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Abstract

This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the
basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data
essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator
models. This work compares existing mathematical models of circadian oscillator and the results of the computational
studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian
oscillator for solving specific problems in circadian rhythm biology.
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Background
Eukaryotic circadian clock is a timing system that forms
rhythmic changes of all processes in the body, from mo-
lecular and genetic to physiological and behavioral, with
a period close to 24 h. These oscillations allow organ-
isms to adapt to the cyclic changes in their habitats [1].
Nearly a half of all mammalian genes change their ex-

pression levels in a circadian fashion [2, 3]. Therefore, any
analysis of gene expression requires consideration for this
kind of variations. However, the circadian mechanism stud-
ies are necessary for medicine. The disruption of this clock
may cause a variety of pathologies, including cardiovascular
and inflammatory diseases, cancer, depression, etc. [4–11].
The modern high-throughput experimental technologies
supporting the genomics, transcriptomics, proteomics,
metabolomics, and other ‘omics’ sciences, provide funda-
mentally new possibilities for the systems biology of the cir-
cadian clock. Mathematical modeling of the circadian clock
provides a unified theoretical framework accounting for
available experimental observations and allowing perform

theoretical studies that are difficult to fulfill experimentally
[12]. In particular, computational models and simulation
experiments allow one:

– To clarify and to validate (or invalidate) particular
working hypotheses;

– To analyze complex systems involving multiple
variables which correlate to each other;

– To identify key interactions and parameters, and
their qualitative or quantitative influence on the
system’s behavior.

– To perform rapid, systematic exploration of the
proposed mechanisms for circadian clock regulation
in a wide range of conditions.

– To determine the conditions permitting a variety of
oscillation-related phenomena, including conserva-
tion or disruption of oscillations, changing of oscilla-
tion period, phase shift, change in oscillation
amplitude, etc.

– To generate testable hypotheses necessary for
planning new experiments which could either
validate the model or call for its modification, etc.
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Adequacy and accuracy of the models depend on
many factors, including the degree of understanding of
given molecular system, the level of mathematical for-
malism, the structure of the model, the accuracy of esti-
mation of the model parameters, etc.
In this review, we summarize and discuss the results

of mathematical modeling of cell-autonomous mamma-
lian circadian oscillator (CACO).
The first few sections provide basic understanding of the

cell-autonomous mammalian circadian oscillator by sum-
marizing experimental data essential for reconstruction and
verification of CACO mathematical models and the high-
lights potential pitfalls in building and validation of math-
ematical models of circadian oscillator. Further, this review
covers comparative description of existing CACO models
as well as examples of applications of CACO to solve spe-
cific problems of practical importance.

Mammalian circadian oscillator and its regulation
The mammalian circadian timing system is organized hier-
archically by the circadian pacemaker localized in the
suprachiasmatic nucleus (SCN) of the hypothalamus. This
master pacemaker can synchronize the network of periph-
eral circadian oscillators in brain cells (outside SCN) and in
peripheral tissues, however, underlying neural and humoral
mechanisms remain obscure. Light is the main external
stimulus that shifts the phase of the pacemaker. In fact,
every cell in the organism contains an autonomous
molecular-genetic circadian oscillator. Its structure can be
described by a complex gene network and feedbacks
mediated by transcription processes, post-translational
modification of proteins, protein-protein interactions, chro-
matin modification, and others. It is generally accepted that
the following seven gene groups - Clock (Clock gene and its
homolog Npas2), Bmal (Bmal1 and Bmal2 genes), Per
(Per1, Per2 and Per3 genes), Cry (Cry1 and Cry2 genes),
CK1 (CK1e and CK1d genes) and Rev-erb (Rev-erbα and
Rev-erbβ genes) and Ror (Rorα, Rorβ and Rorγ genes) en-
code minimal universal core of circadian oscillator [13–15].
The primary loop of negative feedback of circadian os-

cillator is formed upon activation of Per and Cry genes by
transcription factor (TF) CLOCK:BMAL1 (Fig. 1a). The
protein products of Per and Cry form PER: CRY heterodi-
mers, which suppress activity of their own genes via
protein-protein interactions with CLOCK:BMAL1 tran-
scription factor [16–20]. Oscillations of TF CLOCK:-
BMAL1 activity occur with a period close to 24 h. An
important role in establishing the oscillation period is
played by post-translational modification of PER proteins
by casein kinases CKIε and CKIδ [21, 22]. Another regula-
tory loop is induced by CLOCK:BMAL1 heterodimers by
activating the transcription of genes Rev-erb and Ror
(Fig. 1b), which, in turn, compete for RRE (Rev-Erbα/ROR
response element) binding sites within Bmal1 and Clock

gene promoters. While REV-ERBs repress the transcrip-
tion process, RORs activate transcription [23–26]. Thus,
RORs and REV-ERBs both positively and negatively regu-
late the circadian oscillation of Bmal1 and Clock, but to a
lesser degree [26]. This feedback loop stabilizes rhythmic
oscillations generated by the primary circuit [23, 27–29].
In addition, many other feedbacks are described in the

literature, but these two loops are considered as the
most basic.
The autoregulatory feedback loops described above

can generate and maintain a stable circadian rhythm in a
cell, while its phase can be shifted by external stimulus.
This all makes circadian oscillator an important object
for experimental and computer modeling aimed at dis-
cerning the principles of organization, behavior and
characteristics of complex biological oscillators.
It is important to note that the idea of mammal circa-

dian time control system being hierarchical is currently
being revised. There is an opinion that it can be better de-
scribed as a quasi-hierarchical. According to this line of
thoughts, in addition to SCN, there are at least two
additional pacemakers – methamphetamine sensitive cir-
cadian oscillator (MASCO) and food-entrainable oscillator
(FEO) [30–32]. Moreover, two more non-canonical
circadian oscillators were recently described in mice:
wheel-inducible circadian oscillator (WICO) and palatable
meal-inducible circadian oscillator (PICO) [33]. The loca-
tions and structures of newly described pacemakers are
not known. However, it is suggested that these pace-
makers are capable of compensating the function of SCN
circadian oscillator and regulation of the rhythms of mo-
tion activity, endocrine activity and body temperature in
absence of suprachiasmatic nuclei [33, 34].

