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Reconstruction of Toll-like receptor 
9-mediated responses in HEK-
Blue hTLR9 cells by transfection 
of human macrophage scavenger 
receptor 1 gene
Shozo Ohtsuki   1, Yuki Takahashi1, Takao Inoue2, Yoshinobu Takakura1 & Makiya Nishikawa1,3

We used human Toll-like receptor 9 (hTLR9)-expressing HEK-Blue hTLR9 cells, which release secreted 
embryonic alkaline phosphatase (SEAP) upon response to CpG DNA, to evaluate the immunological 
properties of nucleic acid drug candidates. Our preliminary studies showed that phosphodiester CpG 
DNA hardly induced any SEAP secretion in HEK-Blue hTLR9 cells. In the current study, therefore, we 
developed HEK-Blue hTLR9 cells transduced with human macrophage scavenger receptor-1 (hMSR1), 
a cell-surface DNA receptor, and determined whether HEK-Blue hTLR9/hMSR1 cells respond to 
phosphorothioate (PS) CpG DNA and phosphodiester (PO) CpG DNA. We selected PS CpG2006, a single-
stranded PO CpG DNA (ssCpG), and a tetrapod-like structured DNA (tetrapodna) containing ssCpG 
(tetraCpG) as model TLR9 ligands. Alexa Fluor 488-labeled ligands were used for flow cytometry. Unlike 
the mock-transfected HEK-Blue hTLR9 cells, the HEK-Blue hTLR9/hMSR1 cells efficiently took up all 
three CpG DNAs. SEAP release was almost proportional to the uptake. Treatment of HEK-Blue hTLR9/
hMSR1 cells with an anti-hMSR1 antibody significantly reduced the uptake of ssCpG and tetraCpG. 
Collectively, reconstruction of TLR9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells can be 
used to evaluate the toxicity of nucleic acid drug candidates with diverse physicochemical properties.

Various classes of nucleic acid drugs have been marketed or are being developed. Attention must be paid to toxic-
ity issues during the development of nucleic acid drugs1. Nucleic acid drug candidates have several toxicity issues, 
including off-target effects, immune stimulation, hematoxicity, hepatotoxicity, and nephrotoxicity. Immune stim-
ulation occurs when toll-like receptors (TLRs) recognize DNA or RNA. Several reports have suggested that cer-
tain small interfering RNA molecules cause immune stimulation via TLRs2–8. Therefore, it is clearly important to 
evaluate unintentional TLR-mediated immune stimulation in the development of nucleic acid drug candidates.

TLR9 is the only TLR that recognizes DNA. Its ligand is a DNA molecule containing an unmethylated cyto-
sine–phosphate–guanine (CpG) motif, i.e., CpG DNA. Because bacterial and viral DNAs contain many CpG 
motifs, TLR9-mediated responses form part of the self-defense system against the invasion of such pathogens9–11. 
TLR9 is expressed in the endosomes of various mammalian cells, including plasmacytoid dendritic cells and 
B-cells12. After cellular uptake and sorting into endosomes, CpG DNA binds to TLR9 and induces the release of 
proinflammatory cytokines, which then activate innate immunity13,14. It is expected that such responses can be 
exploited to treat cancer, infection, and allergic diseases15,16. We have previously reported that nano-construction 
of CpG DNA is a unique and promising method of increasing the immunostimulatory activity of CpG DNA17. 
Studies using a series of polypod-like structured DNAs demonstrated that the cellular uptake of CpG DNA was 
significantly increased by its incorporation into nanostructured DNAs18–20. However, the mechanisms involving 
the structure-dependent uptake of DNA require further elucidation.
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The endosomal localization of TLR9 indicates that membrane protein(s) other than TLR9 are responsible for 
the cellular uptake of DNA. So far, several DNA receptors have been reported. These include macrophage scaven-
ger receptor-1 (MSR1, SR-A, and CD204), αMβ2 (MAC-1), advanced glycosylation end product-specific receptor 
(AGER), membrane-associated nucleic acid-binding protein (MNAB), mannose receptor-1 (MRC1), and lym-
phocyte antigen 75 (DEC-205)21–26. However, in most cases their contribution to DNA uptake has been examined 
using phosphorothioate (PS) DNA, which non-specifically binds to cell membranes more strongly than natural 
phosphodiester (PO) DNA. The results obtained with PS DNA cannot be used to estimate the contribution of 
DNA receptors in the cellular responses to nucleic acid drug candidates. Msr1, which mediates the endocytosis of 
negatively charged molecules such as acetylated low-density lipoprotein (LDL) and oxidized LDL, is reportedly 
involved in the uptake of PO DNA by macrophages21. Therefore, Msr1-mediated DNA uptake could be involved 
in TLR-mediated immune stimulation by nucleic acid drug candidates.

