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Abstract

RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The
algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network
is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships
between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The
evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting
of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data
generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference
algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference
algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference
methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between
results obtained with this new methods on both synthetic and biological data are promising and they stimulate its
application to a wider range of problems.
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Introduction

The task of gene regulatory network (GRN) inference is a

daunting task not only in terms of devising an effective algorithm,

but also in terms of quantitatively interpreting the obtained results

[1]. Only recently efforts have been carried out towards an

objective comparison of network inference methods also high-

lighting occurring limitations, e.g.: [2–5]. As an example, the

Dialogue for Reverse Engineering Assessments and Methods

(DREAM) challenge is one of the prominent efforts that aims at

evaluating the success of GRN inference algorithms on synthetic

benchmarks data sets.

Early network inference models were based on the analysis of

the correlation coefficients [6,7] between expression patterns of all

pairs of genes to infer co-expression networks. On the basis that

correlation coefficients fail to capture more complex statistical

dependencies among expression patterns (e.g. non-linearity), more

recently general methods based on measures of dependency such

as mutual information have been proposed [7]. Of this class of

algorithms, ARACNE [8] and CLR [9] have been adopted to

address a wide range of network deconvolution problems - from

transcriptional [8] to metabolic networks [10] - and they are often

used as reference benchmark algorithms (e.g.: [4,7,11,12]).

Generally, the inference methods proposed are of very different

nature, ranging from deterministic (systems of differential

equations [13] and Gröbner bases [14]) to stochastic approaches,

e.g.: Boolean [15] or Bayesian [16] algorithms. Such approaches

may also start from different types of gene expression data: time-

course or steady states. Furthermore, the detail and the complexity

of the considered network can also vary: links may carry

information about the direction of the relation (directed graph)

and a weight may be associated to the strength of each link

(weighted graph) [17,18]. Generally, the reconstruction accuracy is

far from being optimal due to drawbacks related to both the

methods and the available data [19].

One of the aspects that makes network inference a daunting task

is its intrinsic underdetermination [2] related to the size of the

search space. It is often the case that the expression profiles of

thousands of genes (e.g. approximately 4500 in the case of

Escherichia coli), controlled by hundreds of regulators (e.g.

approximately 300 known transcription factors in Escherichia coli),

are recorded for a limited amount of experimental conditions -

about 450 for the last publicly available Escherichia coli gene

expression data set. Thus, considering also possible combinatorial

regulations and feedback loops, the number of possible solutions of

the inference problem becomes prohibitively large compared to

the available experimental measurements at hand.

In this work we introduce a novel inference method called

Reverse Engineering Gene Networks with Artificial Neural

Networks (RegnANN). This inference algorithm, trained using

steady state data as provided by microarray data, builds a multi-

variable regressor (one to many) for each gene in the network. The

algorithm is based on an ensemble of Multilayer Perceptrons

(MLPs) trained using steady state data. RegnANN estimates the

neighborhood of each gene (the correlations among one gene and all

the others) independently and then it joins these neighborhoods to

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28646



form the overall network. RegnANN performance is compared

with those of top-scoring methods such as KELLER [20],

ARACNE [8] and CLR [9]. To improve the general efficiency

of RegnANN we implement the algorithm using the GPGPU

programming paradigm [21]. The main feature of the novel

method presented is that it makes no assumptions about the nature

of the relationships between the variables, potentially capturing

high-order and non linear dependencies between expression

patterns. On the other hand, RegnANN differs greatly from other

published methods based on ANN or simple binary perceptron

(e.g.: [22–26]): it is a multi-variable regressor (one input variable,

many output variables) trained using steady states data for

determining gene interactions.

In evaluating the performance of the four different network

inference methods, first we settle in a controlled situation with

synthetic data and then we focus on a biological setup by analyzing

transcriptional subnetworks of Escherichia coli.

The general performance of the network inference task is

evaluated in terms of Matthews Correlation Coefficient - MCC

[27]. MCC is becoming the accuracy measure of choice in many

application fields of machine learning and bioinformatics: it is one

of the best methods for summarizing into a single value the

confusion matrix of a binary classification task, recently adopted

also for network topology comparison [28].

The experimental evaluation firstly verifies RegnANN ability of

inferring direct and indirect interactions among genes and possible

cooperative interaction between putative regulators on a set of toy

experiments. Considering only the underlying topology (e.g.:

undirected unweighted graph), we then focus on synthetic data

mimicking plausible submodules of larger networks generated

according to both Barabasi [29] and Erdös-Rényi [30] models. In

doing so, we focus on a scenario of reduced search space/extended

amount of independent information [2]. To tackle various aspects

of the problem of network inference, we analyze the effect of, e.g.:

increasing the amount of available data while varying the topology

of the network, the number of nodes in the network, the data

synthesis method and the inference algorithm applied.

We finally demonstrate our approach on a biological data set

consisting of a selected number of subnetworks of Escherichia coli

including a number of genes ranging from 7 to 104. The

expression data consists of 445 microarray expression profiles

collected under different experimental conditions.

Results

In order to present coherently the results obtained on synthetic

data, we start firstly with an evaluation of RegnANN ability of

inferring direct and indirect interactions among genes and possible

cooperative interaction between putative regulators (e.g.: tran-

scription factors). This is done on four toy examples considering

interaction among four genes.

The second phase of our analysis focuses on the effect of varying

the amount of available data in the task of network inference while

considering a fixed threshold for the binarization of the inferred

adjacency matrix. The performance in terms of MCC obtained

with RegnANN is systematically compared with the ones obtained

by KELLER. The accuracy of each inference method is firstly

evaluated on synthetic data by varying the topology of the

network, the amount of data available and the method adopted to

synthesize the data. Once the topology of the network is

(randomly) selected, the desired amount of data is synthesized

according to the generation method of choice, the network

inference methods are applied and the MCC score calculated. We

consider discrete (in {0, 1}) symmetric adjacency matrices for fair

comparison between the two methods as KELLER does not infer

coupling direction, nor the strength of the interaction. To account

for intrinsic instability of each inference method, data generation

and network inference are repeated 10 times for each given

network topology and the MCC score is estimated as the mean of

the 10 independent runs. The error of the measurement is

expressed as twice the standard deviation. In order to generalize

from the selected network topology, the entire procedure is

repeated 10 times and the final accuracy score (MCC) is calculated

as the mean accuracy for each run. Similarly, the error of the

accuracy score is estimated as the mean of the error for each run.

Our analysis explores the effect of varying the mean degree of the

nodes in the case of Erdös-Rényi networks and the exponent of the

power-law for Barabasi networks in network inference. We also

test the effect of different data normalization procedures on the

accuracy of the two network induction methods considered.

The third phase of the experimental evaluation on synthetic

data compares the performance of RegnANN, ARACNE and

CLR in terms of AUC (the area under the curve). The curve is

constructed by varying the value of the binarization threshold

between 0 and the maximum score obtained by the given

inference method on the task at hand - in the case of RegnANN

the maximum value is bounded to 1, while it is not the case for

ARACNE and CLR. As in the previous phase, this is done while

varying the topology of the network, the number of nodes and

verifying the effect of different mean degrees and power-law

coefficients. Also in this phase we consider discrete symmetric

adjacency matrices for fair comparison between the methods:

ARACNE and CLR do not infer coupling direction. For

homogeneity, we introduce the MR (MCC-Recall) curve which

express the MCC value for the corresponding Recall value.

