
GigaScience, 2022, 11, 1–8

DOI: 10.1093/gigascience/giab099

Research

MBGC: Multiple Bacteria Genome Compressor

Szymon Grabowski *† and Tomasz M. Kowalski *†

Institute of Applied Computer Science, Lodz University of Technology, ul. Stefanowskiego 18, 90-537 Lodz, Poland
∗Correspondence address. Szymon Grabowski. E-mail: sgrabow@kis.p.lodz.pl; Tomasz M. Kowalski. E-mail: tkowals@kis.p.lodz.pl
†Contributed equally.

Abstract

Background: Genomes within the same species reveal large similarity, exploited by specialized multiple genome compressors. The
existing algorithms and tools are however targeted at large, e.g., mammalian, genomes, and their performance on bacteria strains is
rather moderate.

Results: In this work, we propose MBGC, a specialized genome compressor making use of specific redundancy of bacterial genomes.
Its characteristic features are finding both direct and reverse-complemented LZ-matches, as well as a careful management of a ref-
erence buffer in a multi-threaded implementation. Our tool is not only compression efficient but also fast. On a collection of 168,311
bacterial genomes, totalling 587 GB, we achieve a compression ratio of approximately a factor of 1,265 and compression (respectively
decompression) speed of ∼1,580 MB/s (respectively 780 MB/s) using 8 hardware threads, on a computer with a 14-core/28-thread CPU
and a fast SSD, being almost 3 times more succinct and >6 times faster in the compression than the next best competitor.

Keywords: algorithms, data compression, multiple genome compression, FASTA, pathogens

Background
Genome compression is a fairly old research topic, dating back
to the mid-1990s [1]. It was soon realized that even sophisticated
techniques for compressing a single genome, e.g., [2], cannot of-
fer much higher compression ratios than simple packing of DNA
symbols into 2 bits each (see also the recent experimental com-
parison [3]). The interest of researchers thus shifted into rela-
tive compression of a genome given a reference [4–8], typically
representing the same species, or compression of a given collec-
tion of genomes without an external reference [9–11]. Some of
those proposals apply quite advanced techniques (e.g., GDC 2 [11],
GeCo3 [12]), while others use rather simple input preprocessing
followed by a general-purpose back-end compressor, like 7zip in
DELIMINATE [13] or zstd in NAF [14]. For example, GDC 2 uses
2-pass LZ77 matching, and the matches in the latter pass can
be built of several matches found in the former pass, to obtain
unsurpassed compression ratios on large human genome collec-
tions (e.g., the ratio of ∼9,500 on 1,092 human diploid genomes).
GeCo3 [12] combines the power of neural networks with spe-
cific DNA models, but its compression on a 2–4 GB genomic col-
lection already takes hours. Allowing mismatches (mutations) in
matches, thus leveraging a generalized notion of a standard LZ-
match, proved successful in MemRGC [8], a relative compressor
for a single genome.

The abundance of full genomes available in major repositories,
like NCBI or 1KGP, in recent years poses a challenge to compress
them efficiently, preferably combining high compression ratios,
fast compression and decompression, and reasonable memory re-
quirements. In this work, we focus on the compression of bac-
terial genomes (without an external reference), for which exist-
ing genome collection compressors are not appropriate for algo-
rithmic or technical reasons (e.g., ignoring reverse-complemented

matches, slow compression of long DNA sequences interspaced
with EOL symbols, lack of N symbol support or constraints con-
cerning the number of sequences in a single FASTA file). We note
that there exist also other possible aspects of compressors (or
compression-based tools), e.g., random access support [9,15,16] or
searching directly in the compressed data, also in an approximate
manner [17]. For more references, see the survey [18].

Analyses
For the experiments we took a large collection of 168,311 bacte-
rial genomes in the FASTA format from the NCBI Pathogen Detec-
tion project, and 4 subsets of it that each contained 1,024 genomes
and represented a single species (except for a joint subset with Es-
cherichia coli and Shigella genomes). The proposed MBGC and other
compressors were tested on a Linux (Debian) machine equipped
with a 14-core Intel Core i9-10940X 3.3 GHz CPU, 128 GB of DDR4-
RAM (CL 16, clocked at 2,666MHz), and a fast SSD (ADATA 2 TB
M.2 PCIe NVMe XPG SX8200 Pro). MBGC is written in C++ and
was compiled with gcc 10.2.1. The disk cache was flushed between
runs so as to have raw reads of the input files from the disk. By
the compression ratio we mean the ratio between the original in-
put size and the compressed size, e.g., reducing a 500-MB input to
500-kB results in the compression ratio of 1,000. Also, if the ratio
improves from 1,000 to 1,500, e.g., owing to changing some param-
eters of the compressor, we can say that the compression ratio
improves by a factor of 1.5 (or by 50%).

For the competitors of MBGC we chose 1 multiple genome com-
pressor (HRCM [7]), 1 more versatile bioinformatics data–oriented
compressor (NAF), and a few popular high-quality general-
purpose compressors (BSC, 7zip, zstd). Note that NAF makes use
of zstd as its back-end compressor. Our selection is based on prac-

Received: July 20, 2021. Revised: November 10, 2021
C© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0003-1714-1224
https://orcid.org/0000-0003-0953-3762
mailto:sgrabow@kis.p.lodz.pl
mailto:tkowals@kis.p.lodz.pl
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2022, Vol. 11, No. 1

tical performance of the tools, concerning the compression ratio
and (de)compression speed, within reasonable memory require-
ments. Some well-known multiple genome compressors, namely,
GDC 2 [11], iDoComp [6], and memRGC [8], are not used in our
(main) experiments, for the reasons explained in the supplemen-
tary material (Section 4.2).