Circadian gene expression in mammalian tissue
The results of study of daily expression of genes from the
circadian oscillator core are commonly used for the devel-
opment of mathematical models of cell-autonomous cir-
cadian clock.
These data are necessary for finding the correlation of

expression phases of the main components of oscillator
and the genes regulated by it, for understanding the mech-
anisms for external stimuli entrainment of mammalian
circadian clock and the role of each clock component in
overall functionality of the molecular clockwork.
In addition, one can use them to explore the pathways

through which the oscillator transmits and receives signals
providing circadian synchronization of the processes regu-
lated by it.
After the discovery of the role of mouse Clock gene in

the mechanism of circadian rhythm production in SCN
[35], the other genes of the mammalian circadian clock
were found.
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The development of modern high-throughput methods
of gene expression analysis allowed to essentially expand
the knowledge about circadian clock and circadian tran-
scriptomes of different organs and tissues. Data on circa-
dian dynamics of genes transcription in different tissues
and cell lines can be found in the CircaDB database [36]
or a public functional genomics data repository GEO
(Gene Expression Omnibus) [37].
Identification of genes, whose expression follow circa-

dian rhythm, and estimation of rhythm parameters can be
performed by using methods based on various algorithms,
such as JTK_CYCLE [38], Fisher’s G test, COSOPT [39],
ARSER [40], CircWave [38–45] etc. COSOPT runs on
Microsoft Windows, JTK requires R packages, and ARSER
is implemented as a Python program calling some R func-
tions. For COSOPT and JTK Cycle analyses, data is
detrended by linear regression. The BioDare service can
be used to estimate the period of circadian rhythms [46].
Nowadays the idea of rhythmic type of expression with

a period close to 24 h for 3–15% of all mRNA in a particu-
lar tissue of mammals is generally accepted. Zhang et al.
studied circadian dynamics of gene expression in 12
mouse organs and found that about 43% of genes coding
proteins show the circadian rhythm of transcription at
least in one organ [47]. Only limited set of genes oscillates
in all examined organs simultaneously. However, even this
set of genes varies from study to study, from 41 to 10
genes. One can explain it by differences in conditions of
experiments, different sets of examined tissues, and pecu-
liarities of data processing methods used by researchers
[2, 39, 47, 48].
Generally, the data represented by most researchers

indicate that mammalian circadian expression of major-
ity of genes is tissue-specific. It reflects the physiological
function of given tissue.
Most of the studies, which serve as a basis for current

knowledge of circadian dynamics of gene expression, in

fact, use the estimations of steady-state levels of mRNA
assuming that rhythmic changes in mRNA levels reflect
rhythmic changes of transcription of corresponding genes.
The methods [49–52] allowing directly measuring the
amount of nascent mRNA (Nascent-Seq and GRO-seq,
NET-seq) help to re-examine this statement. It turned out
that transcription as the main source of rhythmic expres-
sion formation at mRNA level characterizes only 20–30%
of genes [49, 50]. Similar results were obtained by using
these approaches in the study of Drosophila circadian
gene expression [51]. For the remaining 80–70% of genes
it is assumed that rhythms in gene expression are the re-
sult of regulatory events at multiple steps, such as mRNA
splicing and degradation, nuclear export, methylation,
translation, etc. [49, 52–55]. About 30% of transcripts of
mouse liver and Drosophila head are under rhythmic
post-transcriptional regulation, which is conducted in par-
ticular via regulation of mRNA degradation [56].
In addition, experiments of Menet et al. [49] showed a

significant difference between the phases of CLOCK:-
BMAL1 DNA binding and the target gene transcription,
including the transcription of key core clock genes, such
as Per1, Per2, Cry1, Rorγ, etc. It is shown that CLOCK:-
BMAL1 binds with all target genes at the same phase of
the cycle, though the peaks of transcription are heteroge-
neous and have no relations with the phase of CLOCK:-
BMAL1 DNA binding [49, 57]. Consequently the activity
of other transcription factors supports the heterogeneous
transcriptional output of CLOCK:BMAL1 target genes
and this activity relies on the rhythmic regulation of chro-
matin accessibility of CLOCK:BMAL1 [49, 57].
With development of large-scale proteomic studies, it

was found that expression patterns of many genes at the
mRNA and protein levels often do not correlate. Ac-
cording to the different estimations, about 20–50% of
the rhythmic proteins in the liver are accompanied by
non-rhythmic mRNAs [58–60]. Among the circadian

Fig. 1 The minimal set of feedbacks providing functioning of the mammalian circadian oscillator: a the primary loop; b the stabilizing loop
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proteins themselves, only 18% remain circadian when
their mRNAs are quantified [58–66].
These differences may also indicate the contribution of

translation and post-translational modifications to the
formation of circadian rhythm of expression of genes.
First of all we should pay attention to degradation pro-
cesses of protein and mRNA, as they may be not only
the cause of differences in expression pattern of mRNA
and proteins, but also provide the formation of circadian
rhythms [56–63].

Mutations in the circadian oscillator genes and the
functionality of the circadian clock
One of the validation criteria for mathematical models
of the circadian oscillator is the ability to predict pheno-
types generated by oscillator nucleus genes mutations
observed in vivo, in particular, the effect of mutations on
SCN explants, their particular neurons, cells of periph-
eral tissues or the whole organism.
In Additional file 1, we present data on phenotypic ef-

fects of mutations of circadian oscillator genes in mouse.
Previously a specific characteristic of circadian clock

was noted – it was clearly marked redundancy of hom-
ologous genes, which were supposed can functionally re-
place each other. However, the experiments on animal
genetic models showed incomplete functional similarity
of such genes (see Additional file 1).
Nevertheless, in the models Per1, Per2, Per3 genes are

often represented as a one Per gene. In the same way, Cry1
and Cry2 are often presented as a one Cry gene (see Add-
itional file 1). This approach definitely simplifies the model-
ing process; however, it may distort the overall picture.
In addition, we note that the manifestation of circa-

dian clock mutation at the levels of organism, tissues
and individual cells can differ and behavior does not ne-
cessarily reflect cell-autonomous clock phenotypes.
Thus, for example, Liu at al. [64] revealed that Per1−/−

SCN explants exhibited a steady rhythm with period simi-
lar to WT in consistency with behavioral phenotype. Cry1
−/− SCN explants also displayed a steady rhythm, but with
a shorter period, consistent with behavioral phenotype as
well. However, in dissociated individual SCN neurons the
same mutations lead to the loss of circadian rhythm.
These results were explained by presence of intercellular
coupling in SCN neuron network, which has unique abil-
ity to compensate genetic defect of autonomous cellular
clock and produce the rhythm close to normal in the ex-
plants or whole SCN, even in such conditions [64, 65].
While the rhythm generated by isolated neuron was deter-
mined by the condition of cell-autonomous oscillator and
reflected its reaction to mutation. This is confirmed by
similarity of changes caused by mutations in core circa-
dian oscillator genes in isolated neurons SCN, isolated fi-
broblasts and peripheral tissues that lack of resistance to

genetic disturbances (Additional file 1) [64]. Design and
development of circadian oscillator model should take
into account these differences.

