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Ubiquitination is a process that acts upon every step of the HIV replication cycle. The
activity, subcellular localization, and stability of HIV dependency factors as well as negative
modulators can be affected by ubiquitination. These modifications consequently have an
impact on the progression and outcome of infection. Additionally, recent findings suggest
new roles for ubiquitination in the interplay between HIV and the cellular environment,
specifically in the interactions between HIV, autophagy and apoptosis. On one hand,
autophagy is a defense mechanism against HIV that promotes the degradation of the viral
protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives
virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV
replication. Hence, this post-translational modification in Gag represents a double-
edged sword: necessary for virion biogenesis, but potentially detrimental under
conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent
autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor
BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in
both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated
BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and
PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by
enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might
promote apoptosis. Moreover, this effect of Nef might account for HIV-associated
disorders. In this article, we outline our current knowledge and provide perspectives of
how ubiquitination impacts the molecular interactions between HIV, autophagy
and apoptosis.
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UBIQUITINATION IN THE MUTUAL
ANTAGONISM BETWEEN HIV AND
AUTOPHAGY
Ubiquitination post-translational modifications are used for
multiple purposes including signaling transduction, enhancing
protein function, driving protein subcellular localization and
targeting proteins for degradation (1–3). One of these degradation
pathways is autophagy, which targets components in the cytosol,
including subcellular organelles and microbial pathogens, for
lysosomal degradation. Whereas Lys-48 polyubiquitination
commonly directs substrates to the proteasome (4–7), autophagy
cargos are usually tagged with Lys-63 ubiquitin chains (4, 7, 8).
Specifically, Lys-63 polyubiquitinated molecules are recognized by
the ubiquitin binding domain (UBD) of different specialized
autophagic receptors, including SQSTM1/p62. These receptors can
simultaneously bind to ubiquitinated cargo and autophagosomal
markers (i.e., LC3), allowing for the encapsulation of substrates into
elongating autophagosomes (9–11).

Autophagy itself is highly regulated, in part through
ubiquitination, as well as other post-translational modifications
(1). For instance, ULK1, a serine/threonine kinase responsible
for inducing autophagy under conditions of amino acid
withdrawal, is ubiquitinated by the E3 ubiquitin ligase TRAF6,
which enhances ULK1’s function and stability (12). Moreover,
TRAF6 ubiquitinates Beclin1/BECN1, which promotes
autophagy induced by Toll-like receptor 4 signaling (13). p62
activity can similarly be regulated through E2-supported
ubiquitination by UB2D2/UB2D3, which allows for this
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receptor to recognize cargo (14) (Figure 1). In addition to
triggering autophagy, ubiquitination can also down-regulate
this pathway by targeting components of this cascade for
degradation (15). Particularly, the ubiquitination of (i) ULK1
and VPS34 by the E3 ligase Cul3-KLHL20, (ii) BECN1 by
RNF216, and (iii) AMBRA1 by Cullin-4, promotes the
proteasomal degradation of these autophagy regulators and,
thus, reduces autophagy flux (16–19) (Figure 1). Additionally,
many members of the tripartite motif (TRIM) family of E3
ligases regulate autophagy, although their mode of action does
not always involve ubiquitination. Among the TRIM proteins
that positively modulate autophagy we find TRIM5a, TRIM6,
TRIM16, TRIM17, TRIM20, TRIM21, TRIM22, TRIM23,
TRIM49 and TRIM50. These molecules trigger autophagy in
response to stimuli such as viral infections, cell damage, IFNg
stimulation and pattern recognition receptor (PRR) engagement
(20–28). Examples of TRIM members that down-regulate
autophagy are TRIM17, TRIM28, TRIM37 and TRIM59.
Despite its ability to promote autophagy of midbodies,
TRIM17 can also hinder autophagy by stabilizing the
autophagy inhibitor MCL1. In an analogous manner, TRIM37
increases the stability of mTOR, which naturally keeps
autophagy off (29–31). By contrast, rather than enhancing the
activity of autophagy inhibitors, TRIM28 and TRIM59 prevent
autophagy through the ubiquitination and subsequent
degradation of the positive regulators AMPK1a and TRAF6,
respectively (32, 33) (Figure 1). Although not through
ubiquitination, LC3 – a key player in autophagy initiation,
progression and execution – is regulated through a ubiquitin-
FIGURE 1 | The intersections between HIV infection and autophagy mediated by ubiquitination. The autophagy pathway and known interactions with HIV proteins
are shown with regards to ubiquitination. Solid arrows represent the transfer of a ubiquitin group, direct contribution to the autophagy pathway, or show the steps of
the autophagy cycle. Dotted lines represent substrates targeted for elimination. Red lines or arrows represent autophagy inhibition at corresponding steps in the
pathway.
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like process. Particularly, LC3 becomes lipidated and this post-
translational modification requires the concerted action of
enzymes that mimic the function of the E1, E2 and E3
enzymes involved in ubiquitination, and they are often referred
to as E3-like ligases (34–36).

