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Appropriate robot behavior during human-robot interaction is a key part in the

development of human-compliant assistive robotic systems. This study poses the

question of how to continuously evaluate the quality of robotic behavior in a hybrid

brain-computer interfacing (BCI) task, combining brain and non-brain signals, and how

to use the collected information to adapt the robot’s behavior accordingly. To this aim,

we developed a rating system compatible with EEG recordings, requiring the users

to execute only small movements with their thumb on a wireless controller to rate

the robot’s behavior on a continuous scale. The ratings were recorded together with

dry EEG, respiration, ECG, and robotic joint angles in ROS. Pilot experiments were

conducted with three users that had different levels of previous experience with robots.

The results demonstrate the feasibility to obtain continuous rating data that give insight

into the subjective user perception during direct human-robot interaction. The rating

data suggests differences in subjective perception for users with no, moderate, or

substantial previous robot experience. Furthermore, a variety of regression techniques,

including deep CNNs, allowed us to predict the subjective ratings. Performance was

better when using the position of the robotic hand than when using EEG, ECG, or

respiration. A consistent advantage of features expected to be related to a motor bias

could not be found. Across-user predictions showed that the models most likely learned

a combination of general and individual features across-users. A transfer of pre-trained

regressor to a new user was especially accurate in users with more experience.

For future research, studies with more participants will be needed to evaluate the

methodology for its use in practice. Data and code to reproduce this study are available

at https://github.com/TNTLFreiburg/NiceBot.
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1. INTRODUCTION

1.1. Brain and Non-brain Signals
In brain-computer interfaces (BCIs) for the control of assistive
robots, a safe and human-compliant behavior of the robot during
the interaction with its user is a crucial factor. However, what
behavior is assessed as “safe” depends strongly on subjective
parameters (Feil-Seifer et al., 2007). For example, users might
differently react to robot movement at higher or lower speeds, or
robotic poses in proximity to the user’s body or face. Moreover,
users might perceive the robot’s behavior in different ways
depending on personal variables, e.g., their previous exposure to
robots. In this study, we describe a BCI-compatible method to
continuously acquire subjective rating data about the quality of
robotic behavior in real-time during a human-robot interaction
task. The real-time nature and BCI compatibility are crucial
as, combined with the measurement of electroencephalography
(EEG), electrocardiography (ECG) and respiration, we aim to
identify inter-personal commonalities and differences, specific
rating strategies, and their stability over time. Further, we
evaluate regression techniques to allow an automatic prediction
of subjective ratings, which could be used to automatically
adapt the robot’s behavior to user-specific preferences using
reinforcement-learning. We extend the traditional hybrid BCI
framework (Pfurtscheller et al., 2010), combining brain and
non-brain signal, by including information from the robot into
the regressions.

1.2. Related Work
In the field of human-robot interaction, the assessment of
robotic behavior has been a key part in a number of studies.
Huang and Mutlu (2012) developed a toolbox for behavioral
assessment of humanoid robots. There, the authors focus
especially on human-like social behavior in robots. Ratings
for variables of robot behavior, e.g., naturalness, likability, and
competence, were collected after the experiments rather than
during the actual interaction. Tapus et al. (2008) proposed
a robot personality matching for robot behavior adaptation
in post-stroke rehabilitation. To adapt the robots behavior,
the authors used a Policy Gradient Reinforcement Learning
(PGRL) Algorithm. The robot collected feedback from the user
with voice recognition, using discrete classes such as “yes,”
“no,” and “stop.” Sekmen and Challa (2013) combined sensory
input from speech recognition, natural language processing,
face detection and recognition, and implemented a Bayesian
learning mechanism to estimate and update a parameter set
that models behaviors and preferences of users. Specifically,
they predict future actions of their users to prepare the
robot for these. In a recent study of Sarkar et al. (2017),
the effects of robot experience and personality of a user
on the assessment of, among other factors, trust into the
robot were assessed. Interestingly, the group of participants
with previous robot experience rated their safety during
the interaction with the robot on a lower level than the
group which had no previous experience with robots. Less
experienced people also rated the robot as more intelligent in
this study.