As can be seen (Table 1–3), MBGC in the max mode wins eas-
ily in the compression ratio on the E. coli, Listeria monocytogenes,
and Salmonella enterica subsets, as well as on the total collection.
MBGC with the default settings also usually dominates the rest of
the contenders, yet 7zip sometimes beats it by a few percent, ow-
ing to its large (4 GB) sliding window; the same feature also makes
7zip the most memory consuming (per worker thread) tool. The
only case where 7zip beats MBGC max in the compression ra-
tio is the 1,024-genome Campylobacter jejuni collection (Table 1).
MBGC also dominates in the compression times, although not al-
ways in the decompression times. Both the compression and the
decompression speed of our solution are at least on the order of
hundreds of MBs per second, partly due to a multi-threaded im-
plementation. The most successful case is arguably the large S.
enterica collection (Table 2), where the MBGC default slightly ex-
ceeds 2 GB/s of the compression speed, achieving the compres-
sion ratio of 5,786, which contrasts with the compression ratio of
1,312 from the 11 times slower NAF, and of 696 from the 481 times
slower 7zip. The performance of the specialized genome compres-
sor, HRCM, is more or less average, and we refrained from running
it on the whole collection because the compression would take
several days.

MBGC in the default mode is more than an order of magnitude
faster than NAF -9 in compression and at least twice as fast in the
decompression. The gap in the compression ratio between MBGC
and NAF (in its stronger mode) increases with larger collections,
reaching a factor of 4.4 for the whole S. enterica, and is ∼2.9 for
the collection of all genomes. On the other hand, NAF is more
memory-frugal, which may matter if the experiments are run, e.g.,
on a standard laptop (MBGC default needs 23 GB of RAM to com-
press the whole collection). Zstd (only experiments of its default
mode -3 are presented) is significantly faster than NAF with the
same settings but offers a noticably worse compression, some-
times even twice as bad. Let us also comment on the performance
of the stronger MGBC mode. We note that MBGC max obtains a
compression ratio that is a few percent better than that for the
default mode (with the largest gain for the 4 × 1024 collection),
but it is 2.5–4 times slower in the compression. The compression
and decompression memory usage remains reasonable (although
not as good as for NAF and zstd), and the max mode even tends
to be more frugal than the default mode.

The results of 7zip were obtained by limiting thread usage
to 6 (to avoid excessive memory usage during the compres-
sion). For smaller collections it is slower by more than an order
of magnitude in compression (but faster in the decompression)
than NAF (-9) while its compression ratio is usually compara-
ble to NAF’s (although it varies for individual cases). BSC, which
is a strong general-purpose compressor based on the Burrows–
Wheeler transform (BWT), performed relatively poorly on larger
pathogen collections, obtaining a compression ratio a few times
smaller than other competitors. Moreover, it is the slowest in
the decompression and is also quite memory-hungry (particularly
striking in the decompression) in our experiments, which can be
explained by running 12 blocks of (up to) 2 GB each in parallel.

We point out that for the purpose of testing general-purpose
tools (zstd, BSC, and 7zip) we applied a unified strategy to avoid
hampering their compression in any way. First, the end-of-line

(EOL) symbols were removed from the DNA strings in the input
files prior to the experiment. As a side note, we point out that
MBGC accepts EOL symbols in the input but does not preserve
them in the decompressed output (it uses no EOLs in those strings
by default or can insert EOLs in regular gaps in DNA strings, as
specified by the user). Second, zstd and BSC work with a single file
input (and output) and for this reason we combined the input into
a TAR archive (the preprocessing time for the compression process
and the postprocessing time for the decompression process were
not included).

Preliminary experiments (with 1,024 genome collections) show
that on the original data (i.e., with EOLs preserved) 7zip needs
∼40% more time to compress and its compression ratio is worse
by a factor of 2–3. The respective losses are even greater for zstd
(∼3–7 in the compression ratio, and 2 in the compression time
with regard to the stronger mode). Such striking differences are
however understandable; there are many long LZ-matches in our
data, which are broken in “random” positions with the EOL char-
acters.

It may be interesting to check the impact of reverse-
complement matches on the MBGC performance. It is significant
indeed; according to our preliminary experiments, on C. jejuni and
L. monocytogenes the compression ratio with RC-matches turned
off deteriorates roughly by a factor between 1.1 and 1.7 in the de-
fault mode.

Throughout all the presented experiments (except for those
presented in Fig. 3, in MBGC and “ncbi” scenarios) the input data
are in the uncompressed (FASTA) format. Still, MBGC can read
gzipped FASTA and we briefly checked how it affects overall per-
formance. The gzipped stream is decompressed with the aid of lib-
deflate [19], a library for fast whole-buffer Deflate-based decom-
pression (and compression as well, but we use it only for read-
ing). On the individual species collections the compression time
gets slightly better (e.g., by even 21% for S. enterica), with 12.5%
speedup for the whole genome collection (all numbers with re-
spect to the default mode of MBGC). The compression ratio varies
a little (due to unpredictable access to genomes with the worker
threads), usually <1%.

Figure 1 shows the compression ratio and compression speed
with varying the number of threads from 1 to 28. The speed does
not improve with >6 threads (but perhaps it would with even more
efficient disk I/O). The compression ratio is rather unaffected for
E. coli and S. enterica, but using already >1 thread for C. jejuni and L.
monocytogenes yields a few percent compression loss. For C. jejuni
the gap is as large as ∼15% when the number of threads increases
from 1 to (the default) 8. On the other hand, using 8 threads is ∼3–
4 times faster than 1 thread in the compression for all 4 datasets,
and for this reason we find the compression loss in half of the
cases acceptable.