Ubiquitination also plays a role in viral infections, including
HIV. On one hand, the HIV accessory proteins Vif, Vpr, Vpx
and Vpu usurp ubiquitination signaling to target host factors –
which would otherwise limit virion production – for proteasomal
or lysosomal degradation (37–41), and also for autophagy-
mediated clearance (42). For instance, Vpu has been reported
to re-route the restriction factor Tetherin/BST2 to
autophagosomes in a non-canonical manner (Figure 1). On
the other hand, ubiquitination can cause the degradation of
HIV proteins through the proteasomal, lysosomal and/or
autophagy pathways. For example, the ubiquitination of the
HIV core by TRIM5a promotes the proteasomal degradation
of the capsid and premature termination of reverse transcription.
In addition to this well-known activity, TRIM5a also triggers
autophagy in response to HIV infection and leads to the
autophagic degradation of the HIV core (20, 21) (Figure 1).
Another example of ubiquitin-dependent degradation is that of
the HIV protein Tat, which is responsible for switching from a
state of viral latency to one of productive replication. Tat is
ubiquitinated by the E3 ligase CHIP, which consequently causes
its proteasomal degradation, and thus, negatively impacts viral
transcription (43). However, Tat is also susceptible to
ubiquitination in a non-degradative manner by the E3 ligase
PJA2. Specifically, PJA2 adds atypical ubiquitin chains to Tat that
increase its transactivating potential (44). Besides being degraded
at the proteasome, Tat has also been found as an autophagy
target in CD4+ T cells, although its ubiquitination is not required
to route it to autophagosomes (45). Conversely, Tat has been
reported to down-regulate autophagy in neurons (46). Similar to
Tat, Vif is also directed for autophagy-mediated clearance in a
ubiquitin-independent manner through an association with the
HDAC6 deacetylase (47). Paradoxically, Vif has been reported to
inhibit canonical autophagy by associating with LC3 and
preventing its incorporation into autophagosomal structures.
Although the underlying mechanism by which Vif achieves
this is not well understood, it does not seem to rely on LC3
ubiquitination or degradation (48).

The dichotomy of Tat and Vif in their relationship with the
autophagy machinery underscores that the autophagy-HIV
interactions are complex. Actually, conflicting reports exist
regarding this interplay, with studies supporting that
autophagy enhances or inhibits the progression of infection,
depending on cell type (20, 45, 49–56). However, our group
recently found that the HIV Gag polyprotein, the immature
precursor of several structural proteins required for virion
maturation, is degraded through autophagy regardless of cell
type (57). Since Gag is susceptible to ubiquitination, which is part
of its role in facilitating virion budding, it is likely that the
targeting of Gag to autophagosomal membranes requires
ubiquitination as well. In fact, our previous work on breast
cancer-associated gene 2 (BCA2), a RING finger E3 ubiquitin
Frontiers in Immunology | www.frontiersin.org 3
ligase, showed that this protein promotes the ubiquitination and
subsequent lysosomal degradation of HIV Gag (58). Hence, Gag
ubiquitination could similarly tag this protein for autophagy-
mediated clearance (Figure 1). Despite the antiviral potential of
autophagy against HIV, our work also revealed that the virus has
evolved mechanisms to counteract the autophagy-mediated
destruction of viral elements needed for replication, including
Gag. In particular, the HIV protein Nef counteracts the antiviral
effects of autophagy. Importantly, while Nef is not required for
replication in vitro, it enhances infection and contributes to
pathogenesis in vivo by affording immune evasion through
multiple mechanisms, including MHC-I down-regulation and
counteraction of the restriction factors SERINC3 and SERINC5
[reviewed in (59)]. Besides these roles, Nef was also known to
prevent viral degradation caused by autophagy through (i) a
physical association with BECN1, inhibiting in turn
autophagolysosomal biogenesis, and (ii) by promoting the
cytosolic sequestration of the transcription factor TFEB, a
master regulator of autophagy genes (49, 50, 55, 60, 61). In
both models, the ultimate outcome is a defect in the fusion
between autophagosomes and lysosomes. In support of these
findings, we also found that Nef blocks autophagy maturation.
However, we uncovered an additional mechanism by which Nef
blocks autophagy at early stages of the cascade, and that requires
a physical association between Nef and the E3 ubiquitin ligase
Parkin/PRKN. Specifically, Nef recruits PRKN to promote the
mono-ubiquitination of BCL2, an autophagy inhibitor (Figure 1)
(57). Under normal conditions, BCL2 interacts with the
autophagy initiator BECN1 to prevent autophagosome
formation. However, under conditions of stress, BECN1
dissociates from BCL2 to initiate autophagosome biogenesis
(62–64). Remarkably, the sequestration of BECN1 by BCL2 is
enhanced if BCL2 is mono-ubiquitinated (65). In fact, we found
that the Nef-mediated recruitment of PRKN not only increases
BCL2 ubiquitination but also BECN1-BCL2 association. As a
consequence of this, autophagosome formation is severely
inhibited, while Gag levels and virion production are restored
(Figure 1) (57). Based on these observations, we conclude that,
besides its already described roles in autophagy maturation, Nef
circumvents the autophagy block by intersecting with an early
event in the autophagy cascade.
EFFECTS OF THE NEF-PROMOTED
UBIQUITINATION OF BCL2 ON
AUTOPHAGY AND APOPTOSIS