HEK-Blue TLR cells are commercially available and can be used for the analysis of the immunological prop-
erties of various TLR ligands27. HEK-Blue hTLR9 cells respond to PS CpG DNA and release secreted embryonic 
alkaline phosphatase (SEAP)28. However, our preliminary studies have shown that PO CpG DNA induces very 
little SEAP release from HEK-Blue hTLR9 cells. Because HEK293 cells, which constitute the parent cell line of 
HEK-Blue TLR9 cells, are non-immune cells, they do not express any DNA receptors on their cell membranes. 
Therefore, we hypothesized that low cellular uptake of CpG DNA by HEK-Blue hTLR9 cells might explain the 
weak or absent response to PO CpG DNA. Therefore, in the present study, we sought to establish cell lines that 
respond to both PS and PO CpG DNAs. Such cells would be useful for the screening of nucleic acid drug candi-
dates with diverse physicochemical properties. To this end, we transduced HEK-Blue hTLR9 cells with human 
MSR1 to obtain HEK-Blue hTLR9/hMSR1 cells in the hope that the transfection of the MSR1 gene to HEK-Blue 
hTLR9 cells would increase the uptake of PO DNA. We first evaluated the effect of transfection of the MSR1 
gene on the cellular uptake of DNA. We then determined whether HEK-Blue hTLR9/hMSR1 cells respond to 
both PS and PO CpG DNAs. We selected phosphorothioate CpG2006 (PS CpG2006), a single-stranded PO CpG 
DNA (ssCpG), and a tetrapod-like structured DNA containing the ssCpG (tetraCpG) as model TLR9 ligands. 
HEK-Blue hTLR9 cells and HEK-Blue hTLR7 cells were also used for the analysis of cellular responses to CpG 
DNA.

Results
Establishment of HEK-Blue hTLR9/hMSR-1 Cells.  Figure 1A shows the results of western blotting anal-
ysis of the cell lysates using anti-hMSR1 antibody. The lysate of HEK-Blue hTLR9/hMSR1 cells revealed a band 
of approximately 75 kDa, which corresponded to the FLAG-tagged hMSR1. The band was not detected in the 
lysates of the untreated or mock-transfected HEK-Blue hTLR9 cells, indicating that FLAG-tagged hMSR1 was 
expressed in the HEK-Blue hTLR9/hMSR1 cells. We examined the localization of hMSR1 in the HEK-Blue hTLR9 
cells using confocal microscopy. Figure 1B presents confocal microscopy images of untreated, mock-transfected, 
and MSR1-transfected HEK-Blue hTLR9 cells. The Alexa Fluor 488-labeled anti-FLAG antibody was bound to 
the cell surface of the HEK-Blue hTLR9/hMSR1 cells. However, there was little fluorescence in the untreated or 
mock-transfected cells. These results indicate that hMSR1 localized at the cell surface of the HEK-Blue hTLR9/
hMSR1 cells.

Evaluation of the functions of HEK-Blue hTLR9/hMSR-1 cells.  Figure 2 shows the results of the 
PAGE analysis of ssCpG and tetraCpG prepared at a DNA concentration of 100 μM. ssCpG and tetraCpG are 
represented by single PAGE bands, indicating that tetraCpG had been prepared with high efficiency.