Building, identification, and validation of mathematical
models of circadian oscillator
Building a model of a complex biochemical network is
usually a time-consuming iterative process. At that, we
need to take into account that data on individual reac-
tions and data on functional states represent fundamen-
tally different information, and the both types of
information are equally important for the reconstruction
of the model.
Based on the availability of data and desired analysis,

modelling approaches in systems biology can be broadly
categorized as bottom-up or forward hypothesis-driven
modelling, top-down or inverse data-driven modelling
approaches and middle-out which combines both strat-
egies [66].
Bottom-up modelling methods often start from detailed

mechanistic knowledge about the molecular structure of
different molecular components of the circadian system,
and then perform its assembly into larger units (e.g., a
gene networks). A bottom-up model structure is defined
a-priori by the modeler and model tends to be a physics-
based model with many parameters. The modeler esti-
mates each parameter of the model independently for
small subsystems to combine them. A new processes can
be included if the modeler thinks that they are important.
Top-down modelling approaches are trying to get the

system characteristics beginning with observed data and
comprising metabolic or gene network reconstruction
via ‘omics’ data generated through RNA-Seq, DNA mi-
croarrays or other modern high-throughput genomic
techniques using appropriate bioinformatics methodolo-
gies and statistical techniques.
These models are generally well suited to conceptual

representation, and have as few parameters as possible
in order to reproduce only the dominant response char-
acteristics and easily identify them. The model structure
is derived based only on available data.
The middle-out approach combines bottom-up and

top-down modeling [66]. Therefore, one can take advan-
tage of top-down modeling to determine the major
drivers of circadian system and bottom-up modeling to
understand detailed target mechanisms.
To combine the bottom-up and top-down approaches

one can use process-based understanding obtained from
bottom-up models to clarify the representation of pro-
cesses in top-down models or use the results of compu-
tational experiments with the bottom-up model to
determine the range of parameter values in a top-down
model (or vice-versa) [66].
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Parameter estimation from experimental data is an im-
portant step towards obtaining a “good” CACO model that
can be used for the prediction and “what if” scenarios.
A necessary condition for parameter estimation is

structural identifiability, also called a priori identifiabil-
ity, theoretical identifiability, or qualitative identifiability,
which suggests the possibility of evaluating the unique
values for model unknown parameters from the available
observables, presuming perfect experimental data (i.e.
noise-free and continuous in time) [67–69].
Structural identifiability is a model property depending

on the system dynamics, observable functions, external
stimuli, and initial conditions. It does not depend on the
amount or quality of the available data. In the absence of
a unique correspondence between parameter values and
the observed output of CACO model, a quantitative de-
scription of the biological process involving the uniden-
tifiable parameter becomes impossible [68].
A number of analytical approaches to structural identifia-

bility have been proposed, including Laplace transform
(transfer function), Taylor series expansion, similarity trans-
formations, differential algebra etc. (see reviews: [67–71]).
The basic concept in the model identifiability is a sen-

sitivity that allows to determine which parameters are
more important, i.e. have a greater effect in the model
output, and to select the subset of identifiable parame-
ters. Two aspects related to parameter sensitivities must
be taken into account: their magnitude (i.e. a parameter
cannot be identified if the models output is hardly sensi-
tive to it) and correlation (i.e. two or more parameters
cannot be estimated if their effects can be mutually
compensated).
Classic sensitivity analysis allows determining the rela-

tive stability of model dynamics to certain parametric
perturbations. For the limit-cycle oscillatory systems, in-
cluding CACO model, as a rule, biologically relevant
sensitivity analysis include [72, 73]:

– “shape” of the oscillation (in particular, oscillations
amplitude range or size of oscillation area, etc.)
response to a state perturbation (for example, the
one-time addition of a clock protein), a permanent
parameter change (for example, knockout of a clock
gene or protein isoform) or temporary parameter
perturbation (for example, applying a light pulse to
photosensitive cells);

– phase or period response to perturbation;

The phase response of a system to state or parameter
perturbations occurring at different phases is commonly
called a phase response curve, and its amplitude equiva-
lent may be called an amplitude response cure. By
combining these sensitivity metrics with biological investi-
gations, mathematical models may be used to guide

experimentation, predict system behavior under new con-
ditions, identify the roles of novel genes within the bio-
logical circuit, or uncover the mechanisms of drug action.
Assessing the structural identifiability of a model is

only one aspect of the inverse problem that includes a
priori or theoretical structural identifiability, a posteriori
or practical identifiability and parameter estimation.
Even in the most favorable case (when CACO model is
structurally identifiable), it may not be possible to deter-
mine parameter values in practice [68] mainly from the
insufficient number and quality of experimental observa-
tion for model fitting and / or due to model insensitivity
to the parameter variability.
Practical identifiability or estimability is about quanti-

fying the uncertainty in the estimated parameter values
and calculating their confidence intervals, taking into ac-
count not only the model structure but also the informa-
tion contained in the available data.
The models in systems biology are disproportionate in

the relatively small amount of available data compared
to the relatively large number of parameters in the rate
laws [74]. Therefore, successful and accurate estimation
of these parameter values is a critical part of CACO
modelling, as the available experimental data tend to be
determined with a large uncertainty or under environ-
mental conditions different to the current experiment
[75, 76]. On practice, this type of measurement is used
for determination of biologically “reasonable” range,
where the search for optimal estimations of the param-
eter values is conducted.
Before “omics” data were available, essentially all re-

searchers used only ‘local’ kinetic information on bio-
chemical or physiological processes to develop the models
in the traditional reductionist manner [69].
When properly done this forward or bottom-up

process results in a model that describes the same fea-
tures as nature, if not quantitatively, but at least qualita-
tively. At the same time, this approach has some
disadvantages, in particular, requiring a considerable
amount of local kinetic data, which may be heteroge-
neous and may contain noise associated with different
conditions of experiments, different organisms, different
species, unaccounted factors and measurement errors.
Therefore, the ‘integrated result’ infrequently is consist-
ent with biological observations [69].
Essentially different method of parameter estimation

from steady state data uses responses of a circadian sys-
tem to small perturbations around the steady state.
To estimate the parameters one can minimize the cost

function, which define the model accuracy by measuring
parameter-dependent deviations between model
behavior and experimental observations. Typical cost
functions that work well in practice include the
(weighted) least squares, maximum likelihood, and
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Bayesian estimators, in increasing order of the amount
of information required to calculate them [70, 71].
Even if a model is identifiable, the fitting process itself

may fail because either the optimum of cost function is
local or even if a global optimum is found, there may be
several suitable parameter sets.
Statistical validation of the model depends on the ex-

perimental data according to which the model was fit-
ting. For a fixed set of experimental data, there is an
optimal number of independent variables (parameters),
which can be included in the model. It’s necessary esti-
mate the adequacy of inclusion of each variable and par-
ameter into the model.
In such cases, one can use independent cross-validation

by separating data into training and test (validation) sets
[77, 78]. After model parameters have been determined by
fitting on the training set, the model validated by predic-
tions against the test set. If predictions match, then the
model is accepted. Otherwise - rejected. Essentially differ-
ent strategy is to use wild-type data as training data and
mutant data to test it [79].
Often the available data are not sufficient for proper

model calibration. In this case, new data should be pro-
duced by new experiments to reduce the uncertainty in
the estimated parameter values and obtain narrower con-
fidence intervals for them. Experiments with the model
allow the formation of new hypotheses, and suggest op-
portunities for design of new experiment, which will either
validate the model or modify it. The reviews [80, 81] pro-
vides a broad overview of model-based experimental de-
sign methodologies for systems biology, including
methods for various optimal parameters identification.
The estimation of the relative quality of models and

model selection based on quantifying the degree of
model complexity for a given data set can be based on
Akaike information criterion or maximum likelihood
method [82, 83].
The process of the model validation could include test-

ing the model adequacy criteria of the circadian oscilla-
tor. The concordance of the characteristics of the system
under modeling to the characteristics of the model
under development is an important estimation criterion.
Biological rhythms are called circadian, if they meet a

set of general criteria, which we expand and modify for
model validation (Table 1) [79, 84–86]. Depending on
the purpose of modeling an important role in validation
of the computer CACO model can play various combi-
nations of the above requirements and criteria. Clearly,
any model with a limit cycle oscillations can show 24 os-
cillations through an appropriate re-scaling of time but
an explicit representation of the time requirement elimi-
nates many uncertainties at the coordination and inter-
pretation of the various events and signals of the
circadian oscillator system.