The increased levels of ubiquitinated BCL2 promoted by Nef
may have further implications for infected cells. BCL2 is found in
multiple subcellular compartments, including the endoplasmic
reticulum (ER) and the mitochondria (66–68). ER-associated
BCL2 is mainly involved in the regulation of autophagy through
its interaction with BECN1, as stated above. Specifically, BCL2
binds to the BCL2 homology domain 3 (BH-3 domain) of
BECN1 and sequesters this molecule, which in turn impairs
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autophagy at both initiation and maturation stages. Autophagy
initiation and maturation are dependent on the respective
formation of the protein complexes PI3K-C1 and PI3K-C2
(class III PI 3-kinase complex 1 and complex 2). The core
structure of PI3K-C1 consists of VPS34, BECN1, VPS15, and
ATG14. PI3K-C2 core structure differs from C1 by the absence of
ATG14 and the addition of UVRAG. The presence of ATG14 or
UVRAG targets each complex towards phagophore membranes
or autophagosomal membranes, which helps modulate
autophagy initiation and maturation, respectively (69–71).
Besides its role in sequestering BECN1, BCL2 may additionally
intersect with C1/C2 and inhibit VPS34 kinase activity by
blocking BECN1 interactions with ATG14 and UVRAG in
their respective complexes (57, 69, 72, 73). The resulting effect
of BCL2 binding to BECN1 is an overall antagonization of
autophagy. Although this phenomenon has been described in
more detail for C1 formation, the sequestration of free BECN1
might also impact the biogenesis of C2 and, thus, autophagy
maturation (Figure 2A). Therefore, a major point of regulation
in autophagy is the promotion and reduction of BECN1-
BCL2 complexes.

Besides its ability to associate with the ER, BCL2 and other
members of the BCL2 family can also be found at the
mitochondria, where they regulate apoptosis by controlling the
permeabilization of the outer mitochondrial membrane.
Apoptosis is an essential process that removes damaged or
infected cells in an orderly fashion. Under conditions of
extreme stress or damage, pro-apoptotic effector proteins, such
as BCL2-associated X protein (BAX) or BCL2 antagonist/killer-1
(BAK), homo-oligomerize to form pores on the outer
Frontiers in Immunology | www.frontiersin.org 4
mitochondrial membrane (74–77). The formation of these
pores allows for cytochrome C to escape from the
mitochondrial lumen. The release of cytochrome C to the
cytosol enables its binding to the apoptotic protease activating
factor (Apaf-1) and consequently triggers multiple caspase
cascades that lead to this controlled death fate (77–79).
Conversely, under healthy conditions, BCL2 pro-survival
proteins directly bind to the BH3 domain in BAX to prevent
pore formation on the outer mitochondrial membrane, which in
turn prevents apoptosis (80, 81). Due to the importance of
maintaining a healthy cell survival/cell death equilibrium, there
are other relevant cellular factors involved in this apoptotic
regulation. In particular, the BH3 domain of BCL2-associated
agonist of cell death (BAD) is able to directly bind to
mitochondria-associated BCL2 to hamper its anti-apoptotic
function (82–84) (Figure 2B). Therefore, the BCL2-mediated
inactivation of BAX, as well as its own regulation via BAD
interaction, are crucial to control mitochondrial membrane
integrity and consequently cell survival.

