

Two irreversible anti-EGFR tyrosine kinase inhibitors are

currently approved for the treatment of advanced NSCLC

(gefitinib and erlotinib). Recent phase III randomized trials

with these EGFR inhibitors, when compared with chemother-

apy, have produced significantly longer DFS, higher response

rates, less toxicity and a better quality of life. The ‘combination

affinity’ of increased gefitinib and erlotinib with the mutated

form of EGFR is expected to represent an approximately three-

fold improvement over that likely from chemotherapy alone in

unselected NSCLC patients [68,70–72].

10.2. K-ras (gene expression)
K-ras is the most commonly detected mutation in NSCLC.

It is more common in tumours with adenocarcinoma histology

than in squamous-type NSCLC. K-ras mutation was pre-

viously considered a negative predictive biomarker for

efficacy of EGFR targeted inhibitors, but, to date, there is no

targeted therapy with established efficacy in NSCLC for this

genetic mutation. Therefore it does not offer, at present, any

clinical value either as a prognostic indicator or as a therapeutic

guide. Currently, targeted therapies against activating K-ras

mutation are undergoing active testing as a therapeutic

strategy in LC [73,74].
11. Epigenetic modifications as biomarkers
in lung cancer

LC involves an accumulation of genetic and epigenetic events

in the respiratory epithelium [75]. Somatic genetic aberra-

tions, such as mutations and copy-number alterations, play

a well-known role in oncogenesis, but epigenetic alterations

are more frequent than somatic mutations in LC [76]. LC

initiation and progression are due to the interaction among
genetic, epigenetic and environmental factors. The DNA

hipo- or hyper-methylation is the most widely form of epi-

genetic alteration in LC; the presence of hypermethylated

gene increases with neoplastic progression from hyperplasia

to adenocarcinoma. Many studies have identified a plethora

of hypermethylated promoter genes such as RASSF1 [77],

CDKN2A [78,79], CYGB [80], RARb [81], APC [77,82], FHIT

[83]. RASSF1A is deleted or methylated in 30–40% of

NSCLC and 70–100% of SCLC; FHIT is deleted or methylated

in 40–70% of NSCLC and 50–80% of SCLC [84]. Methylation

of RASSF1A gene combined with K-ras mutation is reported

to be a good marker of prognosis in detection of malignancy

in false-negative or ambiguous cytology outcomes [85,86].
12. Prostate cancer
In many countries, prostate cancer (PCa) is the second most

frequently diagnosed cancer in males and the second cause

of malignancy-related death. The rate of PCa increases signifi-

cantly after 40 years and about two-thirds of all prostate

cancers occur in men 65 years and older [74,87].

PCa may have various clinical courses with different fea-

tures including slow-growing tumour with no clinical

consequences, or rapid development which leads to aggres-

sively metastatic and lethal outcome [88]. The main therapy

for patients with metastatic or progressive disease targets

androgen production and its mediator, the androgen receptor

(AR). These therapies, known as hormonal or androgen abla-

tion treatments, refer to the administration of anti-androgens

that block the functional action of AR [89]. Differently from

other tumours, PCa biomarkers are usually serum or urine

markers, because there are not specific molecular mutations

that may be used for prognostic or diagnostic aims.

The introduction of PSA has revolutionized PCa screen-

ing, and it has ushered in the PSA era; its employment as

diagnostic biomarker has allowed an earlier PCa detection,

showing an increased incidence. However, its use as a screen-

ing tool remains controversial due to unresolved questions

about survival benefits, cost effectiveness, and some clinical

factors such as the optimal screening age or the PSA levels

at which to recommend biopsy [90].
13. Clinical biomarkers in prostate cancer
13.1. Prostate-specific antigen
PSA, also known as gamma-semino protein or kallikrein-3, is a

kallikrein-like serine protease; a glycoprotein enzyme encoded

by an androgen-responsive gene (19q 13.3–13.4). PSA is

secreted by the epithelial cells of the prostate gland [91] and

it is produced for the ejaculate, where its main role, thanks to

the proteolytic function, is to liquefy semen in the seminal coa-

gulum, allowing sperm to swim freely [92,93]. PSA is generally

present in small quantities in the serum of men with a healthy

prostate, while its levels are often elevated in the presence of

PCa or other prostate disorders; for these reasons PSA is the

only biomarker that is used for diagnosis and prognosis of

prostate tumour [94]. The large use of the PSA test has

increased disease detection at earlier stages [95], allowing a

decrease in the number of patients in metastatic state [96].