Finally, in Fig. 2 we can see how the compression ratio and com-
pression times change when more and more genomes are given
as the input. The number of threads was set to 8 (default). As
expected, the compression time increases roughly linearly (note
the x-axis scale), but the compression ratio improves, as for fur-
ther genomes more similar “pieces” can be found in the already
processed collection (or, to be more precise, in the currently used
REF sequence). The only exception is E. coli, where after process-
ing ∼2,000 genomes the compression ratio first deteriorates some-
what and then no longer improves. This can be easily explained
by the heterogeneity of this dataset, which comprises both E. coli
and (closely related to E. coli, but different) Shigella genomes.

For a separate experiment, we took 2 non-bacterial genome
collections, Saccharomyces cerevisiae and Saccharomyces paradoxus

MBGC: Multiple Bacteria Genome Compressor | 3

Table 1: Compression results—collections of 1,024 genomes

Parameter HRCM
BSC

-p -b2047 7z -md4g
zstd -3

–long = 31
NAF -3

–long = 31
NAF -19

–long = 31
MBGC

default max

C. jejuni (1.78 GB)
ratio 15.0 40.2 (1)78.5 31.2 43.0 54.2 (3)62.2 (2)73.1
ctime (s) 196.3 38.0 1,064.5 (2)4.0 (3)9.8 136.2 (1)3.7 12.4
dtime (s) 27.0 10.6 (3)3.0 (1)1.5 4.4 4.4 (2)2.8 3.7
cmem (GB) (2)1.76 9.00 18.00 1.92 1.90 2.24 (3)1.78 (1)1.19
dmem (GB) (1)0.28 8.81 1.79 1.76 1.76 1.76 (3)1.45 (2)1.34

E. coli (4.87 GB)
ratio 158.2 166.9 377.5 357.8 495.2 (3)530.0 (2)1,406.1 (1)1,452.3
ctime (s) 308.3 127.4 2,228.7 (3)10.0 20.8 57.5 (1)3.0 (2)7.3
dtime (s) 28.9 42.4 5.6 (3)2.9 12.6 11.9 (1)1.5 (1)1.5
cmem (GB) (2)1.88 24.04 45.98 2.31 (3)2.30 2.65 2.55 (1)1.22
dmem (GB) (1)0.66 21.48 4.82 2.15 2.21 2.21 (2)1.17 (2)1.17

L. monocytogenes (3.09 GB)
ratio 39.3 70.4 (2)268.8 82.9 131.1 163.3 (3)243.0 (1)274.9
ctime (s) 225.5 123.5 1,838.1 (2)4.5 13.8 102.8 (1)3.2 (3)9.3
dtime (s) 26.0 36.7 4.0 (1)2.1 7.6 7.6 (1)2.1 (3)2.4
cmem (GB) (2)1.79 15.29 31.82 2.31 2.30 2.63 (3)2.27 (1)1.25
dmem (GB) (1)0.30 15.30 3.07 2.15 2.15 2.15 (3)1.55 (2)1.41

S. enterica (5.2 GB)
ratio 268.4 130.0 472.4 427.9 547.5 (3)607.1 (2)1,329.8 (1)1,356.8
ctime (s) 308.2 130.6 2,350.3 (2)6.1 20.4 36.1 (1)3.1 (3)7.3
dtime (s) 28.2 43.0 5.9 (3)3.0 12.8 12.9 (1)1.7 (2)1.9
cmem (GB) (2)1.91 25.67 49.45 2.31 (3)2.30 2.64 2.62 (1)1.22
dmem (GB) (1)0.48 25.68 5.15 2.15 2.17 2.17 (3)1.27 (2)1.26

Ratio indicates the ratio of the input to the output size; cmem and dmem indicate compression and decompression memory usage, respectively; ctime and dtime
indicate compression and decompression time. The best 3 results in each row are marked with a superscript number in parentheses. HRCM is single-threaded
(except for the latter phase where it invokes 7zip), BSC uses 12 threads, 7zip (up to) 6 threads, zstd 14 threads, and MBGC 8 threads.

Table 2: Compression results—large species collections

Parameter
BSC

-p -b2047 7z -md4g
zstd -3

–long = 31
NAF -3

–long = 31
NAF -19

–long = 31
MBGC

default max

C. jejuni (55,627 genomes, totalling 98.38 GB)
ratio 69.7 164.9 74.9 137.1 (3)176.6 (2)412.5 (1)450.6
ctime (s) 969.2 2,2881.0 (2)211.9 489.5 2,570.7 (1)92.7 (3)400.8
dtime (s) 241.3 129.3 (3)127.3 280.3 250.9 (1)78.5 (2)102.3
cmem (GB) 128.84 122.54 (2)2.32 (1)2.31 (3)2.66 8.78 7.22
dmem (GB) 129.21 34.59 (1)2.15 (3)2.70 (2)2.69 5.62 5.02

E. coli (22,523 genomes, totalling 114.67 GB)
ratio 93.1 342.7 242.8 (3)460.9 458.5 (2)1,747.4 (1)2,051.6
ctime (s) 1195.1 30,086.0 (2)165.5 446.3 1,313.5 (1)65.0 (3)216.1
dtime (s) 291.6 (3)160.2 164.7 296.0 288.7 (2)83.3 (1)78.4
cmem (GB) 128.84 122.48 (1)2.31 (1)2.31 (3)2.66 9.66 10.87
dmem (GB) 129.17 34.48 (1)2.15 (3)3.10 (3)3.10 3.25 (2)2.66