Whereas its subcellular localization dictates which cellular
pathway will be susceptible for BCL2-mediated inhibition
(autophagy vs. apoptosis), post-translational modifications of
BCL2 will regulate the degree of restriction exerted over these
two pathways. From this perspective, BCL2 is susceptible to
become phosphorylated at Ser70 by the JNK1 kinase (85–87).
When this phosphorylation occurs at the ER, it causes a
reduction in the association between BCL2 and BECN1 and
thus, it facilitates autophagy activation and progression by
increasing the availability of BECN1 (62, 64, 85) (Figure 2A;
top). Alternatively, JNK1 as well as other kinases have been
A

B

FIGURE 2 | Implications of the phosphorylation and ubiquitination of BCL2 at the ER and mitochondria. The figure illustrates the regulation of BCL2 functions
through its post-translational modifications at different subcellular localizations, depicting the potential effect of BCL2 ubiquitination on autophagy and apoptosis.
(A) presents the roles of BCL2 in the endoplasmic reticulum (ER), whereas (B) depicts the roles of BCL2 at the mitochondria. The dotted frame in (B) represents
putative roles.
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reported to mediate the phosphorylation of both BCL2 and its
inhibitor BAD at the outer mitochondrial membrane (86, 88).
This phosphorylation can promote the dissociation of BCL2
from BAD, which enables BCL2 anti-apoptotic function by
increasing the ratio BCL2 to BAX (86, 88) (Figure 2B; top).

As noted above, in addition to phosphorylation, BCL2 is
mono-ubiquitinated by PRKN. Of note, PRKN primarily
localizes at the mitochondria where it helps regulate
mitochondrial quality control, namely through mitophagy –
the autophagy of mitochondria – when these organelles are
impaired (89–91). The Nef-promoted mono-ubiquitination of
BCL2 at the ER increases its stability and enhances its association
with BECN1 to further restrict the early stages and progression of
the autophagy pathway (57, 65) (Figure 2A; bottom). Besides
facilitating BCL2 mono-ubiquitination at the ER, HIV Nef also
increases mono-ubiquitination and stability of the BCL2 isoform
in the mitochondria, although it does not cause an enhancement
in its association with BECN1 (57). However, the potential
impacts of mitochondrial BCL2 mono-ubiquitination on
mitophagy and apoptosis are yet to be determined. One could
speculate in this matter that, analogously to what applies for the
ER in terms of BCL2-BECN1 interactions, the mono-
ubiquitination of BCL2 at the mitochondria might promote
BCL2-BAD association and consequently, facilitate cell death
through apoptosis (Figure 2B; bottom).
DISCUSSION AND CONCLUDING
REMARKS

The effects of the Nef-dependent mono-ubiquitination of BCL2
could have strong implications in our understanding of the role
of Nef in the development of pathologies associated with HIV+

individuals. First of all, the fact that not only Nef impacts
autophagy restriction but also might facilitate apoptotic events
through the PRKN-dependent mono-ubiquitination of BCL2
could provide mechanistic support to previous studies that
connect Nef expression and apoptosis in different cell types,
such as cardiomyocytes, brain endothelial cells or CD4+ T cells
(92–94). Importantly, this Nef-mediated apoptosis may be
responsible, at least in part, for the depletion of infected as
well as bystander CD4+ T cells, which is the main cause of the
immunodeficiency observed in infected individuals.
Additionally, the effect of the Nef-enhanced ubiquitination of
BCL2 on autophagy could also account for the development of
other HIV-associated pathologies, including HIV-associated
neurological disorders (HAND) or HIV-associated pulmonary
hypertension (HIV-PH) (95–97). These conditions are not only
relevant because of their undesired symptomatology and
prognosis, but also because they are usually associated with
persons living with HIV, even those controlling the infection
due to their adherence to the antiretroviral regimens. Whereas
Nef expression has been linked to the development of these
pathologies, the underlying mechanisms still remain unknown.
Remarkably, several studies have demonstrated that autophagic
Frontiers in Immunology | www.frontiersin.org 5
dysfunction is directly associated with pulmonary hypertension
as well as numerous neurological and cognitive conditions,
including HAND (96, 98, 99). In fact, autophagy dysregulation
by HIV Tat has been linked with neuronal degeneration (46), so
the effect of Nef on BCL2 ubiquitination and its role in
autophagy might exacerbate neuronal damage. In addition,
malfunction of the ubiquitin ligase PRKN seems to be
associated with neurological disorders (100, 101). Therefore,
Nef’s capacity to intersect with autophagy through the
recruitment of PRKN to drive the mono-ubiquitination of
BCL2 might be a key driver in the development of these HIV-
associated conditions.

Ubiquitin has a relevant position in the arms-race between
HIV and the host cell environment. Despite being required for
viral particle assembly, the ubiquitination of HIV Gag might be
tagging this protein for the so-called ‘kiss of death’ fate.
Conversely, HIV has evolved a strategy to hijack the cellular
ubiquitin machinery in order to overcome this hurdle. This
mechanism involves the mono-ubiquitination of BCL2 that, in
addition to preventing the degradation of Gag, might also be
lifting the endogenous control over apoptosis. This in turn could
have a wide range of implications for the pathogenesis and
prognosis of HIV+ individuals. Therefore, further elucidation
of the role of ubiquitin within the interplay between HIV and the
host could be promising for the identification of new therapeutic
targets against this virus.
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