Figure 3 shows the MFI of the HEK-Blue hTLR9 cells, the mock-transfected HEK-Blue hTLR9 cells, and the 
HEK-Blue hTLR9/hMSR1 cells after the addition of Alexa Fluor 488-labeled DNA samples. The MFI values of the 
HEK-Blue hTLR9/hMSR1 cells were significantly higher than those of the mock-transfected HEK-Blue hTLR9 
cells after addition of Alexa Fluor 488-ssCpG or tetraCpG. There was no significant difference in the MFI value of 
the HEK-Blue hTLR9/hMSR1 cells between Alexa Fluor 488-ssCpG and tetraCpG. In contrast, the MFI values of 
the cells after addition of Alexa Fluor 488-PS CpG2006 were not significantly different among the cells, irrespec-
tive of hMSR1 expression (data not shown).

Figure 4 shows SEAP activity after the addition of PS CpG2006, ssCpG, and tetraCpG. The HEK-Blue hTLR9 
cells or mock-transfected HEK-Blue hTLR9 cells released SEAP upon the addition of PS CpG2006, but did not 
release SEAP after the addition of ssCpG or tetraCpG. However, PS CpG2006, ssCpG, and tetraCpG all induced 
SEAP release from the HEK-Blue hTLR9/hMSR1 cells. There was no significant difference in SEAP activity after 
the addition of PS CpG2006 among the three types of cells. The SEAP activities of the HEK-Blue hTLR9/hMSR1 
cells were comparable with each other after the addition of ssCpG and tetraCpG.

The uptake of Alexa Fluor 488-ssCpG and tetraCpG was examined in the presence of anti-hMSR1 antibody to 
confirm the involvement of hMSR1 in the uptake of DNA by HEK-Blue hTLR9/hMSR1 cells. Figure 5 shows the 
MFI of mock-transfected HEK-Blue hTLR9 cells and HEK-Blue hTLR9/hMSR1 cells after the addition of Alexa 
Fluor 488-labeled DNA samples in the presence of hMSR1 antibody or murine IgG1 isotype control antibody. 
Anti-hMSR1 antibody significantly reduced the uptake of Alexa Fluor 488-ssCpG and tetraCpG in the HEK-Blue 
hTLR9/hMSR1 cells.

Experiments using HEK-Blue hTLR7 cells.  To exclude the possibility that the expression of hMSR1 
results in SEAP release without recognition of CpG DNA by TLR9, HEK-Blue hTLR7 cells were used instead of 
HEK-Blue hTLR9. The expression of hMSR1 in HEK-Blue hTLR7/hMSR1 cells was confirmed by western blot-
ting (data not shown). Figure 6 shows SEAP activity after the addition of PS CpG2006, ssCpG, and tetraCpG to 
HEK-Blue hTLR7 cells. CL264, a TLR7 ligand, induced significant SEAP release. In contrast, PS CpG2006, ssCpG, 
and tetraCpG scarcely induced SEAP release from the HEK-Blue hTLR7 cells, irrespective of the expression of 
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hMSR1. These results indicate that SEAP is released from HEK-Blue hTLR9/hMSR1 cells through the recognition 
of CpG DNA by TLR9.

Discussion
In the present study, we demonstrated that HEK-Blue hTLR9 cells efficiently responded to PS CpG DNA, which 
has high binding affinity for cell membranes, whereas they hardly responded to natural, PO CpG DNA, in spite 
of the fact that the cells expressed human TLR9. We also found that the low cellular uptake of PO CpG DNA by 
HEK-Blue hTLR9 cells explains their limited response to PO CpG DNA, and that transformation of the cells with 
a plasmid expressing hMSR1, a DNA receptor, restored the response of the cells to PO CpG DNA. Therefore, 
HEK-Blue hTLR9/hMSR1 cells can be used as a sensitive screening system for compounds that activate TLR9, 
although it could be difficult using HEK-Blue hTLR9/hMSR1 cells to discuss the physiological processes of the 
interaction of CpG DNA with TLR9-expressing cells or the mechanistic details of the cellular uptake of DNA.