L. monocytogenes (36,448 genomes, totalling 112.00 GB)
ratio 90.2 (3)328.2 137.3 274.9 323.9 (2)1,086.9 (1)1,160.2
ctime (s) 1,166.4 28,065.0 (2)162.7 450.1 1,805.7 (1)68.0 (3)263.8
dtime (s) 287.6 (3)162.0 184.5 286.4 279.0 (1)84.2 (2)97.2
cmem (GB) 128.84 122.48 (2)2.32 (1)2.31 (3)2.66 7.85 7.03
dmem (GB) 129.13 34.48 (1)2.15 (2)2.39 (2)2.39 3.82 3.30

S. enterica (53,713 genomes, totalling 262.21 GB)
ratio 156.7 695.5 606.0 1,205.7 (3)1,312.0 (2)5,786.0 (1)5,881.1
ctime (s) 2,655.8 61,182.0 (2)290.2 909.9 1,423.9 (1)127.3 (3)342.1
dtime (s) 618.0 440.4 (3)396.5 659.9 662.3 (2)270.3 (1)262.0
cmem (GB) 128.84 122.46 (1)2.31 (1)2.31 (3)2.66 11.31 10.48
dmem (GB) 129.06 34.43 (1)2.15 2.80 2.79 (3)2.51 (2)2.36

Ratio indicates the ratio of the input to the output size; cmem and dmem indicate compression and decompression memory usage, respectively; ctime and dtime
indicate compression and decompression time. The best 3 results in each row are marked with a superscript number in parentheses. BSC uses 12 threads, 7zip (up
to) 6 threads, zstd 14 threads, and MBGC 8 threads.

4 | GigaScience, 2022, Vol. 11, No. 1

Table 3: Compression results—mixed species collections

Parameter
BSC -p
-b2047

7z
-md = 4g

zstd -3
–long = 31

NAF -3
–long = 31

NAF -19
–long = 31

MBGC

default max

168,311 genomes (587.26 GB)
ratio 105.3 354.5 193.6 369.0 (3)434.0 (2)1,266.6 (1)1,411.4
ctime 5,824.0 140,902.0 (2)846.1 2,287.3 7,100.0 (1)370.9 (3)1,271.6
dtime (s) 1,379.7 (3)880.8 970.2 1,506.2 1,499.7 (1)749.2 (2)757.2
cmem (GB) 128.84 122.54 (1)2.31 (1)2.31 (3)2.66 23.06 15.93
dmem (GB) 129.22 34.59 (1)2.15 (2)4.51 (3)4.53 8.70 10.73

4 × 1,024 genomes (14.94 GB)
ratio 88.2 (2)239.2 124.5 177.1 214.6 (3)220.8 (1)351.5
ctime (s) 189.4 4,124.0 (2)24.4 62.6 334.6 (1)13.4 (3)36.5
dtime (s) 56.7 15.5 (3)9.9 37.4 37.3 (2)8.9 (1)8.6
cmem (GB) 73.79 122.48 (2)2.31 (2)2.31 2.65 4.69 (1)2.22
dmem (GB) 73.82 14.83 (1)2.15 (2)2.24 (2)2.24 3.24 2.83

Ratio indicates the ratio of the input to the output size; cmem and dmem indicate compression and decompression memory usage, respectively; ctime and dtime
indicate compression and decompression time. The best 3 results in each row are marked with a superscript number in parentheses. BSC uses 12 threads, 7zip (up
to) 6 threads, zstd 14 threads, and MBGC 8 threads.

Figure 1: Relative compression ratios and times as a function of the number of threads, with respect to the default mode of MBGC. The left
(respectively right) y-axis is related to relative compressed ratios (respectively compression times). On both (left and right) y-axes smaller is better.

Figure 2: Compression ratios and relative times when the number of input genomes increases, with respect to the default mode of MBGC. The left
(respectively right) y-axis is related to compressed ratios (respectively relative compression times). On the left (respectively right) y-axis greater
(respectively smaller) values are better.

MBGC: Multiple Bacteria Genome Compressor | 5

Figure 3: Total times of compressing, transferring, and decompressing a
collection of 168,311 genomes. The inputs in the MBGC and “ncbi”
scenarios were gzipped FASTA files.

(Table 4). We did not expect MBGC to be competitive here, and
indeed, GDC 2 and 7z are superior in the compression ratio but
MBGC remains the second fastest (after zstd -3) tool in the com-
pression process while still maintaining a relatively high com-
pression ratio. A better overall choice is, however, GDC 2, with
a significantly higher compression ratio and being only slightly
slower in the compression than MBGC max on S. cerevisiae. On the
other hand, the compression speed difference is >6-fold, in favor
of MBGC max, in the case of S. paradoxus. In decompression, zstd is
the fastest, followed by GDC 2 and 7z, and then by NAF and MBGC.
BSC and HRCM are more than twice as slow in the decompression
than MBGC. Of these two, HRCM is a better pick owing to higher
compression ratio and relatively fast compression.

In the supplementary material (Tables S1 and S2) we also
present compression results for a small collection of human
genomes (hg16,..., hg19). Although these kinds of data are not the
target of MBGC, our tool performs satisfactorily here as well, with
quite competitive compression ratios and speed.