Finally, after model construction, one must determine
the scope of a model, i.e., to what situations the model is
applicable to or for which systems or situations the
known data is a “typical” set of data.
In this section, we presented general challenges that

modeling of circadian clock currently poses and a set of
rules that help the modeling activity. The problems de-
scribed in the modeling of circadian clock, in particular,
the model validation, should get due attention; other-
wise, resulting in a false prediction.

Computational models of mammalian circadian oscillator
In 1965, when molecular mechanisms of circadian oscilla-
tor were not yet known, Goodwin [87] proposed a minimal
phenomenological model of the generalized molecular os-
cillator describing the oscillatory negative feedback regula-
tion of a protein, which inhibits its own transcription. The
gene repression described in the form of a sigmoidal Hill
curve, synthesis and degradation rates were linear.
Further, due to accumulation of new knowledge about

the genes of circadian oscillator and features of their
regulation new detailed computer models appeared.
They contained up to several tens of biologically inter-
pretable variables, including concentration of mRNA
and proteins, which change depended on the rate of
transcription, translation, degradation, modifications
(phosphorylation, sumoylation, methylation, ubiquitina-
tion, acetylation and deacetylation etc.), formation and
dissociation of complexes, transportation of cellular
components, etc. [73, 87–93].
Typically, modern modelers use Michaelis-Menten equa-

tion, Hill function or protein sequestration to provide the
necessary level of nonlinearity for circadian oscillations.
The parameters in these models have a clear biological
meaning: they denote the rates of synthesis, degradation or
transport, binding affinities, etc. [11, 79, 86–102].
The Hill function may describe transcription processes,

in particular, the protein complex repression or coopera-
tive binding the repressor with gene promoter, and en-
zyme kinetics, in particular, the cooperative binding of
multiple substrate or ligand molecules to an enzyme or a
receptor. Hill coefficients in these processes are rarely
higher than 3 or 4 [103]. However, Griffith demonstrated
that Hill coefficients must be larger than 8 to obtain limit-
cycle oscillations in Goodwin model [104]. In this regard,
recently, modelers developed a new class of circadian
clock models, which uses the protein sequestration-based
transcriptional repression instead of the Hill-type repres-
sion [79, 94–102].
The need to integrate high-order nonlinearity or ultra-

sensitive response motifs in the model often arose in the
simulation. Today, a number of ultrasensitive response
motifs are known which can be generally divided into
six categories: (i) homo-multimerization, (ii) positive
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cooperative binding, (iii) molecular titration, (iv) cova-
lent modification cycle, (v) multistep signaling, and (vi)
positive feedback [105]. These types of ultrasensitive re-
sponse motifs may also be useful in modeling the circa-
dian oscillator.
Next, we will focus on comparative analysis of the

characteristics for some of the most important, from our
point of view, mathematical models of the mammal cir-
cadian oscillator, including development goals, the initial
assumptions that underline particular models, the used
mathematical apparatus, model complexity and the re-
sults obtained by circadian oscillator modeling.
In 2003, Leloup and Golbeter develop the first computer

CACO models of mammalian (the basic and the extended
models) based on the interconnected negative and positive
regulating feedbacks, including Bmal1, Clock, Per and Cry
genes [88]. In these models Per1, Per2 and Per3 genes
were presented in the form of “unified” Per gene, as well
as, Cry1 and Cry2 were presented as a Cry gene. The
models described the process of transcription of these

genes, formation and decay of CLOCK:BMAL1 and PER:-
CRY complexes, regulatory effects exerted on the gene ex-
pression by the BMAL1, CLOCK, PER, CRY, and REV-
ERBa proteins, phosphorylation and transportation of pro-
teins and protein complexes, degradation of mRNA and
proteins, as well as light-induced Per expression [88].
The basic Leloup and Golbeter model contains 16 ODE,

which present 16 variables and 55 parameters (see
Additional file 2) [88]. According to experimental observa-
tions [1], the authors considered Clock expression constant
and sufficient for providing a high concentration of CLOCK
protein. TF CLOCK:BMAL1 activates transcription of Per
and Cry genes. PER:CRY complex prevents this activation
by binding to CLOCK:BMAL1 complex. Thus, expression
of Per and Cry genes is indirectly inhibited by its own pro-
tein products. Despite the fact that proteins can be multiple
phosphorylated [17], only one state of phosphorylation of
PER, CRY, BMAL1 and PER:CRY complex are considered
in the model. It is assumed that CLOCK:BMAL1 inhibits
the transcription of Bmal1 gene.

Table 1 Extended requirements in validation of computer CACO models

Criterion Expected behavior of the circadian oscillator system

1. Circadian period close to 24 h Without external influences, molecular oscillations of concentrations of RNA and proteins in CACO
genes occur with a period close to 24 h. In diurnal animals, in general free-running period is slightly
greater than 24 h, whereas, in nocturnal animals one is shorter than 24 h.

2. The phase concordance a) Under autonomous (free running) conditions, the phases of oscillations of RNA and protein levels
are concordant with each other and with experimental data.
b) Circadian oscillations of the molecular concentrations occur with appropriate phase shifts to each
other and to the light–dark cycle

3. The entrainment of circadian clock by
incoming stimulus

There have to be a possibility to regulate the rhythms in response to external stimuli, a process called
entrainment. Under influence of some periodic changes in environment (incoming stimulus) circadian
rhythms can be delayed in frequency and phase. All circadian rhythms are synchronized by 24-h light–
dark cycles. The closer period of the entrainment factor to the period of a free-running autonomous
rhythm, the easier it entrained.

4. The reaction to the shift of daily rhythm Rhythms can be adapted for concordance with local time. Under condition of phase shift of daily
rhythm or constant lighting for daily light–dark cycle a new stable state of rhythm always comes after
transition phenomena (the transition period), their duration is species-specific and can last several days.
The closer the phase of the entrainment factor to the phase of initial rhythm, the easier and faster the
delay occurs.

5. The reaction to a single light stimulus
(phase synchronization)

(a) Single stimuli alter the phase of molecular oscillation.
(b) The reaction of the circadian system to an external stimulus depends on the phase in which it is
administered. This property describes the phase response curve.
In diurnal species, exposure to light soon after wakening causes that the animal will tend to wake up
earlier on the following day(s), whereas exposure before sleeping delays the rhythm, i.e. the animal will
tend to wake up later on the following day(s).
(c) The length and consistency of light exposure influences entrainment:
- longer light exposures have more effect than shorter ones;
- continuous exposure has a greater effect than intermittent exposure.
(d) For wild-type mice, the phase shift after light stimulus can be equal to several hours (acceleration
or delay). For mice with Clock−/+ mutation phase shift can reach 12 h.