The results of the present study suggest that hMSR1 or other DNA receptors are not expressed in HEK-Blue 
hTLR9 or HEK293 cells. HEK293 cells, the parental cell line of HEK-Blue hTLR9 cells, have been widely used for 

Figure 1.  Confirmation of hMSR1 expression in HEK-Blue hTLR9 cells. (A) hMSR-1 protein was detected by 
western blotting using anti-hMSR1 antibody. Bright field (lane 1) and chemiluminescence (lanes 2–4) images 
were shown. Lane 1, protein size marker; lane 2, untreated HEK-Blue hTLR9 cells; lane 3, mock-transfected 
HEK-Blue hTLR9 cells; lane 4, HEK-Blue hTLR9/hMSR1 cells. The full-size and low-contrast images of the 
gel are shown in Supplementary Fig. S1. (B) Confocal microscopy images of untreated, mock-transfected, 
or MSR1-transfected HEK-Blue hTLR9 cells immunostained with anti-FLAG antibody and Alexa Fluor-488 
conjugated anti-mouse IgG1 antibody. Scale bar, 20 μm.
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the transfection of genes because they facilitate easy transformation. Therefore, HEK-Blue hTLR9 cells are also 
suitable for transfection studies. Both HEK293 cells and HEK-Blue hTLR9 cells hardly take up PO DNA, so they 
can be used to explore the receptors responsible for DNA binding, especially PO DNA binding.

MSR1 is a membrane protein that is located on the cell surface of macrophages and dendritic cells29,30. We 
found that the hMSR1 expressed in HEK-Blue hTLR9/hMSR1 cells also localized at the cell membrane (Fig. 1B). 
The MSR1 cDNA used in the present study contained hMSR1 signal-anchor sequences, so it is reasonable to 
assume that hMSR1 is appropriately sorted to the correct destination (the cell membrane). It has been reported 
that ligation to MSR1 induces clathrin-mediated endocytosis, and that the ligands are then sorted to endosomes31. 
The mechanistic details of the uptake of DNA by HEK-Blue hTLR9/hMSR1 cells were not investigated in this 
study, but the efficient response to PO CpG DNA strongly suggests that the cells take up DNA in a similar manner 
to that adopted by other types of cells that express MSR1, such as dendritic cells.

Several reports suggest that hMSR1 is involved in the cellular uptake of PS CpG DNA32. However, the present 
study demonstrated that hMSR1 expression had no significant effect on the cellular uptake of Alexa Fluor 488-PS 
CpG DNA (data not shown) or on SEAP release (Fig. 4). PS CpG DNA binds strongly to cell surfaces33, and would 
mask any hMSR1-mediated cellular uptake of PS CpG DNA, even if it occurred.

Figure 2.  Electrophoretic analysis of ssCpG and tetraCpG. Aliquots of ssCpG and tetraCpG were run on 
6% PAGE at room temperature. Lane 1, 100 bp ladder; lane 2, ssCpG; lane 3, tetraCpG. The full-size and low-
contrast image of the gel is shown as Supplementary Fig. S2.
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Although most TLR9 is found in on the endosomes, TLR9 is also detected on the surface of cells in some cell 
types34,35. Some reports discussed that the cell surface TLR9 promoted the cellular uptake of CpG DNA as well as 
CpG DNA-coupled siRNA36–38. In these studies, PS CpG DNA and the antisense strand of siRNA were conjugated 
and, therefore, a strong binding of PS CpG DNA to the cell surface could lead to efficient uptake of the conjugate. 
Zhang et al. demonstrated that the cell surface TLR9 did not participate in the uptake of CpG DNA37. Therefore, 
the cell surface TLR9 on HEK-Blue hTLR9/hMSR1 cells, even if it exists, would not be critical for the immune 
responses to PO CpG DNA.

Our previous studies demonstrated that RAW264.7, DC2.4, and bone marrow-derived dendritic cells 
(BMDCs) took up nanostructured DNAs more efficiently than single-stranded or double-stranded DNAs17–20,39. 
In the present study, we showed that hMSR1 can recognize nanostructured DNAs, such as tetrapodna. However, 
no significant differences were observed in the uptake by HEK-Blue hTLR9/hMSR1 cells between Alexa Fluor 
488-ssCpG and Alexa Fluor 488-tetraCpG. These differences suggest that cell surface receptors other than MSR1 
or auxiliary molecules are involved in the efficient cellular uptake of DNAs with complicated structures.