Although the Precision-Recall (PR) curve is a well known tool in

assessing the performance of an induction algorithm, the MR is an

equivalent measure that has a straightforward interpretation. The

major difference between the two curves is that an induction

algorithm scoring a AUCPR value of 0:5 has performance

substantially equivalent to chance, the same induction system

would score an AUCMR value of 0. In perfect analogy with the

previous phase, data generation and network inference are

repeated 10 times for each given network topology and the

AUC score is estimated as the mean of the 10 independent runs.

The error of the measurement is expressed as twice the standard

deviation.

Finally, we compare the results obtained on a selection of

Escherichia coli gene subnetworks for the four inference

algorithms. We will first start considering a fixed threshold for

the binarization of the inferred adjacency matrix. Secondly, we

briefly analyze the problem of optimal threshold selection for the

binarization of the inferred adjacency matrix in the hypothesis of

the presence of gold standard data, which is not available in most

realistic biological applications. As for the two phases before, we

consider discrete symmetric adjacency matrices.

Toy Examples
In this section we present four different toy experiments to

illustrate how RegnANN is capable of inferring direct and indirect

interactions among genes and cooperative interaction between

putative regulators (e.g.: transcription factors).

Single Interaction
Let us consider four different genes A, B, C and D, which

interact according to Figure 1: gene A regulates B, while C and D
do not interact with anyone. We assume that A is a regulator that

can be in an active or inactive state. If it is in an active state, it has

RegnANN
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the effect of a linear regulation on B. If it is in an inactive state, B is

driven by noise. We generate 100 expression profiles for the four

genes as follows: value of A is 0 with probability 50% (A is

inactive), and uniformly distributed in ½0,1� with probability 50%.

The value of gene B is uniformly distributed in the interval ½0,thr�
if A is inactive (B values are driven by noise), otherwise

B~Azthresholdznoise (in the case the values of A are different

from 0). The term noise is a value uniformly distributed in the

interval ½0,thr�. Expression values for genes C and D are uniformly

distributed in the interval ½0,thr� - C and D are entirely driven by

noise. The value for the threshold thr is set arbitrarily to 0:05.

Before inference, gene expression profiles are linearly rescaled in

½{1,1�.
The correlation matrix shown in Figure 2 indicates that

RegnANN is able to capture the correlation among genes A and

B: for interaction A?B, RegnANN calculates a correlation of

0:93 (and a correlation of 0:88 for the opposite direction: A/B).

On the other hand no correlation (equal or less than 0:1) is

recorded among C, D and the other genes. It is interesting to note

that, if we select the direction of interaction by identifying the

highest correlation value, RegnANN successfully identifies the

regulation as in Figure 1.

Cooperative Interaction
Let us consider four different genes A, B, C and D, which

interact according to Figure 3: gene A and gene B cooperatively

regulate gene C, while D does not interact with the other three.

We synthesize expression profiles very similarly to the SLC

method: we start considering a set of 100 seed expressions with

values uniformly distributed in ½{1,1� for each gene A, B, C, D.

In order to simulate the presence of an activation threshold, we

calculate the expression value for the genes as follows:

gepa~seeda

gepb~seedb

gepc~
seedazseedbzseedc if DseedaD, DseedbD w thr

seedc otherwise

�

gepd~seedd

where gepa, gepb, gepc and gepd are the gene expression profiles

for gene A, B, C and D respectively, while seeda, seedb, seedc and

seedd are the corresponding seed values. The value for the

threshold thr is set arbitrarily to 0:05. After generation the profiles

are rescaled linearly in ½{1,1�. To account for intrinsic instability

of the inference method, data generation and network inference

are repeated 10 times and the adjacency matrix accumulated.

Figure 4 shows the mean correlation values inferred by RegnANN

(left) and the obtained interaction among genes for correlation

greater than 0:50 (right).

The correlation matrix shown in Figure 4 indicates that

RegnANN is able to capture the correlation among genes A, B
and C: for interaction A?C, RegnANN calculates a correlation of

0:67 (and a correlation of 0:33 for the opposite direction: A/C).

Similar correlation values are recoded for B?C and B/C. It is

interesting to note that no correlation (less than 0:1) is recorded

among D and the other genes.

Multiple Interaction
Let us consider again the four different genes A, B, C and D

interacting according to Figure 5: gene C regulates gene A and

gene B, while D does not interact with the other three.

As in the previous case, we generate the gene expression profiles

considering a set of 100 seed expressions with values uniformly

distributed in [21, 1] for each gene A, B, C, D. We calculate the

expression value for the genes as follows:

gepa~
seedazseedc if DseedcD w thr

seeda otherwise

�

gepb~
seedbzseedc if DseedcD w thr

seedb otherwise

�

gepc~seedc

gepd~seedd

where gepa, gepb, gepc and gepd are the gene expression profiles

for gene A, B, C and D respectively, while seeda, seedb, seedc and

seedd are the corresponding seed values. The value for the

threshold thr is set arbitrarily to 0:05. Figure 6 shows the mean

correlation values for the 10 data generation/inference iterations

(left) and the obtained interaction among genes for correlation

greater than 0:50 (right).

The correlation matrix in Figure 6 indicates that both C?A
and C?B interactions are discovered (a correlation of about 0:74
in both cases), while a weak interaction B/A is recorded

Figure 1. Left: gene A regulates gene B, while C and D do not
interact with any other. Right: corresponding adjacency matrix.
doi:10.1371/journal.pone.0028646.g001

Figure 2. Left: mean correlation values inferred with RegnANN.
Right: inferred interaction among the genes for correlation greater than
0:50.
doi:10.1371/journal.pone.0028646.g002

Figure 3. Left: gene A and B cooperatively regulate gene C ,
while D does not interact with the other three. Right:
corresponding adjacency matrix.
doi:10.1371/journal.pone.0028646.g003

Figure 4. Left: mean correlation values inferred with RegnANN.
Right: inferred interaction among the genes for correlation greater than
0:50.
doi:10.1371/journal.pone.0028646.g004

RegnANN
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(correlation 0:43). Other two weak interactions are also reported:

A?C (correlation 0:52) and B?C (correlation 0:49). Strictly

considering the adjacency matrix in Figure 5 and a discretization

threshold of 0:5, one false link is recorded (A?C) in the inferred

interaction matrix.

Indirect Interaction
As a final example, let us consider the four different genes A, B,

C and D interacting according to Figure 7: gene A regulates gene

B and gene B regulates gene C, while D does not interact with the

other three genes.

We generate the gene expression profiles considering a set of

100 seed expressions with values uniformly distributed in ½{1,1� for

each gene A, B, C, D. We calculate the expression values for the

genes as follows:

gepa~seeda

gepb~
seedbzseeda if DseedaD w thr

seedb otherwise

�

gepc~
gepbzseedc if DgepbD w thr

seedc otherwise

�

gepd~seedd

Figure 8 shows the mean correlation values for the 10 data

generation/inference iterations (left) and the obtained interaction

among genes for correlation strictly greater than 0:50 (right).

The correlation matrix in Figure 8 indicates that interaction

A?B and interaction B?C are correctly identified with the

highest correlation values (correlation 0:76 and correlation 0:72
respectively). A third strong interaction is also indicated by

RegnANN: A?C. The latter is in fact a second order interaction

between the the two genes. In Table 1, Table 2 and Table 3 we

report for comparison the inferred mutual information matrix

inferred by ARACNE, the mean scores obtained applying CLR

and the mean adjacency matrix inferred by KELLER on the same

exercise.