Potential Implications
Our experiments with MBGC show that the genomes of some bac-
teria species can be collectively compressed by a factor >1,000, at
a (de)compression speed of >1 GB/s (as shown on the total col-
lection of 168k pathogen individuals). This may be an argument
for replacing the dominant gzip compression format with a more
resource-effective solution in DNA repositories, both for the end
user (i.e., faster dissemination of genomic data) and for data re-
source management (e.g., easier backup). A slightly less obvious
but still promising application could be using the proposed for-
mat for rapid download. To this end, the genomes selected by a
user to download could then be lumped together and compressed
by a factor, say, between 10 and 100 (depending on the count
and similarity of the datasets of choice), which is likely to offset
the cost of the compression process. It is not clear whether and
how caching compressed groups of genomes downloaded together
could improve this process, yet this possibility and resulting trade-
offs seem worth exploring.

Figure 3 presents a combined measure expressed as the to-
tal time to transfer (download) the entire collection of our test
genomes. Each bar consists of 3 parts, the compression time (at
our test machine), the transfer time (assuming a network con-

nection link of 10 Mbit/s or 100 Mbit/s, on the left and right panel,
respectively), and the decompression time (at the same test ma-
chine). The compression switches used are as follows: NAF -3 –
long=31, pigz -6, mbgc -c 1 (default). The inputs for MBGC are
the original gzip files (as provided in NCBI). The input FASTA files
for pigz were stripped of EOL symbols prior to the compression.
The “tar” bars basically correspond to transmitting raw FASTA
files, where the compression phase is data tarring (merging), and
the decompression phase is data untarring. The “ncbi” bars cor-
respond to the gzip archives in the NCBI repository, where the
compression time comprises only tarring the data (so, it is some
lower bound estimation). Clearly, MBGC has a huge edge over the
competitors, and only NAF comes relatively close with the faster
network connection. Note also that even with a faster connection
the gzip-based approaches (bars “ncbi” and “pigz”, which is a mul-
tithreaded gzip implementation) are more than an order of mag-
nitude slower than MBGC. The gaps are generally greater with a
slower connection, and for the transfer of 10 Mbit/s the advan-
tage of MBGC over NAF is >3-fold and by a factor of almost 100
over “ncbi”. Clearly (cf. also Fig. 2), the gains will be smaller with
a smaller amount of data to download at a time, and also the im-
pact of the compression and the decompression times increases
with faster networks, making the results generally flatter. Simi-
lar figures for species collections of (all and 1,024) genomes are
included in the supplementary material (Fig. S1 and Fig S2).

We believe that the ideas behind MBGC can be adapted for a
dedicated compressed index for bacterial genomes, allowing for
fast pattern counting and reporting. Such an index could handle
multi-genome mapping, i.e., mapping sequencing reads against
multiple genomes in an efficient way (see, e.g., [18, 20, 21] and
references therein). Compressed indexes for repetitive data have
been a major research area in the string matching community in
the past decade, but few solutions have been tested on a large
scale, e.g., hundreds of gigabytes (one exception could be the
MuGI index [22] which, e.g., can maintain 1,092 diploid human
genomes in <8 GB of space, serving exact pattern queries of length
150 bp in <80 μs on a commodity PC). Perhaps the major obstacle
in running industry-scale experiments was construction costs, in
both time and space, for many worst-case–oriented indexing data
structures. It could be argued that the level of similarity of bac-
terial genomes allows for relaxing the requirements and focusing
on typical, not worst, cases, to obtain practical performance. Al-
though the prospects are not fully clear, it is our opinion that the
ideas of MBGC could be adapted to obtain a compressed index
for bacterial collections combining high compression ratios, rel-
atively low computational requirements of the construction, and
short access times.

Methods
There is significant redundancy in bacterial genomes that can-
not be fully exploited using existing multiple genome compres-
sors. The standard approach of finding repetitions between the
currently processed genome and a reference genome (or possi-
bly all previously processed genomes), and encoding them as LZ-
phrases of the form (offset, length), is only moderately successful.
We found out that many strings repeat as reverse-complements
of corresponding strings from other genomes, a phenomenon
known, but surprisingly rarely handled earlier (the COMRAD tool
being an exception [23]).

It is also beneficial not to limit the reference to 1, or a few, pre-
vious genome(s) but to make it possible to find matches occurring
almost anywhere earlier. This, however, requires a potentially un-

6 | GigaScience, 2022, Vol. 11, No. 1

Table 4: Compression results on non-bacterial genome collections, S. cerevisiae and S. paradoxus

Tool
S. cerevisiae (39 genomes, 486 MB) S. paradoxus (36 genomes, 429 MB)

ratio ctime (s) dtime (s) cmem (GB) dmem (GB) ratio ctime (s) dtime (s) cmem (GB) dmem (GB)

GDC 2 (1)109.8 4.12 (2)0.57 (1)0.52 (2)0.14 (2)80.7 21.92 (3)0.82 (2)0.51 (2)0.17
HRCM 78.8 7.13 2.85 1.18 (1)0.06 52.6 8.30 3.18 1.18 (1)0.07
BSC -p -b2047 52.9 10.76 2.65 2.49 2.44 33.8 9.59 2.59 2.21 2.16
7z -md4g (2)100.6 316.38 (3)0.73 4.92 0.50 (1)83.9 295.95 (2)0.69 4.41 0.44
zstd -3 –long=31 45.8 (1)0.98 (1)0.43 (2)0.54 (3)0.49 30.5 (1)0.87 (1)0.40 (1)0.49 (3)0.43
NAF -3 –long=31 67.0 (3)2.80 1.02 (3)0.63 (3)0.49 43.2 (3)2.61 0.92 (3)0.57 (3)0.43
NAF -19 –long=31 77.0 30.54 1.03 0.97 (3)0.49 43.2 33.54 0.93 0.91 (3)0.43
MBGC default 87.3 (2)1.68 0.82 1.93 0.80 49.1 (2)2.08 1.07 1.84 0.73
MBGC max (3)90.6 3.72 1.04 1.50 0.87 (3)61.5 3.58 1.24 1.40 0.70