Taken together, the results of the present study demonstrate that the reconstruction of toll-like recep-
tor 9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells is useful for evaluating and predicting the 
TLR9-dependent toxicity of nucleic acid drug candidates, irrespective of their physicochemical properties. Our 
results also suggest that the combination of HEK-Blue hTLR9 cells and natural PO CpG DNA can be used to 
screen DNA receptors or DNA-binding proteins on the cell surface. Additional studies on other cell surface DNA 
receptors will improve our understanding of the mechanisms underlying the interactions between DNA and cells 
at the molecular level.

Figure 3.  Uptake of ssCpG and tetraCpG in untreated, mock-transfected, or MSR1-transfected HEK-Blue 
hTLR9 cells. Each Alexa Fluor 488-labeled DNA sample was added to cells at a concentration of 2 μg/mL. The 
results are expressed as means + SEM of three independent experiments. *P < 0.05 compared with the mock-
transfected group.

Figure 4.  Secreted embryonic alkaline phosphatase (SEAP) release from untreated, mock-transfected, or 
MSR1-transfected HEK-Blue hTLR9 cells using HEK-Blue detection solution. Each DNA sample was added 
to the cells at a final concentration of 50 μg/mL, and the OD of the sample was measured at 620 nm. All 
oligodeoxynucleotides (ODNs) have a phosphodiester backbone except for CpG2006. The results are expressed 
as means + SEM of three independent experiments. *P < 0.05 compared with the mock-transfected group.
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Methods
Chemicals.  Dulbecco’s modified Eagle’s medium (DMEM) was obtained from Nissui Pharmaceutical, Co., 
Ltd. (Tokyo, Japan). Sodium chloride, sodium hydrogen phosphate, sodium bicarbonate, potassium chloride, 
glucose, sodium dodecyl sulfate (SDS), methanol, and WIDE-VIEW Prestained Protein Size Marker III were 
purchased from Wako Pure Chemicals Industries, Ltd. (Osaka, Japan). Tris was obtained from Nacalai Tesque 
(Kyoto, Japan). Blasticidin, zeocin, normocin, CL264, and HEK-Blue detection reagents were purchased from 
InvivoGen (San Diego, CA, USA). Opti-modified Eagle’s medium (Opti-MEM) and fetal bovine serum (FBS) 
were obtained from Thermo Fisher Scientific Inc. (Waltham, MA, USA). A 100-base pair (bp) DNA ladder was 
purchased from Takara Bio (Otsu, Japan). All other chemicals were of the highest grade available and were used 
without further purification.

Cell Culture.  HEK-Blue hTLR7 and HEK-Blue hTLR9 cells were obtained from InvivoGen. The cells were cul-
tured in DMEM supplemented with 10% heat-inactivated FBS, 0.2% sodium bicarbonate, 100 IU/mL penicillin, 
100 μg/mL streptomycin, 2 mM l-glutamine, 30 μg/mL blasticidin, 100 μg/mL zeocin, and 100 μg/mL normocin 
at 37 °C in humidified air containing 5% CO2 as per the manufacturer’s instructions.

Figure 5.  Cellular uptake of ssCpG and tetraCpG in mock-transfected or MSR1-transfected HEK-Blue hTLR9 
cells in the presence of mouse IgG1 isotype control or hMSR1 antibody. Each Alexa Fluor 488-labeled DNA 
sample was added to cells at a final concentration of 2 μg/mL. The results are expressed as means + SEM of four 
independent experiments.

Figure 6.  Secreted embryonic alkaline phosphatase (SEAP) release from untreated, mock-transfected, or 
MSR1-transfected HEK-Blue hTLR7 cells using a HEK-Blue detection solution. Each DNA sample was added 
to the cells at a final concentration of 50 μg/mL. The sample optical density (OD) was measured at 620 nm. The 
results are expressed as means + SEM of three independent experiments. CL264; a TLR7 ligand.
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Plasmid DNA.  Plasmid pcDNA3.1 was purchased from Thermo Fisher Scientific Inc. A plasmid vector 
encoding human macrophage scavenger receptor-1 (human MSR1, hSR-A, hCD204) was constructed by inser-
tion of the FLAG-tagged MSR1 fragment amplified by polymerase chain reaction (PCR) from a cDNA clone of 
human MSR1 (GE Healthcare UK Ltd., Buckinghamshire, England) into the multi-cloning site of pcDNA3.1.