Strictly considering the adjacency matrix in Figure 7, Re-

gnANN finds 2 false links (Figure 8): A?C and C?B (if we

include correlation value 0.50, the interaction B?A would be a

third false positive).

In order to eliminate the ambiguity in the determination of the

direction of the interaction among genes, in the following we will

consider symmetric adjacency matrices as input for data

generation and as the output of the network inference task. As a

second possible solution, in the case of RegnANN we could have

selected the direction of interaction by identifying the highest

correlation value. On the other hand, this choice would have

resulted in an unfair comparison with (i.e.) KELLER: the latter

discards any information about the direction of the interaction.

However, it is important to consider that an exhaustive analysis of

the direction of the coupling would require a dedicated procedure

to account for the variability of the regression.

Synthetic Networks
In this section we analyze the performance of RegnANN in

inferring network topology by applying a fixed discretization

threshold of 0:5 on the correlation values obtained. These results

are systematically compared with the ones obtained by the

KELLER algorithm on the same set of tasks. Data generation and

network inference are repeated 10 times for each given network

topology and the MCC score is estimated as the mean of the 10
independent runs. The error of the measurement is expressed as

twice the standard deviation.

Effect of sample availability
Figure 9 shows accuracy (MCC) scores on synthetic Barabasi

networks with 50 nodes while varying data synthesis methodology

and data ratio: the ratio of the number of expression profiles to the

number of nodes. We rescale linearly the synthetic gene expression

values in ½{1,1�. Moreover, we generate Barabasi networks with

power-law equal to 1 and Erdös-Rényi networks with mean degree

equal to 1. Figure 9 indicates that increasing the available data is

beneficial to the performance of all the inference methods tested

irrespective of the data synthesis method applied. RegnANN-SLC

- Figure 9(b) - shows MCC scores ranging between 0:21+0:09 and

0:43+0:09 for data ratio 25% and data ratio 200% respectively.

For the same values of data ratio, KELLER-SLC scores

0:19+0:08 and 0:38+0:07. Similar behavior is recorded for

GES data synthesis - Figure 9(a).

Figure 10 shows accuracy scores on synthetic Erdös-Rényi

networks with 100 nodes while varying data synthesis methodology

and data ratio. In the case of GES data synthesis, RegnANN

Figure 6. Left: mean correlation values inferred with RegnANN.
Right: inferred interaction among the genes for correlation greater than
0:50.
doi:10.1371/journal.pone.0028646.g006

Figure 7. Left: gene A regulates gene B and gene B regulates
gene C , while D does not interact with the other three. Right:
corresponding adjacency matrix.
doi:10.1371/journal.pone.0028646.g007

Figure 8. Left: mean correlation values inferred with RegnANN.
Right: inferred interaction among the genes for correlation greater than
0:50.
doi:10.1371/journal.pone.0028646.g008

Figure 5. Left: gene C regulates gene A and gene B, while D
does not interact with the other three. Right: corresponding
adjacency matrix.
doi:10.1371/journal.pone.0028646.g005

RegnANN
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scores 0:54+0:08 for data ratio 150%. Similarly, KELLER scores

0:44+0:04 for data ratio 150%. In the case of SLC and for data

ratio 200%, RegnANN scores 0:91+0:05, KELLER scores

0:84+0:07.

Figure 11 shows accuracy scores on synthetic Erdös-Rényi and

Barabasi networks with 200 nodes while varying the data ratio.

The figure shows very good performance of RegnANN on both

Barabasi and Erdös-Rényi topology. The method we propose

shows accuracy scores constantly above the MCC values obtained

with the other method. It is interesting to note that the two

different topologies have significative influence on the accuracies

of the methods tested. Considering data ratio 150%, RegnANN

scores 0:49+0:08 and 0:92+0:03 on Barabasi and Erdös-Rényi

networks respectively.

Figure 12 summarizes the accuracy scores on synthetic Erdös-

Rényi and Barabasi networks obtained with Data Ratio 100%
while varying number of nodes and data generation method.

Effect of mean degree and power-law coefficient
In the following we show results obtained by varying the mean

degree of the nodes between 1 and 4 for Erdös-Rényi networks We

also test the performance of the two inference algorithms by

varying the exponent of the power-law in the range ½1,4� for

Barabasi networks. Here we consider synthetic networks of 100

nodes, SLC data generation and expression linearly rescaled in

½{1,1�.
Figure 13(a) shows accuracy scores that decrease as the mean

degree/power-law coefficient increases.

In the case of Erdös-Rényi topology with mean degree equal to

1, RegnANN scores 0:90+0:04; in the case of mean degree equal

to 4, the same algorithm scores 0:39+0:04. Also KELLER shows

an accuracy curve for the Erdös-Rényi topology that decreases as

the mean degree of the network increases, although this behavior

is less marked.

In the case of Barabasi topology, the accuracy of both methods

drops quickly to a value of 0 as the exponent of the power-law

increases.

It is interesting to note that for both topologies, KELLER tends

to outperform RegnANN for mean degree values bigger and equal

to 3, when we consider a data ratio of 150.

Figure 13(b) shows the accuracy score of Erdös-Rényi networks

with mean degree equal to 2. As in the case of Erdös-Rényi

networks with mean degree equal to 1 - Figure 10(b) - the

performance of the two methods tends to increase as the amount

of data available increases.

Effect of data normalization
In microarray experiments, the analysis of the raw data is often

hampered by a number of technical and statistical problems. The

possible remedies usually lie in appropriate preprocessing steps,

proper normalization of the data and application of statistical

testing procedures in the derivation of differentially expressed

genes [31]. Although many of the real-world issues in data

preprocessing and normalization do not apply here, we are

interested in verifying how discretization and rescaling - some of

the most common (and possibly simple) steps taken to normalize

the raw data - can impact the accuracy of the network inference

algorithms here considered. Full details of the normalization

procedures applied are given in the Material and methods of he

paper.

Figure 14 shows the accuracy (MCC) of RegnANN and

KELLER while varying the data normalization applied to the

synthetic levels. The performance of KELLER significantly

depends on the data normalization applied. In the case of data

discretization, KELLER scores 0:21+0:03, while an MCC value

of 0:42+0:04 is recorded in the case of linear rescaling. Finally, if

statistical normalization is applied to the data, KELLER scores

0:43+0:07. On the contrary, the accuracy of RegnANN is

invariant (taking into account the error of the measure) with

regards to the data normalization schema applied.

Effect of variable binarization threshold
In this section we compare the performance of ARACNE, CLR

and RegnANN varying the threshold applied to discretize the

inferred adjacency matrix in terms of the the AUC (area under the

curve) value.

Figure 15 shows a sample Precision-Recall curve (continuous

line) and MCC-Recall curve (dashed line) for RegnANN on a

synthetic Barabasi network (left) and on a synthetic Erdös-Rényi

network (right). In the given example we considered 100 nodes,

100% data ratio and SLC data generation. The AUC values for in

the case of Barabasi network are: AUCPR~0:43 and

AUCMR~0:32. For the given Erdös-Rényi network the AUC

values are: AUCPR~0:84 and AUCMR~0:59. The figure shows

curves that are in substantial agreement with the results reported

in the previous section: the accuracy of the inference task strongly

depends on the topology of the network.