Ratio indicates the ratio of the input to the output size; cmem and dmem indicate compression and decompression memory usage, respectively; ctime and dtime
indicate compression and decompression time. The best 3 results in a column are marked with a superscript number in parentheses. HRCM is single-threaded
(except for the latter phase where it invokes 7zip),HRCM is single-threaded (except for the latter phase where it invokes 7zip), BSC uses 12 threads, 7zip (up to) 6
threads, zstd 14 threads, and MBGC 8 threads.

bounded memory buffer. We mitigate this problem by building the
reference string, i.e., a reservoir for possible matches, in an incre-
mental manner, appending only blocks that are “new enough,” i.e.,
containing a relatively large fraction of DNA subsequences not
seen before. This (general) approach, i.e., building “a dictionary of
repeats,” is known in the context of relative genome compression;
see, e.g., [9] and [24].

Because the key ideas of our solution, Multiple Bacteria
Genome Compressor (MBGC), have already been sketched, now
we present the algorithm in detail.

Basic algorithm
The main stages of MBGC compression are the contig matching
process and the back-end compression of matching products. Be-
low we focus on explaining the former, essential stage.

The goal is to compress the sequence of genomes G1, …, Gn in
the FASTA format. The genomes consist of 1 or many contigs (by a
contig, throughout the article, we mean a sequence in the FASTA
file). At the start the reference string “REF” is initialized with G1

followed by rc(G1), where rc(·) stands for the reverse complement
of the passed string. MBGC also stores a literal buffer, which is
initialized with REF (but not its reverse complement). During the
compression process, a hash table of fixed size (e.g., 225 slots) is
maintained, and pairs of the form (h, pos) are inserted to it, where
the positions “pos” are taken from REF accessed sparsely, with a
stride of 16 symbols, and h are hash values of corresponding k-
mer seeds taken from the sampled positions. A collision on the
hash h overwrites the previous value associated with it.

In the following steps the genomes G2, …, Gn are taken one by
one and LZ-matches of the form (offset, length), where “offset” is
the position of REF where a match of length “length” begins, are
sought. The contigs in the current genome are processed in their
original order. If a match is not found for the given position (note
that such a check takes a constant time, owing to the simplicity
of the hash table organization), we move to the next position in
the current contig, and so forth, and once we have a (tentative)
match, we verify its k symbols and try to extend it maximally in
both directions (with a restriction that matches cannot cross con-
tig boundaries). The left extension of the current match is allowed
to “swallow” the (whole) previous match(es). Surprisingly, this lit-
tle idea is a powerful optimization trick that improves the com-
pression ratio sometimes by >50% on our datasets and is also
moderately beneficial for the compression speed because there
are significantly fewer LZ-matches for further encoding. To make
this effect even stronger (by up to a few percent), the next position

Figure 4: General scheme of the contig matching process with an
emphasis on appending the reference buffer strategy.

just after a match is decreased by m (which is 16 by default). Using
such a “skip margin” in some cases allows longer matches to be
found.

Finally, the symbols between matches are added to the literal
buffer. At this point, we can define the strategy for augmenting the
REF string depicted in Fig. 4. Once we are at the end of a contig,
the portion of its symbols not covered with matches is checked;
if it is large enough (exceeds 1/u of the contig length, where u =
192 by default), the REF string is appended with the contig and
its reverse complement. The rationale is that contigs too similar
to some parts of REF are almost completely redundant and thus
do not contribute enough to facilitate compression, but increase
the memory requirement. This design decision was indeed very
successful, as in our test data the string REF together with the
concatenated literals often took <2% of the input. If, however, the
contigs to compress are not similar enough to the previous ones,
the REF string grows quickly and may reach its limit, which de-
pends on the number of genomes in the collection and the size
of the first genome (details in the supplementary material, Sec-
tion 4.3). From this point on, the REF string works like a circular
buffer; i.e., instead of being appended it is being overwritten from
the starting position.

The resulting streams of match data (offsets, lengths), literals,
header and filename data, and flags are compressed with LZMA
and PPMd, using a well-known open-source software development
kit (LZMA SDK).

For easier understanding of the MBGC internals, we created an
example (see Supplementary Fig. S5). Moreover, the last section of

MBGC: Multiple Bacteria Genome Compressor | 7

the supplementary material covers the details of back-end com-
pression of the streams resulting from the matching stage.

MBGC in the max mode
The description above corresponds to the single-threaded version
of our algorithm. MBGC is, however, multi-threaded. MBGC’s max
mode (invoked as mbgc -c 3), with preference to the compression
ratio rather than compression speed, does not use multithreading
except for parallel input, back-end compression, and possibly gzip
decompression; to understand such a design decision, see Fig. 1
and the related discussion.

We note that in the max mode the initialization of REF with G1

is not required. Because matching is sequential, it can be started
from G1 instead of G2 (even with an empty REF sequence). G1 will
be used to extend REF before matching the remaining genomes.

As multi-threaded matching implementation uses more mem-
ory, upper-bounding the reference buffer by 232 bytes in the de-
fault mode helps to reduce the memory consumption during the
compression of larger collections. On the other hand, in the max
mode the buffer is allowed to grow up to 240 bytes, which is ben-
eficial for the compression ratio.

The last major difference between MBGC compression modes
concerns back-end compression. To optimize the performance
in the default mode, the most time consuming of the resulting
streams (i.e., match data and literals) are broken down into blocks
and compressed in parallel, sacrificing however some compres-
sion ratio.