6. Temperature compensation The rhythms exhibit temperature compensation in mammalian. The period of circadian rhythms
changes only slightly under different temperatures within the organism’s physiological range. If in
enzymatic reaction Q10 value is usually changed from 2 to 3 (reaction rate increases 2–3 times as much
under the increase of temperature on 10Co), then the circadian period does not change (Q10 ≈ 1) or
even decreases (Q10 < 1) in mammalian.
The temperature coefficient was calculated in the following equation: Q10 = (R2/R1)

10/(T2-T1), where R is
rate and T is temperature.

7. Change of rhythm in gene mutations Effect of mutations on the activity of circadian genes in vivo should be reproduced in the CACO
model.
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In the extended Leloup and Golbeter model the more
detailed description of the influence of BMAL1 protein
on expression of its own Bmal1 gene is presented [88].
BMAL1 protein activates the expression of Rev-erbα
gene, and REV-ERBα protein inhibits the expression of
Bmal1. The extended model contains 19 ODE and 70
parameters. The authors manually choose model param-
eters with the values from the physiological range so that
the oscillation period in the dark was close to 24 h. The
parameters also satisfied other sets of limitations associ-
ated with the experimental observations, including the
ability of synchronization for the oscillator by light.
As a result, both models showed the presence of au-

tonomous circadian oscillations of Per and Bmal1 in
antiphase during the night. These models provided an
opportunity to evaluate the ranges of parameter values
for which the circadian oscillations were observed.
In addition, analysis of models allowed to suggest the

multiple sources of periodic oscillations in the genetic
regulatory network controlling circadian clock. Variants
of conservation of oscillations or their disappearance at
the gene knockouts were found.
Further analysis allowed to apply these models for the

further study of different disorders of daily rhythm. In
particular, it allowed to study the mechanism of rhythm
disorder caused by Per2 gene mutations, the effect of
PER2 phosphorylation reduction on period of the circa-
dian oscillator, etc. The important result was a modeling
of effectiveness for medications depending on time of
their taking, influence of jetlag on circadian clock recov-
ery [88, 106, 107].
Later, in 2003, Forger and Peskin developed another de-

tailed regulation model of mammal circadian rhythms [85].
Biological basis of the model was obtained from the review
article [1], which describes the classical idea of circadian
rhythms regulation as a sequence of interaction of negative
and positive feedbacks loops. In addition to the regulatory
processes, the phosphorylation conducted with the help of
proteins – casein kinase, which were included into the
model. In particular, it is known that Casein kinase 1 epsi-
lon (CK1ε) binds and phosphorylates PER proteins.
Ultimately, Forger and Peskin described in detail in

their models:

(1)the process of binding of CLOCK:BMAL1
transcription complex to a regulatory E-box element
in Per promoter, assuming its independence from
binding to the other regulatory elements;

(2)the mechanism of transcription regulation by Per2
and Cry2 proteins, considering it as the same
mechanism of transcription regulation by Per1 and
Cry1 proteins;

(3)the process of phosphorylation of PER1/PER2,
assuming that: (a) the phosphorylation process can

occur at many sites; (b) PER1 and PER2 non-
phosphorylated proteins, located in the cytoplasm,
are not able to bind to CRY and they degrade; (c)
there are primary and secondary phosphorylations in
the process of light-induction of Per transcription.

The total number of variables in the system of differ-
ential equations in Forger-Peskin model was 74 and the
number of parameters was 36.
The fitting procedure based on optimization allowed

to find a set of parameters for which model is in a very
good agreement with the SCN data presented in [1] and
liver data for the relative concentrations of the different
clock proteins [17], due to the unavailability of SCN
data. They included the null mutations of the PERs or
CRYs genes in the model by setting the corresponding
rates of transcription to zero. Removing PER2 allowed to
abolish rhythmicity, but removing PER1, CRY1, or CRY2
severally didn’t, which is in agreement with experimental
data (see Additional files 1 and 2).
In 2009, Forger and Peskin developed a stochastic model

[108], which is a direct generalization of the deterministic
mammalian circadian clock model [85]. The stochastic
model of CACO was used for the following tasks: (i) com-
paring the behavior their deterministic and stochastic
models; (ii) estimations on the accuracy of the clock within
individual cells, and (iii) understanding what design princi-
ples contribute to robustness to molecular noise.
They found that [108]: (i) in certain cases, in particu-

lar, in the study of mutants, the stochastic and determin-
istic models exhibit qualitatively different behaviors; (ii)
there are situations when a stochastic model oscillates,
and the corresponding deterministic model does not;
(iii) rapid interactions with promoters and multiple cop-
ies of genes reduce the variability of the period of the
clock and increase the robustness.
By developing reduced mathematical CACO model

[86] Becker-Weimann and coauthors have shown that
negative regulatory feedbacks, which involve CLOCK:-
BMAL1, PER and CRY, are critically important for
CACO functioning; and oscillations take place even if
Ror/Bmal1/Rev-erbα regulatory feedback is replaced by
activator with a constant expression.
Parameter variations that correspond to clock-gene

knockouts reproduce experimental results, in particular,
in mutant cells (Bmal1−/−, Rev-erbα−/−, Per2Brdm1/Cry2
−/− and the Per2Brdm1 mutation) the oscillations do not
occur (see Additional files 1 and 2).
The authors affirm that this is confirmed by the ex-

perimental data obtained in Rev-erbα−/− mutations of
mouse, they save CACO functionality despite the fact
that regulatory feedback is disabled. However, it should
be noted that later new experimental data was obtained.
It revealed that for Rev-erbα there is a homologue –

The Author(s) BMC Systems Biology 2017, 11(Suppl 1):18 Page 34 of 42



Rev-erbβ gene, which can conduct its functions in gene
regulation of the circadian oscillator [109]; and appar-
ently, this explains maintaining of CACO functionality
in Rev-erbα−/− cells. The model also accounts for the dif-
ferential effect of the Cry1−/− and Cry2−/− mutations on
the circadian period.
Due to the specific design taking into account only es-

sential processes, model allows the use for various add-
itional studies including [86, 110]:

� the entrainment of the circadian oscillator to light–
dark cycles;

� extension of the model by incorporating the putative
novel components or mechanisms;

� stochastic simulations for investigating the influence
of molecular noise on circadian oscillations;

� analysis of the expression of different phases;
� the coupling of oscillators for the simulation of

synchronization mechanisms;
� analysis of mechanisms of temperature

compensation.