PSA biomarker has been also used as a staging and prognostic

tool as its high levels are found in more progressive stages or in
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more unfavourable result [97]. In spite of this significant role,

PSA is organ-specific but not cancer-specific, and therefore it

is not a unique indicator of prostate tumour. In fact, serum

PSA levels also increase in benign prostatic hyperplasia, in

size of prostate secondary to a non-cancerous proliferation of

prostate gland cells [93], in the prostatitis (inflammation of

prostate), in following interventions like biopsy [98], in older

age, in ejaculation and in the use of specific drugs such as

male hormones. So only 30% of patients with high PSA have

PCa diagnosed after biopsy. Besides, there are several factors

that may cause decrease in PSA levels, including 5-a reductase

inhibitors, herbal mixtures, obesity, aspirin, statins and thia-

zide diuretics [99]. One of the main limitations of the PSA

test is hence represented by the false positives. Recent data

showed that a substantial number of men had PCa with PSA

values in the normal range and many of these patients had a

high-grade malignant disease [92]. Over the last years, all

these observations have impaired the association between

PSA and PCa [100,101], and in order to increase PSA diagnostic

specificity and prognostic ability, other parameters (such as

percentage of free PSA or PCA3) are now increasingly using.

13.2. Percentage free prostate-specific antigen
Serum PSA is present in different molecular forms that can be

divided into two classes: free PSA (not bound) and complex

PSA (bound to protease inhibitors such as a1-antichymotryp-

sin, a1-antitrypsin, a2 macroglobulin) [97,102]. Free PSA

represents 5–45% of total PSA. Its percentage is calculated by

free PSA/total PSA � 100, and it has been considered as an

appendix to total PSA testing, in men with a serum total PSA

value of 4–10 ng ml21 [96]. Many studies suggest free PSA as

a late-stage predictor of PCa [103] and in particular the percen-

tage of free PSA seems to be inversely associated with risk of

finding PCa in biopsy [104]; the researchers show that percen-

tage of free PSA is significantly low in aggressive disease

conditions like Gleason score � 7, metastases or positive surgi-

cal margins [105]. Gleason score is one of the most important

predictors of disease outcome. It is a prognostic grading

system based only on histological pattern of differentiation

and organization of carcinoma cells and its values can change

from 2 to 10 [106]. It is found that by using a percentage of

free PSA cut-off value of 25%, it is possible to detect PCa with

95% sensitivity and to prevent 20% of unnecessary biopsies

[105]. Therefore, percentage of free PSA could be a better

predictor of post-operative pathological outcome when com-

pared with Gleason grade [107], even if this opinion has not

been confirmed [108,109].

13.3. PCa antigen 3
Urine-based PCa assays have been regarded as a promising

tool for the acquisition of highly specific prostatic markers.

PCa antigen 3 (PCA3) mRNA expression levels within

post-digital-rectal-examination urine have been evaluated as

predictors for the PCa detection on subsequent biopsy,

whereby higher expression levels of PCA3 have been associ-

ated with PCa discovery [110]. A urinary PCA3 assay

(Progensa, Hologic Inc., Bedford, MA, USA) is currently

approved by the Food and Drug Administration in the setting

of prior negative biopsy, where different studies have exam-

ined the predictive value of using PCA3 thresholds to select

men for repeat biopsy [111].
14. Epigenetic modifications as biomarkers
in cancer prostate

Epigenetic modifications are heritable and reversible bio-

chemical changes of chromatin structure [112–117]. Unlike

mutations that involve an alteration in the DNA sequence, epi-

genetic modifications regulate gene expression via chromatin

remodelling [5]. Among the most well-studied epigenetic

modifications are DNA methylation and histone modifications.

Epigenetic alterations are frequent in PCa, and they can con-

tribute to the tumour initiation and progression [118].