Table 2. Mean scores over 10 runs obtained applying CLR for
inferring indirect interactions.

A B C D

A 0.00 1.87 0.38 1.01

B 1.87 0.00 2.73 0.90

C 0.38 2.73 0.00 0.58

D 1.01 0.90 0.58 0.00

doi:10.1371/journal.pone.0028646.t002

Table 3. Mean adjacency matrix obtained applying KELLER
for inferring indirect interactions.

A B C D

A 0.00 1.00 0.30 0.00

B 1.00 0.00 1.00 0.00

C 0.30 1.00 0.00 0.00

D 0.00 0.00 0.00 0.00

Value 0:3 indicates that the link has been detected 3 times in 10 runs.
doi:10.1371/journal.pone.0028646.t003

Table 1. Mean mutual information values over 10 runs
obtained applying ARACNE for inferring indirect interactions.

A B C D

A 0.00 0.48 0.00 0.00

B 0.48 0.00 0.63 0.00

C 0.00 0.63 0.00 0.00

D 0.00 0.00 0.00 0.00

doi:10.1371/journal.pone.0028646.t001

RegnANN
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Figure 16 shows the mean AUCMR scores for ARACNE, CLR

and RegnANN on a synthetic Barabasi network and on a synthetic

Erdös-Rényi network, 100 nodes and SLC data generation,

varying data ratio.

The figure indicates that the mean performance (AUCMR) of

the three methods obtained varying the discretization threshold

are equivalent considering the confidence intervals, e.g.: in the

case of data ratio 100% and Barabasi networks ARACNE scores

0:34+0:06, CLR scores 0:42+0:07 and RegnANN scores

0:39+0:08. In the case of Erdös-Rényi networks, data ratio

150% ARACNE scores 0:60+0:07, CLR scores 0:61+0:03 and

RegnANN scores 0:63+0:02.

Figure 17 summarizes the AUCMR scores obtained by the three

inference algorithms varying the number of nodes in the synthetic

Figure 9. Accuracy (MCC) scores of RegnANN and KELLER on synthetic Barabasi networks with 50 nodes. (a) Results obtained with GES
data generation. (b) Results obtained with SLC data generation.
doi:10.1371/journal.pone.0028646.g009

Figure 10. Accuracy (MCC) scores of RegnANN and KELLER on synthetic Erdös-Rényi networks with 100 nodes. (a) Results obtained
with GES data generation. (b) Results obtained with SLC data generation.
doi:10.1371/journal.pone.0028646.g010

RegnANN
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network. In the case of Barabasi networks, GES data generation,

CLR tends of perform better than the other two methods.

However, this phenomenon may not be strictly statistically

significant, e.g.: with 200 nodes, ARACNE scores 0:32+0:06,

CLR scores 0:42+0:03, while RegnANN scores 0:33+0:7. In the

case of Erdös-Rényi networks, the three methods are equivalent,

e.g.: considering 200 nodes, ARACNE scores 0:62+0:02, CLR

scores 0:63+0:02 while RegnANN scores 0:64+0:02.

Figure 18 shows the mean AUCMR scores for ARACNE, CLR

and RegnANN on a synthetic Barabasi network generated using a

power-law exponent equal to 2 and on a synthetic Erdös-Rényi

network with mean degree equal to 2. We consider 100 nodes and

Figure 11. Accuracy (MCC) scores of RegnANN and KELLER on synthetic networks with 200 nodes, SLC data generation. (a) Results
obtained for Barabasi topology. (b) Results obtained for Erdös-Rényi topology.
doi:10.1371/journal.pone.0028646.g011

Figure 12. Accuracy (MCC) scores of RegnANN and KELLER on synthetic networks with Data Ratio 100% while varying number of
nodes. (a) Results obtained for Barabasi topology, GES data generation. (b) Results obtained for Erdös-Rényi topology, SLC data generation.
doi:10.1371/journal.pone.0028646.g012
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SLC data generation, while we vary the data ratio. In agreement

with the results shown in Section Mean Degree and Power-law

Coefficient, the figure indicates that increasing the power-law

coefficient for the synthetic Barabasi network is detrimental to the

performance of all the inference algorithm tested: ARACNE, CLR

and RegnANN show mean AUCMR scores of 0, random chance.

On the other hand, the three methods are less affected by

increasing the mean degree of the synthetic Erdös-Rényi network,

as also noticed previously.

Escherichia coli transcriptional subnetworks
Table 4 summarizes the results obtained on a selection of

Escherichia coli gene subnetworks [32] for the four inference

algorithms. In absence of a gold standard data (not available in

most realistic biological applications) for the estimation of the

threshold for the binarization of the adjacency matrix, we

arbitrarily set such threshold to 0:001 for ARACNE and CLR.

This is done in the hypothesis that a value different from zero

indicates meaningful interaction. It is important to stress the fact

that the direction of the interaction is discarded as only symmetric

matrices are considered. In the case of RegnANN, we set this

threshold to 0:5 (we hypothesize that correlation values bigger

than 0:5 indicate meaningful interaction). In Section Selecting the

Binarization Threshold we briefly discuss a possible strategy to

infer the optimal threshold and the related shortcomings.

While ARACNE, CLR and KELLER are deterministic

algorithms - given a particular input, the algorithm will always

produce the same output, always passing through the same

sequence of states - RegnANN may produce different results

depending on the random initialization of the weights in the

ensemble of multi-layer perceptrons. Thus, in order to smooth out

possible local minima, we adopted a majority voting schema: for

each network module, the RegnANN algorithm is applied 10
times and the inferred adjacency matrices accumulated. The final

topology is obtained by selecting those links that appeares with a

frequency higher than 7. The entire procedure is repeated 10
times, the final prediction is estimated as the mean and the

associated error as twice the standard deviation of the 10
independent runs. Gene expression values are linearly rescaled

in ½{1,1�.
Table 4 indicates great variability of the MCC scores across the

different network modules for all the inference methods tested.

ARACNE scores range from 0:78 (module 81) to 0:00 (module

88). CLR values range between 0:45 and 0:02 for module 81 and

96 respectively. KELLER scores range between 0:63 and {0:12
(module 12 and module 81 respectively). Finally RegnANN scores

range between 0:32+0:00 (module 12, in this case the error

associated to the measure is 0: the very same result is obtained for

all repetitions) and {0:05+0:02 (module 88). It is interesting to

note that the MCC score varies unevenly for the reference

inference algorithms with respect to the module network density

(the ratio of the number of links to the square of the number of

Figure 13. Accuracy (MCC) scores of RegnANN and KELLER on synthetic networks with 100 nodes and SLC data generation.
(a) Results obtained on Barabasi networks varying the power-law coefficient and Erdös-Rényi topology while varying the mean degree of the
network. (b) Results obtained for Erdös-Rényi (mean degree value equal to 2) while varying the data ratio.
doi:10.1371/journal.pone.0028646.g013

Figure 14. Accuracy (MCC) scores of RegnANN (left) and
KELLER (right) on synthetic Erdös-Rényi networks with 100
nodes, SLC data generation and data ratio equal to 150, while
varying data normalization.
doi:10.1371/journal.pone.0028646.g014
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nodes), e.g.: ARACNE scores 0:13 on module 6 (density

D~0:189) and scores 0:43 on module 12 (density D~0:189).