In 2009, Mirsky et al. developed another mathematical
model of mammal circadian clock [90]. It contains 8 genes
(Per1, Per2, Cry1, Cry2, Clock, Bmal1, Rev-erb, and Rorϒ)
and thus describes more complete network and offers
more opportunities for testing and validation of the
model. In developing the model, the authors took into ac-
count the new exact phase correlations between molecular
components identified in experimental studies at the
intracellular level. These components reflect complex and
often combinatorial regulation of circadian genes.
The model is implemented in MATLAB as system of

ODEs, consisting of 21 equations with 132 parameters.
Calculations were conducted on a computing cluster
with the use of MATLAB Distributed Computing Tool-
box. To describe the rate of transcriptions Michaelis-
Menten kinetics are used, and mass action kinetics de-
scribe all the rest of rates (e.g., mRNA and protein deg-
radation, formation and dissociation of complexes, etc.).
Parameters adjustment is conducted by iterative evolu-
tional algorithm with the focus on the intracellular phase
interaction between the components of circadian oscilla-
tor. In addition to characteristics observed in circadian
clock of autonomous cells at the molecular level, the
model also describes various phenotypes of mutant cells
(the knocked-out genes: Per1, Per2, Cry1, Cry2, Bmal1,
Rev-erb, and Ror) (see Additional files 1 and 2).
In 2011, Relógio et al. developed one more model for

the mammalian circadian clock. It allows studying two
main contours of feedback: ROR/Bmal/REV-ERB and
PER/CRY loops [91]. In the construction of the model,
main attention was paid to a pacemaker in SCN, which
is supposed to be responsible for synchronizing the

whole circadian system and consequently can be respon-
sible for general malfunctions and malfunctions of the
peripheral clock that lead to rhythm disorders. The
model was based on extensive research of literature and
it took into account the experimental facts existing at
the moment. In their model the authors combined the
genes into following families: Per (Per1/2/3), Cry (Cry1/
2), Ror (Rorα/β/γ), Rev-Erb (Rev-erbα/β), Bmal (Bmal1/
2). The same principle was applied to the corresponding
proteins and protein complexes.
Nonlinearity via Michaelis-Menten kinetics and the Hill

function was introduced to describe transcription regula-
tions. ODE system, gathered with the use of law of mass
action and the linear kinetics of degradation, includes 19
ordinary differential equations with 71 parameters. Many
parameters were found from the literature and others
were estimated based on known amplitudes and phases.
To compare and joint use the amplitudes of different

components found in the literature, the authors normal-
ized the expression level of each component to its aver-
age value and the they were able to model expression
profiles that oscillate near the baseline value of 1 for all
variables that facilitated the comparison between them.
Using the developed model, the authors were able to
analyze the influence of transcription and degradation
processes on CACO period and clarify the assumed role
of dual-loop regulation of CACO.
In particular, it was studied the effect of increasing the

rate of degradation of Per RNA, as well as of the rate of
the clock proteins degradation on CACO period. The
simulation showed that both increase and decrease in
the oscillation period could be a consequence of these
processes under certain conditions.
Another result of simulation is the prediction of damp-

ing of oscillations at high expression of components of the
stabilizing loop of the oscillator (ROR / Bmal / REV-ERB).
These predictions were confirmed by in vivo experiments.
Jean-Paul Cometa and coauthors [111] reduced the

model of Leloup and Goldbeter [73] without loss of crit-
ical information. The reduced model included only 8
equations, and allows more carefully investigate basic
mechanisms of governing the CACO.
In 2014, Jolley et al. developed a minimal mathemat-

ical model of CACO where regulation of transcription
occurs through the interaction of the three regulatory el-
ements: E-box, D-box and RRE. The E/E’-box respon-
sible for gene transcription in the morning; the D-box,
governs of the daytime transcription; and the RRE, in
the evening.
In particular, the model describes the transcriptional

regulation of Cry1 gene through the D-box and RRE
regulatory elements. Also this model to permits predic-
tion of phase response curves based on ensemble regula-
tory elements.
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The model has been validated using differential evolu-
tion for optimization. This model exclude many of the
redundancy of the real CACO and exhibits less resist-
ance to gene knockouts than the actual system [112].
Korenčič A., et al. [92] developed a minimal mathem-

atical model, which allowed describing CACO in differ-
ent tissues (liver, heart and adrenal gland) and under
various lighting regime (DD and LD). The model in-
cluded three feedback loops of CACO (with E-boxes,
RRE-elements, and D-boxes). As a first simplification of
the model, all insufficiently characterized interim steps
(post-translational modifications, complex formation,
and nuclear localization) were combined into one step
with delay for several hours. Thus, the amount of kinetic
parameters was significantly reduced. Then redundant
regulators were combined based on their own gene ex-
pression measurement data. In particular, it is assumed
in the model that the transcription of 5 genes included
in the CACO model (Per2, Dbp, Bmal1, Cry1, Rev-erbα)
is determined by basic circadian regulatory elements of
the promoter: E-boxes, D-boxes and RRE. The final
model is described by a system of differential equations
with delays, which were estimated by difference between
phases with the maximum level of gene expression and
phases of maximum rate of protein production. Their
values were determined experimentally. Comparative
analysis of ChIP-seq experimental data for BMAIL1,
REV-ERBα and REV-ERBβ showed that constructed
CACO model allows us to describe distribution of max-
imum expression phases of genes under BMAL1 and
REV-ERBα regulation.
The main factor that determines the phases of gene

expression is E-box-regulated transcription. Although
the other factors (D-box regulators, HSF, SRF, CERB,
periodic degradation of proteins, their polyadenylation
and regulation of ribosomal biogenesis) also influence
the gene expression phases.
The model also shows that the multiplicative effect of

E-boxes, D-boxes and RRE leads to appearance of har-
monics that are different from 24 h, in particular ob-
served in experiment 12-h peaks of gene expression
(about 1% of all genes) in the liver. Computational ex-
periments also showed differential regulation of cyto-
chrome p450 gene.
Comparison of maximum gene expression phases in

different tissues showed that the distribution of phases
of CACO genes peaks in the heart differs from the same
in other tissues, and this can be connected with the
rhythm of tissue-specific transcription factors regulating
CACO genes. In particular, in the heart they are the fol-
lowing: Atf6, Gata6, Gtf2a1, Hif1a, Mef2a, Nfyb, Rbpj,
Smad7, Tcf4, Tead4 [92].
In 2012, Kim and Forger [79] modified and signifi-

cantly expanded model of the deterministic mammalian

circadian clock developed by Forger and Peskin [85].
The new model included key genes, mRNA, and pro-
teins, which are currently considered as central for the
daily timekeeping of mammals (PER1, PER2, CRY1,
CRY2, BMAL1/2, NPAS2, CLOCK, CKIε/δ, GSK3β,
Rev-erbα/β). Despite the fact that only 10 monomers are
involved, they can produce a multitude of complexes de-
pending on their binding state, phosphorylation and sub-
cellular location. As a result, the expanded model is
presented in the form of an ODE system, which includes
75 parameters and 181 variables, including 159 variables
for protein complexes; 12 variables for mRNA; 8 vari-
ables - identifiers of promoter activity and 2 variables for
describing the effect of light and GSK3β activity.
The model parameters were estimated on the base of

functional optimization by simulated annealing (global sto-
chastic optimization method) that minimizes the difference
between model simulations and experimental data. In par-
ticular, the authors took into account the experimentally
determined rate constants, fit the experimentally observed
dynamics of change in the concentrations of mRNA and
proteins and fit the relative abundance of proteins.
The authors noted that their model is significantly better

at predicting different phenotypes of gene mutations that
take central place in CACO in comparison with existing
models. The model also predicts mutant phenotypes Rev-
erbα−/−, Cry1−/−, Cry2−/−, NPAS2−/−, Bmal1−/−, ClockΔ19/
Δ19 of isolated SCN neurons, which differ from SCN slice
(see Additional files 1 and 2. Supplement).
Exploring the model behavior, the authors identify the

following key mechanisms providing 24-h rhythms in
circadian clock of higher organisms:

(1)The correct stoichiometric ratio of activators and
repressors. The stoichiometry is the average ratio of
repressors concentration (all forms of PER and CRY
in nucleus) to activators (all forms of
BMAL:CLOCK/NPAS2 in nucleus) during the
period.