Although the mechanisms by which these alterations arise

are not completely understood, their frequency is commonly

higher in premalignant disease stages, giving them

an attractive role for diagnosis, prognosis and treatment

[6,119–121]. DNA methylation patterns may be the earliest

changes in PCa and in effect, many studies have identified a

promoter CpG island hyper-methylation of genes, such as

GSTP1, APC, RASSF1a, PTGS2 and RARb2; this evidence

proposes that multigenes promoter methylation testing could

be necessary. A multicentre study has validated the use of

three gene panel (GSTP1, APC and RARb2) as a diagnostic

maker for PCa [122–125], and moreover several approa-

ches have shown the potential use of PTGS CpG island

hyper-methylation as an important tool for recurrence risk

prediction [126].

14.1. TMPRSS2-ERG
A chromosomal rearrangement in PCa has been identified

and associated with earlier precancerous lesions; it is the

TMPRSS2-ERG, fusion gene between transmembrane protease

serine 2 (TMPRSS2) and v-ets avian erythroblastosis virus E26

oncogene homologue (ERG). Measurement of the TMPRSS2-

ERG in urine, using quantitative nucleic acid amplification,

has been evaluated as a marker, with high specificity for

PCa, for disease in the pre-diagnosis setting. The combination

of PCA3 levels with TMPRSS2-ERG measurement may offer

improved discrimination of disease on biopsy [127,128].

14.2. Glutathione-S-transferase P1 (GSTP1)
This gene encodes an enzyme required for DNA detoxification

and for its protection from oxidants and electrophilic metab-

olites, is a potential epigenetic biomarker due to its high

specificity (more than 80%) compared with PSA serum. Several

studies have focused on the use of GSTP1 as potential diagnos-

tic or/and prognostic biomarker. GSTP1 hyper-methylation

levels can be correlated to different disease stages or recurrence

risk after treatment and its presence in serum, plasma and

urine could be used to screen men when the value of other bio-

markers is borderline. However, despite being highly specific,

it appears to have a low sensitivity (18–40%) [129–131].
15. Homeostatic biomarkers and role
in cancer prediction

The human body constantly interacts with the external

environment that exposes it to several natural and artificial

agents; they can produce irreversible damage or reversible

imbalance of homeostatic processes causing various diseases,
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including cancer. Homeostasis alterations can influence the

function of epigenetic regulation, tissue architecture and

immune system play [132–134].

Homeostasis is a complex process due to the continuous

monitoring of several physiological parameters and functions

(such as the blood pressure, temperature, acid–base balance

and water–salt balance) that are regulated to maintain human

body stability; so that the cells can continue to live and work

regularly in a suitable environment to their needs [58].

Changes in the homeostatic balance can influence fluid

composition; therefore, an environmental alteration (volume

and physical–chemical composition) activates the homeostatic

mechanism to correct such imbalance and to re-establish all

parameters (volume of water, the concentration of ions, hor-

mones, osmotic pressure, oxygen tension and pH) within

‘physiological’ range of values. This mechanism allows a ‘new

homeostasis’ inside the tumour due to the cancer cells’ ability

to adapt to the environment, establishing new balances,

different from previously altered ones. The homeostatic switch

can be evaluated monitoring different indexes: metabolic,

neuroendocrine, immune and physiological parameters [135].

These parameters can be correlate with tumour progression

and they can be considered as prognostic disease markers. The

metabolic alterations are the first changes that occur in oncologi-

cal patients; the typical parameters of this new condition are

lactate, enzymatic activities, oxidative stress biomarkers, NOS/

NO, cholesterol and many others [136,137]. Acidosis, for

example, is common in cancer, for which homeostatic markers

of this condition may be represented by the metabolic enzymes

such as LDH or pH parameters like pH extracellular values

(Phe), representative of the known Warburg effect (i.e. the

phenomenon in which tumour cells rely mainly on glycolysis

for energy production even in the presence of sufficient

oxygen, which is the most outstanding characteristic of energy

metabolism in cancer cells [138,139]). Cancer cells employ this

altered metabolism to sustain a high proliferation rate [140].

The lactate dehydrogenase-A that catalyses the inter-conversion

of pyruvate and lactate is the main enzyme responsible for the

Warburg effect, thus it is upregulated in human cancers and

associated with aggressive tumour outcomes [141]. Therefore,

in cancer, many studies have targeted the glycolytic pathway,

and in particular LDH enzyme, with the aim to develop or to

screen new innovative anti-cancer strategies [142,143].