On the same two modules, CLR scores 0:29 and 0:39 respectively

while KELLER scores 0:02 and 0:63. On the other hand,

RegnANN scores are more homogeneous: they read 0:3+0:1 and

0:32+0:00 on module 6 and module 12 respectively. These results

suggest that the correctness of the inferred network depends on the

topological properties of the modules (the very same expression

values are used to infer the different gene sub-networks), in

accordance to findings in [4].

Selecting the binarization Threshold
In this section we analyze the problem of optimal threshold

selection for the binarization of the inferred adjacency matrix.

Figure 15. Precision-Recall curve (continuous line) and MCC-Recall curve (dashed line) for RegnANN on a synthetic Barabasi
network (a) and on a synthetic Erdös-Rényi network (b), 100 nodes, 100% data ratio and SLC data generation.
doi:10.1371/journal.pone.0028646.g015

Figure 16. AUCMR scores for ARACNE, CLR and RegnANN on a synthetic Barabasi network (a) and on a synthetic Erdös-Rényi
network (b), 100 nodes and SLC data generation, varying data ratio.
doi:10.1371/journal.pone.0028646.g016
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Generally, the threshold cutoff value should be estimated for each

data-set (network) or it should be derived from a gold standard

data, which is not available in most realistic biological applications.

An obvious solution to this problem is to adopt a training/

validation schema: ground-truth data is used to infer the optimal

threshold value while external data is used to verify the

reconstruction accuracy. Here, for each module in Table 4 and

for three inference algorithms (ARACNE, CLR and RegnANN),

we partition the Escherichia coli data-set in training data (70%) and

validation data (30%). The training data is used to infer the best

threshold cutoff value: we perform a grid search for threshold

values in ½0,1� and we pick the value granting the best

Figure 17. AUCMR scores for ARACNE, CLR and RegnANN on synthetic networks varying the number of nodes, while keeping
constant the data ratio (100%). (a) Synthetic Barabasi topology, GES data generation. (b) Synthetic Erdös-Rényi network, SLC data generation.
doi:10.1371/journal.pone.0028646.g017

Figure 18. AUCMR scores for ARACNE, CLR and RegnANN on a synthetic Barabasi network with power-law coefficient equal to 2 (a)
and on a synthetic Erdös-Rényi network (b) with mean degree equal to 2. Here we consider 100 nodes and SLC data generation, while we
vary the data ratio.
doi:10.1371/journal.pone.0028646.g018
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reconstruction score. The validation set is used to verify the

accuracy (MCC) of the inference algorithms. This procedure is

repeated 50 times randomly partioning the Escherichia coli data-set

each time. Scores are expressed as the mean value, while the error

as twice the standard deviation.

Table 5 shows the optimal threshold cutoff values for the three

inference methods (ARACNE, CLR and RegnANN) and for the

Escherichia coli submodules as in Table 4.

The table indicates that the optimal threshold value depends on

the algorithm adopted and the submodule considered.

Table 6 shows the accuracy (MCC) obtained on the training set

and on the validation set with the optimal threshold cutoff value.

Scores are obtained varying inference method and Escherichia coli

submodule. Table 6 shows values that vary considerably

depending on the subnetwork selected and the inference algorithm

adopted. It is interesting to note that although the variance of the

MCC scores is small (the column Error in the table) the accuracy

on the validation set is often higher than the corresponding the

training set accuracy score, e.g.: module 81, 6, 12, 94 in the case of

ARACNE; module 81 and module 6 in the case of CLR; module

12 in the case of RegnANN. On the other hand, there are cases

where good training accuracy scores are not matched with

comparable validation accuracies, e.g.: module 75, 88, 96 in the

case of ARACNE; module 75, 88 in the case of CLR. This results

indicates both a good stability in replicating the results using the

estimated optimal threshold (small error), and a tendency to both

poorly fit and over fit the data.

Although outside the scope of this work, this preliminary

evaluation indicates that in the case of biological data, learning the

optimal threshold value via standard machine leaning methods is

not straightforward: presence of noise in the data and the high

complexity of the domain often cause selection bias. This is the key

point that lead us focus on estimating the structures of the

interaction between genes rather than the detailed strength of

these interactions.

Discussion

In this work we presented a novel method for network inference

based on an ensemble of multi-layer perceptrons configured as

multi-variable regressor (RegnANN). We compared its perfor-

mance to the performance of three different network inference

algorithms (ARACNE, CLR and KELLER) on the task of reverse

engineering the gene network topology, in terms of the associated

MCC score. The proposed method makes no assumptions about

the nature of the relationships between the variables, capturing

high-order dependencies between expression patterns and the

direction of the interaction, as shown on selected synthetic toy

examples. Our extensive evaluation indicates that the newly

introduced RegnANN shows accuracy and stability scores that

compare very favorably with all the other inference methods

tested, often outperforming the reference algorithm in the case of

fixed binarization threshold. On the other hand, considering all

the possible thresholds for the binarization of the inferred

adjacenci matrix (the AUC score) the differences among the

tested methods tend to become irrelevant. Our evaluation on

Table 4. MCC scores of the different network inference algorithms on the selected Escherichia coli network modules.

ID Density N.N. N.L. ARACNE CLR

81 0.245 7 12 0.78 0.45

6 0.189 13 32 0.13 0.29

12 0.180 10 18 0.43 0.42

75 0.133 16 34 0.10 0.24

88 0.100 19 36 0.00 0.17

96 0.001 104 18 0.08 0.02

94 0.000 81 2 0.09 0.02

ID Density N.N. N.L. KELLER RegnANN (Err)

81 0.245 7 12 20.12 0.4 (0.1)

6 0.189 13 32 0.02 0.3 (0.1)

12 0.180 10 18 0.63 0.32 (0.00)

75 0.133 16 34 0.10 0.23 (0.08)

88 0.100 19 36 20.07 20.05 (0.02)

96 0.001 104 18 0.00 0.00 (0.01)

94 0.000 81 2 0.15 0.026 (0.001)

Column ID indicates the id of the network module as in [32], column Density the density of the module is the ratio of the number of links to the square of the number of
nodes. Column N.N. indicates the nuber of nodes in the subgraph, while N.L. the number of links.
doi:10.1371/journal.pone.0028646.t004

Table 5. Mean values of the optimal threshold cutoff scores
for the three inference methods (ARACNE, CLR and RegnANN)
varying the Escherichia coli submodules.

ID ARACNE Err. CLR Err. RegnANN Err.

81 0.04 0.01 0.61 0.07 0.01 0.01

6 0.35 0.06 0.15 0.01 0.22 0.03

12 0.12 0.01 0.4 0.2 0.36 0.01

75 0.42 0.02 0.5 0.2 0.59 0.03

88 0.39 0.01 0.33 0.06 0.43 0.03

96 0.87 0.01 0.74 0.01 0.66 0.01

94 0.81 0.01 0.62 0.05 0.95 0.01

doi:10.1371/journal.pone.0028646.t005
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synthetic data demonstrates that various factors influence the

performance of the inference algorithms adopted: the topology of

network, its size and its complexity, the amount of data available,

the normalization procedure adopted. Generally, these are only a

few of the factors that may influence the outcome of a network

inference algorithm; they may not be limited to the relative small

set of parameters explored here.

Results on the biological data confirm that the correctness of the

inferred network depends on the topological properties of the

modules: very different accuracy results are obtained on the

different submodules of Escherichia coli, although the very same

expression values are used to infer the different gene sub-networks.