Transfection of hMSR1-expressing Plasmid DNA in HEK-Blue Cells.  HEK-Blue hTLR7 and 
HEK-Blue hTLR9 cells were cultured in 75-cm2 tissue culture flasks, and were transfected with a pcDNA3.1 
vector encoding MSR1 or an empty pcDNA3.1 vector using Lipofectamine 2000 (Thermo Fisher Scientific Inc.) 
according to the manufacturer’s instructions. After 20 h of incubation, the cells were used as HEK-Blue hTLR7/
hMSR1 and HEK-Blue hTLR9/hMSR1 cells. The cells transfected with empty pcDNA3.1 vector were used as 
mock controls.

Western Blotting of hMSR1 in HEK-Blue hTLR Cells.  The cells were lysed in a lysis buffer (PicaGene Dual 
Sea Pansy Luminescence Kit, Toyo Ink, Tokyo, Japan), and the cell lysates were reduced by the addition of dithioth-
reitol to 100 mM. A fraction of the cell lysate (7 μg protein) was subjected to 10% SDS-polyacrylamide gel electro-
phoresis (PAGE) and transferred to a polyvinylidene fluoride transfer membrane (Immobilon-P; Merck Millipore 
Ltd, Darmstadt, Germany). The membrane was then blocked in Blocking One (Nacalai Tesque, Kyoto, Japan). The 
membrane was incubated with anti-hMSR1 antibody (R&D Systems, Minneapolis, MN, USA) for 1 h at 20–22 °C. 
The membrane was then incubated with horseradish peroxidase (HRP)-conjugated rabbit anti-mouse IgG antibody 
(Thermo Fisher Scientific Inc.) for 1 h at room temperature. Protein bands were detected by chemiluminescence 
using an Immobilon Western chemiluminescent HRP substrate (Merck Millipore, Billerica, MA, USA).

Confocal Microscopic Detection of hMSR1 in HEK-Blue Cells Transduced with hMSR1.  Untreated, 
mock-transfected, or MSR1-transfected HEK-Blue hTLR9 cells were seeded on a chamber slide at a density of 
3 × 104 cells/well and then cultured for 24 h. The cells were washed twice with phosphate-buffered saline (PBS), 
fixed with 4% paraformaldehyde for 20 min, and washed again twice with PBS. The cells were then blocked with 
20% FBS in PBS for 1 h. The cells were incubated with anti-FLAG M2 antibody (Sigma-Aldrich, St. Louis, MO, 
USA) and 10% FBS in PBS for 1 h at room temperature, and then washed once. The cells were incubated with Alexa 
Fluor 488-labeled anti-mouse IgG antibody (Abcam Plc, Cambridge, UK) for 1 h at room temperature, and washed 
once. The cells were incubated with 600 nM 4′,6-diamidino-2-phenylindole (DAPI; Life Technologies) for 5 min at 
room temperature and washed once. The chamber was then removed and the slide was observed using a confocal 
microscope (A1R MP, Nikon Instech Co., Ltd., Tokyo, Japan) as previously reported39.

Oligodeoxynucleotides.  All oligodeoxynucleotides (ODNs) used were purchased from Integrated 
DNA Technologies, Inc. (Coralville, IA, USA). The sequences of the ODNs used are presented in Table 1. 
Phosphodiester ODN-1, which contained a potent human CpG motif (GTCGTT), was used as single-stranded 
CpG DNA (ssCpG). ssCpG and three other phosphodiester ODNs were dissolved in an annealing buffer (TE 
buffer, 10 mM Tris-HCl, pH 8, 1 mM ethylenediaminetetraacetic acid, and 150 mM sodium chloride) and mixed 
in sterile water to produce a final concentration of 100 μM for each ODN. The mixtures were then incubated 
at 95 °C for 5 min and slowly cooled to 4 °C using a thermal cycler to obtain tetrapodna containing ssCpG 
(tetraCpG). Phosphorothioate CpG2006 (PS CpG2006), a single-stranded B-type CpG DNA, was used as a pos-
itive control to induce SEAP release from the HEK-Blue hTLR9 cells. For cellular uptake experiments, ODN-1 
labeled with Alexa Fluor 488 at the 5′ end was purchased from Japan BioService Co., Ltd. (Saitama, Japan). Each 
sample was analyzed at room temperature by 6% PAGE. The DNA bands were visualized using SYBR Gold 
(Molecular Probes, Eugene OR, USA).