Changes in tumour pHe values can be assessed by different

molecular imaging techniques such as 64Cu PET-based ima-

ging, hyperpolarized MRI or acid CEST MRI. Importantly,

several studies have shown a correlation between anti-cancer

metabolism targeted therapies and reduced growth rate or

apoptotic responses, so pHe may be also used, during treat-

ment, as a biomarker for determining drug efficacy and

much sooner than detecting a reduced tumour volume with

morphological imaging [144].

The TCGA (The Cancer Genome Atlas) project using next-

generation sequencing has profiled the mutational status and

expression levels of all the genes involved in diverse cancers,

including those that have a role in cholesterol metabolism,

showing the role of the cholesterol pathway in cancer develop-

ment and supporting a correlation between these genes and the

disease prognosis [145].

Neuroendocrine system participate in disease development;

the main biomarkers can be catecholamine, ACTC, gluco-

corticoids, neuropeptide Y, prolactin and serotonin [146].

Homeostatic responses can involve localized body regions or
the whole body. The nervous system is one of the main homeo-

static regulation systems, whose alterations could affect its

specific control functions; some of these alterations could be

represented by stress or depression conditions. Usually, these

conditions are more frequent in oncologic patients. Stress

or depression conditions influence tumour growth and metas-

tasis development. For these reasons, indirect homeostatic

biomarkers, such as epinephrine, norepinephrine and cortisol,

can be evaluated. In effect, different studies have demonstrate,

in vitro and in vivo, that higher stress hormones can influence

proliferation rate, migration, tumour growth and metastasis;

these data have also been confirmed by the use of beta blocker

agents, suggesting the role of stress markers in the prognosis in

various cancer [147–149].

The evaluation of inflammatory/immunity indexes and

physiological parameters (cardiac frequency, VO2 max, body

temperature and EEG) is important to determinate the com-

plete oncological patient status both in diagnosis and

prognosis. For this reason, during follow-up, it is important

to check inflammatory profile (PCR, VES, neutrophilia, cyto-

kines, urinary pH), immune outline, oxidative stress markers

(endogenous and exogenous antioxidants) and other homeo-

static parameters beyond specific molecular disease markers.

The prognostic value of these markers is fundamental to evalu-

ate every phase of the pathology progression and treatment

response, with the aim to adopt personalized therapies and

improve lifestyle, and to improve the patient healing.
16. Discussion and conclusion
Translational research on tumour biomarkers has successfully

promoted new strategies for therapeutic treatment of cancer,

instilling new hopes for cancer patients [150]. Biomarkers can

influence the diagnosis and, consequently, the treatment of

almost every patient with cancer. Thus, particular emphasis

needs to be directed to the clinical approach, which will pro-

vide researchers with a critical point of view to improve

solutions for patients. The development of new drugs requires

high levels of attention and every compound needs to be tested

in carefully designed and randomized clinical trials prior to

governmental approval. Unfortunately, similar requirements

are not mandatory for biomarkers, although they too can sig-

nificantly influence patient outcomes. Therefore, it is

important for clinical, translational and laboratory-based

researchers to be acutely aware about the importance of the

appropriate biomarker, in order to introduce them in clinical

practice. In addition, the introduction of biomarkers that

have not been sufficiently evaluated should be avoided

because they could not only be ineffective, but even potentially

detrimental to patient care. The initial conditions of cancer

begin as an imbalance between the instability of the body

system and the homeostatic mechanisms. In normal condition,

the balance between proliferation and programmed cell death,

usually by apoptosis, is strictly maintained by a fine regulation

of both processes that ensure the integrity of organs and

tissues. Mutations in DNA produce dysregulation and impair-

ment of these regulatory processes, and subsequently lead to

cancer. However, genomic and epigenomic alterations do not

contemplate the countless interactions of homeostatic pro-

cesses that occur in every living organism. In our opinion,

cancer should not be considered as an indistinct entity in an

organism, but as a strongly connected entity with the body
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itself. Most importantly, we should improve the diagnostic and

therapeutic approach, also considering those markers of

homeostasis that are indices of the operation of the body

system in toto. We therefore propose a medicine no longer

genomic-centric but human-centric.
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