(2)A strong binding between repressors and activators.
(3)A presence of supersensitive reactions close to 1–1

stoichiometry.
(4)The half-life period of activators longer than that of

repressors.

The authors also note that additional negative feed-
back loop is neither independent nor an auxiliary gener-
ator, but it plays its role in stoichiometry regulation and
thus increases the robustness of rhythm and period.
Yan et al. use modeling of the CACO to study the rela-

tionship of the main negative feedback loop of oscillator
with its additional loops and identify the possible mech-
anism of coordination of the interrelated loops of CACO
to regulate the period and maintain its robustness [93].
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They have used the comprehensive model with 6 genes
(Bmal1, Per1, Cry1, Per2, Cry2, and Rev-erba) to confirm
the above ratio hypothesis. In order to focus on the tran-
scriptional regulations, they assumed that the post-
translational time delay of each gene is fixed as an expli-
cit time delay.
The model includes the following processes:

(1)The regulations of PLBS activity and RORE activity.
(2)Transcriptions of Per1, Per2, Cry1, Cry2, Bmal1,

Rev-erbα genes.
(3)Translations of Per1 mRNA, Per2 mRNA, Cry1

mRNA, Cry2 mRNA, Bmal1 mRNA, Rev-erbα mRNA.
(4)Post-translational regulations.

Eventually, the mammalian circadian model includes a
set of delay differential equations and algebraic equa-
tions. During the exploration of the model parameters,
they found that the post-translational time delays are the
main factors, which significantly change the period of
the oscillation. Therefore, the time delay of each gene is
well estimated from the experimental data. Since other
parameters do not significantly affect the period, authors
chose these parameters in a proper range. The numerical
simulation is performed in MATLAB (Mathworks) with
a solver for delay differential equations (DDE23).
Yang and coauthors found an interesting regularity: the

intensity ratio of the CACO primary loop to the stabilizing
loop is inversely to the length of the period. This pattern
is retained under conditions of a fixed post-translational
feedback. The results obtained with this computational
model have found experimental confirmation [93].
In 2016, Woller and coauthors have constructed a math-

ematical model of the mammalian liver circadian clock
which incorporates the metabolic sensors SIRT1 and
AMPK [113]. This model integrates feeding and fasting cy-
cles with the circadian clock. It consists of 16 ordinary dif-
ferential equations describing the time series of the mRNA
and protein concentrations for the clock genes Bmal1, Per,
Cry, Rev-Erb, Ror, the metabolic gene Nampt, the mRNA
concentration for the clock output gene Dbp, and the NAD
+ level. Model contains 96 kinetic constants, most of which
are yet unknown and should be derived from experimental
data. To describe the gene transcription, authors employs
Hill function. The model accurately reproduces high-fat-
diet-induced loss of NAD+ oscillations and predicts that
this effect may be pharmacologically rescued by timed ad-
ministration of REV-ERB agonist. The comparison of
period length between the experimental data and the simu-
lation result was carried out in follow genotype: WT, Per1
−/−, Per2−/−, Cry1−/−, Cry2−/−, Rev-erbα−/− , Fbxl3−/−, Rev-
erbα−/−/Fbxl3−/−, Bmal1−/− (see Additional files 1 and 2).
Information about models of the circadian oscillator de-

scribed in this section, including the year of publication,

mathematical apparatus, the number of variables, the
number of parameters, genes in the models, model as-
sumptions, the experimental data, and the main results
are shown for comparison in Additional file 2.

Application of circadian oscillator models to biomedical
problems
Mathematical models of the circadian clock were useful
for designing experiments aimed at understanding of
novel clock gene, the mechanisms of the pharmaco-
logical control of circadian rhythms, temperature com-
pensation, ability to synchronize CACO and gene
networks with different functionality, etc.
Various modifications of the detailed mathematical model

of the mammalian CACO developed by Kim and Forger
[79] were successfully used to address these challenges.
In particular, Goriki and colleagues [98] used an ex-

tended version of this model to confirm that the gene
CHRONO can indeed be considered as an important com-
ponent of the CACO. Studied in silico, this model con-
firmed that the behavioral CHRONO KO phenotype is an
outcome of the observed biochemical features of Chrono.
The model also predicts that CHRONO can determine
the residual rhythmicity in Cry1−/−/Cry2−/− cells [98].
Kim and coauthors [94] proposed a mathematical model

that accurately predicts effects of joint action of two inde-
pendent signals (pharmacological agent and light) on a cir-
cadian timekeeping. They extended the computer model of
mammalian CACO [79] by including multi-compartment
pharmacokinetic / pharmacodynamic model.
This modification correctly described the disposition

of CK1δ/ε inhibitor PF-670462 and its interaction with
CK1δ/ε.
Novel model allowed to predict that a stable phase

delay can be produced by chronic CK1δ / ε inhibition
during the earlier hours of the LD cycle.
However, in case of chronic day-time dosing, or upon

longer light intervals, model did not yield an entrained
rhythm [94]. The experimentally validated results of
modeling indicate that exact pharmacological manipula-
tion of phase circadian clock requires careful selection
of the timing, dosing and environmental signals [94].
Zhou, Kim, and coauthors [100] presented the model,

which is another extension of the model of Kim and For-
ger [79]. Authors proposed a phospho-switch model,
where two competing phosphorylation sites of the pro-
tein PER2 determine whether it has a fast or slow deg-
radation rate. To include the phosphor-switch in the
extended model they added following processes to the
original model: (1) degradation of unphosphorylated
PER2 or phosphorylated PER2 at FASP sites; (2) degrad-
ation of phosphorylated PER1/2 at CRY binding site by
CK1; (3) degradation of phosphorylated PER2 at β-TrCP
binding site by CK1; (4) phosphorylation of PER2 by