Our experiments indicate great variability of the scores of the

reference inference algorithms across the different Escherichia coli

sub-modules. On the other hand, RegnANN scores are more

homogeneous, decreasing as the density of the module decreases.

Finally, we tested the possibility of applying standard machine

leaning methods to learn the optimal binarization threshold value.

Our preliminary evaluation indicates that this is not a straightfor-

ward task: presence of noise in the data and the high complexity of

the biological domain often cause selection bias.

The robustness of RegnANN performance recorded across the

board and the agreement between results obtained with this new

methods on both synthetic and biological data are promising and

they stimulate its application to a wider range of problems.

Materials and Methods

RegnANN: Network Inference Using ANN
To infer gene regulatory networks we adopt an ensemble of

feed-forward multilayer perceptrons. Each member of the

ensemble is essentially a multi-variable regressor (one to many)

trained using an input expression matrix to learn the relationships

(correlations) among a target gene and all the other genes.

Formally, let us consider the multilayer perceptron as in Figure 19

(right): 1 input neuron I , 1 layer of H hidden units and 1 layer of

K output units. Indicating with g the activation function of each

unit and wh,k the weights associated with the links between the

output layers and the hidden layer and with ŵwh the weights of the

links between input neuron and hidden layer, the value Ok for the

output unit k can be calculated as follows:

Ok~g(
XH
h~1

wh,k
:g(ŵwh

:I)) ð1Þ

Table 6. Mean accuracy (MCC) obtained on the training set and on the validation set for the different inference methods and
network submodules.

ARACNE

ID Training Error Validation Error

81 0.21 0.01 0.57 0.03

6 0.04 0.01 0.19 0.02

12 0.26 0.01 0.32 0.03

75 0.54 0.02 0.14 0.01

88 0.75 0.01 0.03 0.01

96 0.71 0.01 0.27 0.02

94 0.05 0.01 0.40 0.10

CLR

ID Training Error Validation Error

81 0.16 0.01 0.57 0.02

6 0.03 0.01 0.31 0.01

12 0.36 0.01 0.36 0.01

75 0.46 0.01 0.13 0.01

88 0.71 0.01 0.08 0.01

96 0.03 0.01 0.04 0.01

94 0.11 0.01 0.03 0.01

RegnANN

ID Training Error Validation Error

81 0.24 0.01 0.23 0.01

6 0.34 0.01 0.10 0.01

12 0.22 0.01 0.31 0.02

75 0.40 0.01 0.17 0.01

88 0.23 0.01 0.08 0.01

96 0.03 0.01 0.02 0.01

94 0.12 0.01 0.00 0.01

doi:10.1371/journal.pone.0028646.t006
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The value Ok is the inferred interaction between the correspond-

ing gene k and the gene associated with the input neuron I . We

proceed in determining the interactions among genes separately

and then we join the information to form the overall gene network.

From each row of the gene expression matrix we build a set of

input and output patterns used to train with back-propagation [33]

a selected multilayer perceptron. Each input pattern corresponds

to the expression value for the selected gene of interest. In this

work we consider gene expression matrices of dimension M|N,

i.e. N genes whose expression levels are recorded M times;

expression levels are normalized in the interval ½{1,1�. The

output pattern is the row-vector of expression values for all the

other genes for the given row in the gene expression matrix

(Figure 19). By cycling through all the rows in the matrix, each

regressor in the ensemble is trained to learn the correlations

among one gene and all the others. Repeating the same procedure

for all the columns in the expression matrix, the ensemble of multi-

variable regressors is trained to learn the correlations among all

the genes. The procedure of learning separately the interactions

among genes is very similar to the one presented in [20], where the

authors propose to estimate the neighborhood of each gene (the

correlations among one gene and all the others) independently and

then joining these neighborhoods to form the overall network, thus

reducing the problem to a set of identical atomic optimizations.

We build N (one for each of the N genes in the network)

multilayer perceptrons with one input node, one layer of hidden

nodes and one layer of N{1 output nodes, adopting the

hyperbolic tangent as activation function. The input node takes

the expression value of the selected gene rescaled in {1,1½ �. The

number of hidden nodes is set to the square root of the number of

inputs by the number of outputs. This value is to be considered a

rule of thumb granting enough hidden units to solve the regression

problem and allowing dynamical adaptation of the structure of

RegnANN to the size of the biological network under study. The

output layer provides continuous output values in the range

{1,1½ �.
The algorithm of choice for training each multi-layer percep-

tron is the back-propagation algorithm [33]. The back-propaga-

tion is a standard algorithm for learning feed-forward multilayer

perceptrons that essentially looks for the minimum of the error

function in the weight space using the method of gradient descent.

The error function is defined as the difference between the output

of each neuron in the multilayer perceptron and its expected

value. The back-propagation algorithm starts with the forward-

propagation of the input value in the multilayer perceptron,

followed by the backward propagation of the errors from the

output layer toward the input neuron. The algorithm corrects the

weight values according to the amount of error each unit is

responsible for. Formally, the weight values at learning epoch t are

updated as follows:

Dw(t)~{g+EzmDw(t{1) ð2Þ

To keep the notation simple w refers to both the weights associated

with the links between the output layers and the hidden layer and

Figure 19. The ad hoc procedure proposed to build the training input/output patterns starting from a gene expression matrix. Each
input pattern corresponds to the expression value for the selected gene of interest. The corresponding output pattern is the vector of expression
values for all the other genes for the given row in the gene expression matrix. The right part of the figure schematizes the multi-variable regressor: a
feed-forwardad multilayer perceptron with 1 input neuron, 1 layer of H hidden units and 1 layer of K output units; wh,k are the weights associated
with the links between the output layers and the hidden layer and ŵwh the weights of the links between the input neuron and the hidden layer.
doi:10.1371/journal.pone.0028646.g019
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with the weights of the links between input neuron and hidden

layer. +E refers to the gradient of the error in weight space. g is

the learning rate; m is the momentum.

Although back-propagation is essentially a heuristic optimiza-

tion method and alternatives such as Bayesian neural network

learning [34] have more sound theoretical basis, in the proposed

multi-variable regression schema the simple back-propagation

algorithm allows us to design a far less complex system. This is due

to how Bayesian neural network learning handles the regression

problem. As indicated in [35]: ‘‘Networks are normally used to

define models for the conditional distribution of a set of target

values given a set of input values.[…]. For regression and logistic

regression models, the number of target values is equal to the

number of network outputs.’’ This implies that in the case of

Bayesian learning an extra procedure is required to discretize the

target values from the continuous range {1,1½ � and that for each

ensemble member the layer of output neurons (N{1 in the case of

back-propagation) has to be translated into a matrix of neurons of

size (N{1)|T , where T is the number of desired target values.

Accordingly, also the hidden layer becomes a matrix of neurons,

each one with its own set of parameters. Thus, in the context of

multivariable regression, adopting back-propagation allow us to

design a lower complexity inference system limiting issues related

to high dimensional settings.

The learning parameters we use to train each multi-layer

perceptron are as follows: learning rate equal to 0:01; momentum

equal to 0:1, learning epochs equal to 1000. These values are

evaluated empirically during preliminary tests on synthetic data. In

section €RRegnANN: varying learning parameters€wwe show how the

performance of the proposed method depends on the choice of the

learning parameters.

Once the ensemble is trained, the topology of the gene

regulatory network is obtained by applying a second procedure.