Multi-threading
MBGC makes use of the producer-consumer dataflow pattern. As-
suming t worker threads, we have at most t − 1 producers and ≥1
consumer for the compression. The producers decompress and
handle the input (gzip) files in parallel and store them in buffers
(if the input file is uncompressed, the gzip decompression phase
is simply skipped); each producer can handle ≤32 files (genomes)
in its buffer. The consumer parses headers and contigs and per-
forms the actual compression (maintaining the hash table, find-
ing LZ-matches, and so forth). Once a producer fills up its buffer,
it switches to compress the next unprocessed genome (entering
a temporary consumer mode), which serves as a simple load bal-
ancing technique.

When a genome is fully encoded, the REF sequence is prolonged
with the relevant contigs; updates to REF are performed in a criti-
cal section, preserving the original genome order (via a queuing
mechanism). Let us explain this issue in more detail. We take
care that the area of REF in which a worker looks for matches
is not overwritten with newer contigs by other workers. To this
end, when a worker W begins its job, it marks a guard position in
the REF that prevents other workers from overwriting REF beyond
this position until W terminates processing a current genome. It
might mean that some contigs cannot be written to REF and are
thus ignored. Fortunately, in our experiments this detrimental ef-
fect hampers the compression ratio rather negligibly. When the
buffer of a producer is not full, the producer again fills up its buffer
by reading and processing the input data, and the consumer pro-
ceeds to compress new genomes.

Availability of Source Code and
Requirements
� Project name: MBGC: Multiple Bacteria Genome Compressor
� Project home page: https://github.com/kowallus/mbgc

� Operating systems: Linux
� Programming language: C++
� Other requirements: C++14 standard or higher, cmake 3.4 or

higher
� License: e.g., GNU GPL v3.0
� biotools ID: mbgc
� RRID:SCR_021875

Availability of Supporting Data and
Materials
The pathogen datasets underlying this article are available in the
NCBI repository: https://www.ncbi.nlm.nih.gov/pathogens.

The yeast datasets (S. cerevisiae and S. paradoxus) genomes were
taken from the Sanger Institute repository: ftp://ftp.sanger.ac.uk
/pub/users/dmc/yeast/latest/.

All benchmark data are available online: http://coach.kis.p.lo
dz.pl/mbgc-datasets/.

Snapshots of our code and other data further supporting
this work are openly available in the GigaScience repository, Gi-
gaDB [25].

Additional Files
Supplementary Figure S1: Total times for compressing, trans-
ferring, and decompressing large collections of genomes, with
network connection speed of 10 Mbit/s (bottom panels) and 100
Mbit/s (top panels).
Supplementary Figure S2: Total times for compressing, transfer-
ring, and decompressing collections of 1k genomes, with network
connection speed of 10 Mbit/s (bottom panels) and 100 Mbit/s (top
panels).
Supplementary Figure S3: Relative compression ratios and times
when 1 of the compression parameters is varied and the remain-
ing parameters keep their default value. The left (respectively
right) y-axis is related to relative compressed sizes (respectively
compression times).
Supplementary Figure S4: Relative compression ratios and times
when 1 of the compression parameters is varied and the remain-
ing parameters keep their default value. The left (respectively
right) y-axis is related to relative compressed sizes (respectively
compression times).
Supplementary Figure S5: Steps of the MBGC compression, on a
high level, for a toy example. The parameters used for this exam-
ple are as follows: seed length 6, k = 8, m = 2, u = 4, s = 5. (i) REF is
created from the first genome, G1, of length 28 (REF is now the con-
catenation of G1 and rc(G1), and thus twice as long), and the hash
table HT is populated with seeds taken from REF. (ii) Substrings
from the first contig are sought in HT, and the found matches are
left- and right-extended. Note how the skip margin idea is applied.
After the contig is processed, the decision is made whether REF
should be extended (affirmative here). (iii) REF is appropriately ex-
tended and HT is updated; newer seeds overwrite older ones in
the case of a collision. The new seeds in HT are marked red, and
additionally with bold typeface when overwriting. (iv) Processing
another config. Note how the skip margin idea allows the previ-
ously found match to be swallowed (thus reducing the number of
output matches). The decision whether REF should be extended
is negative this time. (v) The final stream of literals and matches,
where matches are only marked with % and contig separators are
marked with a semicolon. The prefix of this stream of length 28 is
the genome G1.

https://github.com/kowallus/mbgc
RRID:SCR_021875
https://www.ncbi.nlm.nih.gov/pathogens
ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/
http://coach.kis.p.lodz.pl/mbgc-datasets/

8 | GigaScience, 2022, Vol. 11, No. 1

Supplementary Table S1: Compression results—small collections
of human genomes (chromosomes separated).
Supplementary Table S2: Compression results—small collections
of human genomes (ordered by genomes).
Supplementary Table S3: Compression results for single-file in-
puts (single Multi-Multi-FASTA); RNA data.
Supplementary Table S4: Compression results for single-file in-
puts (single Multi-Multi-FASTA); protein data.
Supplementary Table S5: Compression results for single-file in-
puts (single Multi-Multi-FASTA); DNA data.

Abbreviations
1KGP: 1000 Genomes Project; BSC: Block Sorting Compressor;
COMRAD: COMpression using RedundAncy of Dna; CPU: cen-
tral processing unit; EOL: end-of-line; GCC: GNU Compiler Col-
lection; GDC2: Genome Differential Compressor 2; HRCM: Hy-
brid Referential Compression Method; MBGC: Multiple Bacte-
ria Genome Compressor; MuGI: Multiple Genome Index; NAF:
Nucleotide Archival Format; NCBI: National Center for Biotech-
nology Information; LZ: Lempel-Ziv; LZMA: Lempel-Ziv-Markov
chain-Algorithm; PPMd: Prediction by Partial Matching (variant by
Dmitry Shkarin); RAM: random access memory; SSD: solid state
drive.