The Author(s) BMC Systems Biology 2017, 11(Suppl 1):18 Page 37 of 42



priming kinase; (5) phosphorylation of PER2 by CK1; (6)
phosphorylation of PER2 by GSK3 [100].
The model reproduces experimentally revealed the

kinetics of degradation of PER2 protein and explains the
phenotypes of mutations CK1ε tau and FASP, which
affect the phosphorylation of PER2. The model also pre-
dicts a critical role of phosphoswitch in temperature
compensation [100].
Adaptation and modification of the detailed mathem-

atical model of the mammalian circadian clock devel-
oped by Kim and Forger [79] allowed D’Alessandro and
coauthors to justify the design of artificial circadian os-
cillator and to predict its behavior, which is able to gen-
erate tunable, robust circadian rhythms and can function
in vivo and control natural circadian physiology [96].
This artificial oscillator is tunable, so one can predictably
modulate the circadian period and phase.
D’Alessandro and coauthors predicted that the only

component of the circadian clock, which can be used in a
tunable synthetic oscillator, is PER. The design principles
used in this work can be helpful in the development any
synthetic systems with the properties of switches and os-
cillators which capable to control behavior in vivo [96].
DeWoskin, Myung and coauthors (2015) presented the

results of studying the mechanisms of coupling between
neurons within the SCN and modulation synchrony its
neurons [102, 114]. They combined previously published
models: 1) the molecular clock model [79]; 2) the VIP
coupling model [104]; 3) the electrophysiology model
[115]; 4) the GABA coupling model [104] to create a full
detailed SCN model.
This integrated model of the SCN network can be a

useful tool for studying the interactions between the mo-
lecular and electrical activity of single neurons in the
SCN, synchronization processes and phase relations
identified within the network [102].
The model was used to study the role of the neuro-

transmitter GABA in synchronizing circadian rhythms
among neurons in SCN, and to search for the mecha-
nisms of encoding the length of the day within the SCN
neuronal network [102, 114].
Many of studies cited above in this section use a de-

tailed model of the circadian oscillator of Kim and For-
ger [79] as the base for design of new models [94, 98,
102, 114]. One of the benefits of this model is a detailed
description of the components and regulatory processes
of the oscillator. This allows one to expand and to mod-
ify the model for simulation of various processes in ac-
cordance with the task. The results obtained using such
models were related to various aspects of circadian clock
functioning and helped to design experiments and to
generate hypotheses later tested in vivo. At the same
time, such models are very complex and often require
large computing resources [102, 114]. Therefore, to solve

specific problems, especially in the study of interaction
of CO with other systems, in the field of medicine and
chronopharmacology such detailed circadian oscillator
models are not always required.
The results obtained using compact models also have

a biological interpretation and answer to the questions
posed in the studies. For example, compact models are
used in chronopharmacology and chronotherapy.
In particular, Hirota and coauthors used such type of

model in searching for therapy of chronopathology and in
particular to investigate the potential mechanisms of ac-
tion of small molecules KL001 (specifically interacts with
cryptochrome (CRY)) and Longdaysin (CKI inhibitor)
[116–118]. They showed that KL001 is a useful tool to
study the regulation of CRY-dependent processes and may
to aid in development of chronopharmacology. In
addition, these models allowed establishing differences be-
tween FBXL3- and CKI-mediated clock regulations. Based
on the same principles, models for identification of circa-
dian determinants of cancer chronotherapy were designed
[119–122].
One of the very important directions of use of math-

ematical models is the synchronization of CACO and
gene networks with different functionality.
Tareen and Ahmad developed the computer model for

simulating the effects of different feeding regimens,
showed how the circadian system entrains to the feeding
regimens, and simulated the changes in abundance of
each protein involved in this circadian system [123].
The results of computer modeling for relations of cell

cycle and circadian oscillator at molecular level can be
found in several studies [124–127]. By using computa-
tional models for the circadian clock and cell cycle, the
authors investigated the conditions in which the mam-
malian circadian clock can entrain the cell cycle. The
formation of the complex oscillatory dynamics of the cell
cycle (complex periodic oscillations, or chaotic oscilla-
tions) may be a consequence of the interaction of these
two gene networks. It was revealed that at different
stages of the cell cycle circadian clock regulate various
cyclin-dependent kinases. Hence, circadian clocks are an
important mechanism for temporal organization of the
cell cycle [124–127].
Bratsun and coauthors [128] proposed a minimal multi-

scale chemo-mechanical model of cancer tumor growth in-
duced by circadian rhythm disruption in epithelial tissue.
The model includes a division of cells and intercal-

ation, as well as mechanical interactions and a chemical
signal exchange between neighboring cells that allows to
find the respective parameters for transformation into
the cancerous state.
All of studies cited in the section were carried out

using an integrated approach combining mathematical
modeling and experiments.
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Conclusion and outlook
During the last decades, extensive researches lead to un-
derstanding the circadian timing system in all its facets,
including a detailed study of the core circadian clock
genes, a large-scale search for novel candidate circadian
genes and circadian controlled transcriptional regulators
and its direct targets, protein-protein interactions, mo-
lecular structure of circadian clock proteins etc. [129].
This knowledge could be used in medicine, chronother-
apy, preventing disorders of biological rhythms, jet-lag
and shift work, etc. [122, 130–132].
Mathematical modeling in conjunction with molecular-

biological studies could be a powerful approach providing
generation of hypotheses and predictions for future ex-
perimental tests.
Now we know that the dynamics of the expression of

many genes at the level of mRNA and protein often do
not correlate. Thus, it is necessary to clarify the mecha-
nisms of forming their oscillation in CACO model. In par-
ticular, we should pay attention to degradation processes
of protein and mRNA, translation and post-translational
modifications, as they may be not only the cause of differ-
ences in expression pattern of mRNA and proteins, but
also provide the formation of circadian rhythms of their
expression.
A large number of mathematical models of mamma-

lian circadian oscillator have been developed, but there
are no suitable models for many real-life situations.
The developed models made a significant contribution to

the understanding of the structure of circadian clock self-
sustaining mechanism, the functional significance of its in-
dividual components, mechanisms of interaction of the cir-
cadian oscillator with the other functional systems of the
organism. Novel types of experimental data, and also new
application fields require the modification of already devel-
oped mathematical models or the creation of new ones.
The experimental facts about the circadian oscillator as

well as the phenotypic effects of circadian gene mutations,
the methods for model validation, CACO models review
and their applications presented in this review may be use-
ful for development of new models and its applications.
We should note that the modeling of the mammalian

circadian clock depending on the specific tasks and sub-
sequent analysis could be performed at different levels,
including:

1. Modeling of cell-autonomous circadian oscillator
(CACO).

2. Modeling of interaction and synchronization for
cell-autonomous circadian oscillators in particular
tissue;

3. Modeling of organism circadian clock, including the
synchronization process of peripheral oscillators by
central circadian oscillator in particular tissues;

4. Modeling of relationships between circadian clock
and body functioning (sleep disorders, circadian
rhythm of various biochemical processes, rhythms of
sleep / wake, maximum working efficiency, etc.)
depending on external action, etc.

Systematic study of influence of circadian rhythms on
basic functions of the organism requires the use of
higher-order computer models. Nevertheless, the models
of circadian oscillator in a single cell are still useful for
studying the systemic effects. Reasonable biological in-
terpretation of the modeled changes of mRNA or pro-
tein concentrations is of paramount importance for
integration of the modeled data into the organism-level
chronobiology view.
The awareness to the disruption of the circadian

rhythms as a contributor to many chronic diseases, in
particular, neuropsychiatric conditions, cancer, type 2
diabetes and obesity calls requires continuations of
chronobiology research efforts [122, 130–132]. Good
example of this kind would be the biological data-driven
mathematical model developed by Korenčič and
coauthors [92]; this model provides insights into the
tissue-specific regulation of circadian rhythms. Another
important avenue for the chronobiology is the analysis
of the effectiveness of medication depending on the
timing of administration.
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