Considering each gene in the network separately, we pass a value

of 1 to the input neuron of the correspondent multilayer

perceptron, consequently recording its output values. The

continuous output values in the range ½{1,1� represent the

expected normalized expression values for the other genes (its

neighborhood). This procedure basically aims at verifying the

correlation between the input gene and all the others: assuming

the input gene maximally expressed (the value 1), an output value

of (i.e.) 1 indicates that the correspondent gene will be also

maximally expressed, thus indicating perfect correlation between

the two genes. An output value of (i.e.) {1 indicates that the

correspondent gene will be maximally under-expressed: perfect

anti-correlation of the two genes. Thus, the continuous output

values in the range ½{1,1� are interpretable in terms of positive

correlation (w0), anti-correlation (v0) and no-correlation (0). By

cycling this procedure through all the ensemble members in the

regression system, we obtain N (one for each of the N genes in the

network) vectors of length N{1 of continuos values in ½{1,1�.
The correlation matrix is obtained by correctly joining the N

vectors. It is important to note that all the values of the diagonal of

the adjacency matrix are equal to 0 by construction: this

procedure does not allow discovering of gene self correlation

(regulation) patterns, but only correlation patterns among different

genes. Finally the adjacency matrix of the sought gene network is

obtained by thresholding the correlation coefficients.

To improve the general efficiency of the algorithm and thus to

allow a systematic comparison of its performance with the other

gene network reverse engineering methods tested, we implement-

ed the ANN based regression system using the GPGPU

programming paradigm. A reference implementation of the

RegnANN algorithm is available at http://sourceforge.net/

projects/regnann/files/. The source code is distributed according

to the GPLv3 license (open-source).

Alternative inference methods
As reference methods we select three alternative algorithms

widely used in literature: ARACNE, CLR and KELLER.

KELLER is a kernel-reweighted logistic regression method [20]

introduced for reverse engineering the dynamic interactions

among genes based on the time series of their expression values.

It estimates the neighborhood of each gene separately and then it

joins the neighborhoods to form the overall network. The

approach aims at reducing the network inference problem to a

set of identical atomic optimizations. KELLER makes use of the

l1-regularized logistic regression algorithm and it operates

modeling the distribution of interactions between genes as a

binary pair-wise Markov Random Field.

With respect to other inference methodologies, KELLER adopt

a fixed threshold to discretize the inferred adjacency matrix while

it performs an optimization of the regularization weight lambda

controlling the sparsity of the solution by maximizing a Bayesian

Information Criterion (BIC). The authors apply a grid search on a

selection of possible parameter values. In our work, we adopt the

very same procedure: we use the same fixed discretization

threshold for the binarization of the adjacency matrix, while we

select the optimal solution by maximizing the BIC via a grid

search for the optimal value of lambda (the very same value range

used in [20]). This is done for each inference task.

As indicated in [20], the KELLER algorithm approximates the

dynamic rewiring of the gene networks topology by borrowing

‘‘information across time by reweighting the observations from

different time points and then treating them as if they were i.i.d.

observations. Intuitively, the weighting should place more

emphasis on observations at or near time point t with weights

becoming smaller as the observations move further away from

time point t. ’’ Thus, this procedure relies in fact on a sequence of

static topologies that do not differ greatly one another (one of the

KELLER algorithmic assumptions is that the time-evolving

network varies smoothly across time). In this work we consider

only one fixed (static) topology for each inference task subsequently

measuring the correctness of the result.

ARACNE is a general method able to address a wide range of

network deconvolution problems - from transcriptional [8] to

metabolic networks [10] - that was originally designed to scale up

to the complexity of regulatory networks in mammalian cells. The

method makes use of an information theoretic approach to

eliminate the majority of indirect interactions inferred by co-

expression methods. ARACNE removes the vast majority of

indirect candidate interactions by applying a well-known infor-

mation theoretic property: the data processing inequality [36].

Here we use the reference implementation of the algorithm

provided in [37] with default value for the data processing

inequality tolerance parameter. In Section ‘‘ARACNE: varying

learning parameters’’ we explore the influence of the tolerance

parameter on a sample testbed.

As many other methods, ARACNE relies on the definition of a

threshold for the binarization of the adjacency matrix. In absence

of a good heuristic for defining such threshold, on the synthetic

data-sets we will adopt the area under the curve (AUC) as

performance metric.

CLR is an extension of the relevance networks class of

algorithms [9], which predicts regulations between transcription

factors and genes by applying the mutual information score. CLR

proposes an adaptive background correction step that is added to

the estimation of mutual information. For each gene, the statistical

RegnANN
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likelihood of the mutual information score is computed within its

network context. Then, for each transcription factor-target gene

pair, the mutual information score is compared to the context

likelihood of both the transcription factor and the target gene, and

turned into a z-score. We adopt the reference implementation of

the algorithm provided in [37]. As in the case of ARACNE, in

absence of a good heuristic for defining a binarization threshold

for the inference of the adjacency matrix, on the synthetic data-sets

we will adopt the area under the curve (AUC) as performance

metric.

Performance Metric
When the performance of a network inference method is

evaluated, it is common practice to adopt two metrics: precision

and recall. Recall indicates the fraction of true interactions

correctly inferred by the algorithm, and it is estimated according to

the following equation:

Recall~
TP

TPzFN
ð3Þ

where TP indicates the fraction of true positives, while FN indicates

the fraction of false negatives.

On the other hand, precision measures the fraction of true

interactions among all inferred ones, and it is computed as:

Precision~
TP

TPzFP
ð4Þ

where FP indicates the ratio of false positives.

In this work we adopt the Matthews Correlation Coefficients -

MCC [27,28]: this is a measure that takes into account both true/

false positives and true/false negatives and it is generally regarded

to as a balanced measure, useful specially in the case of

unbalanced classes (i.e.: different number of positive and negative

examples).

The MCC is in essence a correlation coefficient between the

observed and predicted binary classifications: it returns a value

between {1 and z1. A coefficient value equal to z1 represents a

perfect prediction, 0 indicates an average random prediction while

{1 an inverse prediction [27,38]. In the context of network

topology inference the observed class is the true network adjacency

matrix, while the predicted class is the inferred one.

The Matthews Correlation Coefficient is calculated as:

TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p ð5Þ

Recently MCC has also been used for comparing network

topologies [28,39].

Data
We benchmark the reverse engineering algorithms here

considered using both synthetic and biological data.

Synthetic Data
The synthetic data sets are obtained starting from an adjacency

matrix describing the desired topology of the network. Here we

consider two different network topologies: Barabasi-Albert [29]

and Erdös-Rényi [30]. Network graphs are generated using the

igraph extension package to the GNU R project for Statistical

Computing [40]. Figure 20 shows two sample network topologies.

In this work we focus our analysis on undirected and unweighted

graphs: we are interested in estimating the structures of interaction

between nodes/genes, rather than the detailed strength or the

direction of these interactions. Thus, we consider only symmetric

and discrete adjacency matrices, representing with a value of 1 the

presence of a link between two nodes. A value equal to 0 in the

adjacency matrix indicates no interaction.