Uptake of DNA in HEK-Blue Cells.  Untreated, mock-transfected, or MSR1-transfected HEK-Blue hTLR9 
cells were seeded onto 48-well plates at a density of 1 × 105 cells/well. Alexa Fluor 488-ssCpG or Alexa Fluor 
488-tetraCpG diluted with 0.1 mL of Opti-MEM was then added to the cells. After 2 h incubation at 37 °C, the 
cells were washed three times with 400 μL of PBS and harvested. The fluorescence intensity of the cells was then 
determined by flow cytometry (Gallios Flow Cytometer; Beckman Coulter, Inc., CA, USA) using Kaluza software 
(version 1.0; Beckman Coulter), and the mean fluorescence intensity (MFI) was calculated. Similar experiments 
were carried out on the untreated, mock-transfected, and HEK-Blue hTLR7 cells.

Name Sequences (5′ → 3′)
Length 
(mer)

ODN-1 TCGTCGTTTTGTCGTTTTGTCGTTTACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA 80

ODN-1′ TACTATGGCGGCTCTTCTCGTGTAGCAAGCTGTAATGTTTCAGACTTAGGAATGT 55

tetrapodna-2 TTACTATGGCGGCTCTTCTCGTGTAGCATAGTGTCGTTTTATCACCAGGCAGTTG 55

tetrapodna-3 TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTTGACAGGTCATCAGCC 55

tetrapodna-4 TGGCTGATGACCTGTCAAGATTCCCACGAGCTGTAATGTTTCAGACTTAGGAATG 55

PS CpG2006 T*C*G*T*C*G*T*T*T*T*G*T*C*G*T*T*T*T*G*T*C*G*T*T 24

Table 1.  The sequences of the oligodeoxynucleotides (ODNs) for the DNA nanostructures. All ODNs have a 
phosphodiester backbone. The asterisks (*) indicate the positions of phosphorothioate (PS) modifications. The 
CpG motif (GTCGTT) is underlined.



www.nature.com/scientificreports/

8ScieNTiFic RepOrTS | 7: 13661  | DOI:10.1038/s41598-017-13890-3

SEAP release from HEK-Blue Cells.  The untreated, mock-transfected, or MSR1-transfected HEK-Blue 
hTLR9 cells were seeded onto 96-well plates at a density of 5 × 104 cells/well. PS CpG2006, ssCpG, or tetraCpG 
in HEK-Blue detection solution was added to the cells to produce a final concentration of 50 μg/mL. After 20 h 
incubation at 37 °C, the optical density (OD) of the samples was measured at a wavelength of 620 nm using a 
microplate reader. Similar experiments were carried out on untreated, mock-transfected, and HEK-Blue hTLR7 
cells.

Inhibition of DNA Uptake in HEK-Blue Cells by Anti-hMSR1 Antibody.  The untreated, 
mock-transfected, or MSR1-transfected HEK-Blue hTLR9 cells were seeded onto 48-well plates at a density of 
1 × 105 cells/well. The cells were pretreated with anti-hMSR1 antibody or IgG1 isotype control (R&D Systems, 
Minneapolis, MN, USA) at a concentration of 2 μg/mL for 1 h. After washing, the cells were treated with 2 μg/
mL Alexa Fluor 488-ssCpG or Alexa Fluor 488-tetraCpG diluted with 0.1 mL of Opti-MEM together with 
anti-hMSR1 antibody or IgG1 isotype control to produce a final concentration of 2 μg/mL. After 2 h incubation at 
37 °C, the cells were washed three times with 400 μL of PBS and harvested. The fluorescence intensity of the cells 
was determined by flow cytometry using Kaluza software, and the MFIs were calculated.

Statistical Analysis.  Differences were evaluated statistically by one-way analysis of variance (ANOVA), fol-
lowed by the Tukey–Kramer test for multiple comparisons and the Student’s t-test for two groups. P < 0.05 values 
were considered statistically significant.
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