Competing Interests
The authors declare that they have no competing interests.

Funding
This work was partially supported by the Faculty of Elec-
trical, Electronic, Computer, and Control Engineering, Lodz
University of Technology, as a statutory activity (both
authors).

Authors’ Contributions
S.G. developed the overall conception and participated in the
design of the work and in drafting the manuscript. T.M.K. par-
ticipated in the design of the work, implemented the tool and
conducted all major experiments, and participated in drafting
the manuscript. Both authors reviewed and approved the final
manuscript.

References
1. Grumbach, S, Tahi, F. Compression of DNA sequences. In: Proc.

Data Compression Conference. IEEE; 1993:340–50.
2. Duc Cao, M, Dix, TI, Allison, L, et al. A simple statistical algorithm

for biological sequence compression. In: Proc. Data Compression
Conference. IEEE; 2007:43–52.

3. Kryukov, K, Ueda, MT, Nakagawa, S, et al. Sequence Compres-
sion Benchmark (SCB) database—A comprehensive evaluation
of reference-free compressors for FASTA-formatted sequences.
Gigascience 2020;9(7): doi:10.1093/gigascience/giaa072.

4. Christley, S, Lu, Y, Li, C, et al. Human genomes as email attach-
ments. Bioinformatics 2009;25(2):274–5.

5. Pavlichin, DS, Weissman, T, Yona, G. The human genome con-
tracts again. Bioinformatics 2013;29(17):2199–202.

6. Ochoa, I, Hernaez, M, Weissman, T. iDoComp: a compression
scheme for assembled genomes. Bioinformatics 2015;31(3):626–
33.

7. Yao, H, Ji, Y, Li, K, et al. HRCM: An efficient hybrid referential
compression method for genomic big data. Biomed Res Int 2019:
doi:10.1155/2019/3108950.

8. Liu, Y, Wong, L, Li, J. Allowing mutations in maximal
matches boosts genome compression performance. Bioinformat-
ics 2020;36(18):4675–81.

9. Deorowicz, S, Grabowski, S. Robust relative compression of
genomes with random access. Bioinformatics 2011;27(21):2979–
86.

10. Wandelt, S, Leser, U. FRESCO: Referential compression of
highly similar sequences. IEEE/ACM Trans Comput Biol Bioinform
2013;10(5):1275–88.

11. Deorowicz, S, Danek, A, Niemiec, M. GDC 2: Compression of large
collections of genomes. Sci Rep 2015;5:11565.

12. Silva, M, Pratas, D, Pinho, AJ. Efficient DNA sequence
compression with neural networks. Gigascience 2020;9(11):
doi:10.1093/gigascience/giaa119.

13. Mohammed, MH, Dutta, A, Bose, T, et al. DELIMINATE—a
fast and efficient method for loss-less compression of ge-
nomic sequences: Sequence analysis. Bioinformatics 2012;28(19):
2527–9.

14. Kryukov, K, Ueda, MT, Nakagawa, S, et al. Nucleotide Archival
Format (NAF) enables efficient lossless reference-free com-
pression of DNA sequences. Bioinformatics 2019;35(19):
3826–8.

15. Kuruppu, S, Puglisi, SJ, Zobel, J. Relative Lempel-Ziv compression
of genomes for large-scale storage and retrieval. In: E Chávez,
S Lonardi, eds. String Processing and Information Retrieval - 17th
International Symposium, SPIRE 2010, Los Cabos, Mexico. Springer;
2010:201–6.

16. Belazzougui, D, Cáceres, M, Gagie, T, et al. Block trees. J Comput
Syst Sci 2021;117:1–22.

17. Rahn, R. Weese, D, Reinert, K. Journaled string tree–a scalable
data structure for analyzing thousands of similar genomes on
your laptop. Bioinformatics 2014;30(24):3499–505.

18. Gagie, T, Puglisi, S. Searching and indexing genomic databases
via kernelization. Front Bioeng Biotechnol 2015;3:12.

19. libdeflate. https://github.com/ebiggers/libdeflate. Accessed: 25
November 2020.

20. Kuhnle, A, Mun, T, Boucher, C, et al. Efficient construction of a
complete index for pan-genomics read alignment. J Comput Biol
2020;27(4):500–13.

21. Sherman, RM, Salzberg, SL. Pan-genomics in the human genome
era. Nat Rev Genet 2020;21:243–54.

22. Danek, A, Deorowicz, S, Grabowski, S et al. Indexes of
large genome collections on a PC. PLoS One 2014;9(10):
doi:10.1371/journal.pone.0109384.

23. Kuruppu, S, Beresford-Smith, B, Conway, T, et al. Iterative dictio-
nary construction for compression of large DNA data sets. IEEE
ACM Trans Comput Biol Bioinform 2012;9(1):137–49.

24. Kuruppu, S, Puglisi, SJ, Zobel, J et al. Reference sequence con-
struction for relative compression of genomes. In: R Grossi, F Se-
bastiani, F Silvestri, eds. String Processing and Information Retrieval.
SPIRE 2011. Springer; 2011:420–5.

25. Grabowski, S, Kowalski, TM. Supporting data for “MBGC: Multi-
ple Bacteria Genome Compressor.” GigaScience Database 2021.
http://dx.doi.org/10.5524/100967.

https://github.com/ebiggers/libdeflate
http://dx.doi.org/10.5524/100967