Once the topology of the network is (randomly) generated, the

output profiles of each node are generated according to two

different approaches: the first one considers only linear correlation

among selected genes (SLC), the second one is based on a gene

network/expression simulator recently proposed to assess reverse

engineering algorithms (GES [41]). In order to account for the

intrinsic underdetermination of the task of network inference, we

focus on synthetic data mimicking plausible submodules of larger

networks: relatively small networks with a number of nodes

Figure 20. Sample network topologies: (a) Barabasi Network with 100 nodes (power-law exponent P equal to 1); (b) Erdös-Rényi
network, 100 nodes and average degree (D) egual to 0.92.
doi:10.1371/journal.pone.0028646.g020
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ranging between 50 and 200 and a number of expression profiles

ranging from 10 to 400. Thus, we settle our analysis in a scenario

of reduced search space/extended amount of independent

information.

Simple Linear Correlation (SLC): similarly to the simulation of gene

expression data presented in the supplementary material of [42],

we consider a set of seed expressions (a matrix M|N - N genes

which expression profiles are recoded M times - with values

uniformly distributed in ½{1,1�) and the desired topology

expressed by the adjacency matrix adjM (N|N ). The matrix

adjM contains only zeros and ones: a value of one indicates a link

between the corresponding genes. The gene expression profiles

(gep, a matrix M|N) are calculated as:

gep~seedzseed ? adjM ð6Þ

where the symbol ‘z’ indicates element-wise summation and the

symbol ‘?’ indicates row-column matrix multiplication. With this

method, the seed expression columns are linearly correlated

(correlation equal to 1) with the columns of the same matrix as

described by the discrete input adjacency matrix adjM.

Gene Expression Simulator (GES): this second methodology is based

on a gene network simulator recently proposed to assess reverse

engineering algorithms [41]. Given an input adjacency matrix, the

network simulator uses fuzzy logic to represent interactions among

the regulators of each gene and it adopts differential equations to

generate continuous data. As in [8], we obtain synthetic expression

values of each gene n (n~1, . . . ,N) by simulating its dynamics

until the expression value reaches its steady state. We obtain M
different values for each gene by repeating the process M times

and recording the expression value at steady state. The synthesis of

each gene profile is randomly initialized by the simulator.

Escherichia coli Transcriptional Network
The task for the biological experiments is the inference of a few

transcriptional subnetworks of the model organism Escherichia coli

starting from a set of steady state gene expression data. The data

are obtained from different sources and they consist of three

different elements, namely the whole Escherichia coli transcriptional

network, the set of the transcriptional subnetworks and the gene

expression profiles to infer the subnetworks from. The Escherichia

coli transcriptional network is extracted from the RegulonDB

(http://regulondb.ccg.unam.mx/) database, version 6:4 (2010)

and it consists of 3557 experimentally confirmed regulations

between 1442 genes, amongst which 172 transcription factors. The

117 subnetworks are defined in [43]: in our experiments we use 7
of these subnetworks, with a number of genes ranging from 7 to

104. Information about number of genes and number of links for

each subnetwork is reported in Table 4, Section Results. The

expression data have been originally used in [9] and they consist of

445 Escherichia coli Affymetrix Antisense2 microarray expression

profiles for 4345 genes, collected under different experimental

conditions such as pH changes, growth phases, antibiotics, heat

shock, varying oxygen concentrations and numerous genetic

perturbations. MAS5 preprocessing is chosen among the available

options (MAS5, RMA, gcRMA, DChip).

Data Discretization
A number of sources of noise can be introduced into the

microarray measurements, e.g. during the stage of hybridization,

digitization and normalization. Therefore, it is often preferred to

consider only the qualitative level of gene expression rather than

its actual value [20]: gene expression is modeled as either being

up-regulated (z1) or down-regulated ({1) by comparing the

given value to a threshold. For example, in [44] it is shown that

binarizing gene expression data leads to classification outcomes

very similar to the results obtained on real-valued data.

In this work we compute the discrete value of the expression for

each of the N genes at each of the M steps as the sign of the

difference of the expression values of the given gene at step m and

step m{1.

Data Rescaling
Generally, when a scaling method is applied to the data, it is

assumed that different sets of intensities differ by a constant global

factor [31]. It may also happen that the rescaling is a necessary

step due to the inference method adopted, as in the case of SVM

(Support Vector Machine) or ANN (Artificial Neural Network)

classification/regression.

In this work we test two different data rescaling methods:

N linear rescaling: each gene expression column-vector is linearly

rescaled between {1,1½ �;
N statistical normalization: each gene expression column-vector is

rescaled such that its mean value is equal to 0 and the standard

deviation equal to 1.

We consider gene expression matrices of dimension M|N: N
genes whose expression levels are recorded M times.

Experimenting with learning parameters
RegnANN: varying learning parameters. In this section

we show how the tuning parameters of RegnANN impact its

performance on a selected testbed: Barabasi networks with 100

nodes and SLC data generation. Accuracy scores (MCC) are

calculated as mean of 10 iterations. Error bars are omitted for

clarity. Gene expression profiles are rescaled linearly in ½{1,1�.
Figure 21 summarizes the MCC score of RegnANN obtained

varying training epochs for fixed momentum and learning rate

values.

Figure 22 summarizes the MCC score of RegnANN obtained

varying momentum and learning rate for fixed training epochs

value.

The two set of figures indicate that the values for the learning

parameters adopted in the evaluation of the performance of

RegnANN (momentum = 0:1, learning rate = 0:01, training

epochs = 1000) are chosen prudently.

ARACNE: varying learning parameters. In this section we

explore the influence of the tolerance parameter (EPS) on a sample

testbed. The reference implementation of ARACNE provided by

[37] as R package [40] sets its value to 0:0.

We adopt the AUCMR score (the AUC value for the MCC-

Recall curve) as performance metric. AUCMR values are

calculated as mean of 10 iterations. Error bars are calculated as

twice the standard deviation.

Figure 23 shows the mean AUCMR (the AUC value for the

MCC-Recall curve) varying the eps value in ½0:0,1:0�, the topology

of the network and the number of nodes. Gene expression profiles

are rescaled linearly in ½{1,1�. We consider fixed data ratio equal

to 100%.

The figure indicates that for Barabasi networks no statistically

relevant difference in the performance of ARACNE is recoded

varying the EPS parameter, e.g.: considering network size 100
nodes, with EPS value 0:0 ARACNE scores 0:36+0:09; with EPS

value 0:4 ARACNE scores 0:3+0:1; with EPS value 0:8 ARACNE

scores 0:4+0:1; with EPS value 1:0 ARACNE scores 0:4+0:1. In

the case of Erdös-Rényi, setting the EPS parameter value to 0:4 is

RegnANN
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detrimental for the mean accuracy of ARACNE, while all the

other values tested result in equivalent performances, e.g.:

considering network size 100 nodes, with EPS value 0:0 ARACNE

scores 0:61+0:04; with EPS value 0:4 ARACNE scores

0:51+0:08; with EPS value 0:8 ARACNE scores 0:62+0:03; with

EPS value 1:0 ARACNE scores 0:62+0:03.

The figure indicates that the value 0:0 is a sound default for the

eps parameter.

Figure 21. Accuracy (MCC) scores for RegnANN on synthetic Barabasi networks with 100 nodes and SLC data generation. (a) Fixed
momentum (0:1), varying learning rate and training epochs. (b) Fixed learning rate (0:01), varying momentum and training epochs.
doi:10.1371/journal.pone.0028646.g021

Figure 22. Accuracy (MCC) scores for RegnANN on synthetic Barabasi networks with 100 nodes, SLC data generation. We consider
fixed training epochs (1000) while varying (a) learning rate and (b) momentum.
doi:10.1371/journal.pone.0028646.g022
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