Relevant to the decoding of perceived danger from EEG data,
Kolkhorst et al. (2017) decoded the perceived hazardousness
in traffic scenes from EEG data. This could also be used
in human-robot interactions to prevent potentially dangerous
situations. Kolkhorst et al. (2018) further developed an EEG-
based target selection in collaboration with robotic effectors,
which could harmonize well with assessment of robot behavior in
human-machine interactions. Ehrlich and Cheng (2018) recently
developed a system to validate robot actions by decoding error-
related signals from EEG. Related to this, a number of studies in
recent years have shown that the performance of robots in BCI
scenarios can be enhanced with error decoding, e.g., in shared-
control BCIs (Iturrate et al., 2013), or during the observation of
autonomous robots (Salazar-Gomez et al., 2017).

In recent years, promising new approaches to decoding
information from brain signals for BCI control were developed,
e.g., deep learning with convolutional neural networks (CNNs).
A major advantage of CNNs is that feature extraction and
classification are combined into a single learning process,
removing the need to manually extract features. After pioneering
achievements in the field of computer vision, they are
increasingly being adapted to problems of EEG decoding (Manor
and Geva, 2015; Bashivan et al., 2016) and are the subject of active
research (e.g., Eitel et al., 2015; Watter et al., 2015; Oliveira et al.,
2016). These biologically inspired networks have a great potential
to improve the accuracy of BCI applications (Burget et al., 2017;
Schirrmeister et al., 2017; Kuhner et al., 2019). They additionally
can be applied to the raw EEG data, greatly simplifying the design
of BCI pipelines. We further demonstrated the usefulness of
CNNs for error decoding from noninvasive (Völker et al., 2018c)
and intracranial EEG (Völker et al., 2018b).

In contrast to discrete decoding problems, regression analysis
with neural networks have become more popular in the recent
time. Most use cases shown so far applied regression methods
to video or image data. For example, Held et al. (2016) used
regression to successfully track objects in videos at 100 frames
per second. Shi et al. (2016) presented a regression approach to
identify facial landmarks to subsequently align faces in images.
In order to detect and localize robotic tools during robot-assisted
surgery, Sarikaya et al. (2017) implemented a regression layer
into a CNN. Miao et al. (2016) used regression techniques for
a real-time 2D and 3D registration of X-ray images. With a
CNN regressor, Viereck et al. (2017) improved the accuracy of
robotic grasping and object recognition with respect to simulated
depth images.

1.3. Aims and Objectives
The goal of this study was to assess the feasibility of acquiring
continuous data on the subjective perception of the behavior of
assistive robots in a BCI context. Considering this context, the
approach should not be limited to robots of a certain design,
e.g., humanoid or not. Rather, we aimed to create a generalizable
method for the subjective assessment of robot behavior, utilizable
in real-time during BCI (and other) experiments. In future
applications, such real-time ratings could then be leveraged
for reinforcement-learning algorithms designed to adapt robotic
behavior during the interaction in a human-compliant manner.
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Importantly, we wanted to evaluate subjective perception not by
discrete values, but with a continuous rating system, allowing a
more fine-grained analysis of the outcome. By recording EEG,
ECG, and respiratory data simultaneously, we aimed to allow a
search for physiological correlates of these ratings, which could
later be used as input for an implicit situation assessment, without
the user needing to explicitly rate the robot’s behavior. Finally,
we aimed to use regression methods to create an automatic
and continuous prediction of subjective ratings for each user,
and evaluate which kinds of input data and EEG features
are the most informative about subjective perception during
direct interaction with a robotic assistant. Our procedure is
schematically summarized in Figure 1.

2. EXPERIMENTS

We conducted a series of experiments to evaluate robot behavior
during interaction with an assistive robot grasping an object and
delivering it to the user. The users were instructed not to move
any body part during the experiment, to keep the interaction
similar to that of a paralyzed person with a robot and to prevent
muscle activity from contaminating the EEG data. Users were
informed that the robotic arm would simulate the grasping of an
object, e.g., a cup of water, and bring it forward toward them.
The users did not have any prior knowledge about the path or
velocity the robot would use. In some of the trajectories, the robot
would deviate from the correct trajectory, e.g., by stopping in a
wrong position, i.e., not in range of the user, or by positioning
its hand above and behind the user’s head. The trajectories were
pre-programmed to ensure comparable experiments across all
users. Figures 2A,B show the real and simulated experimental
setup, respectively.

2.1. Hardware
As robotic arm, the LBR iiwa 7 R800 (KUKA Robotics), a 7
DOF lightweight robot combined with a three-fingered hand
(Dexterous Hand 2.0, Schunk) was used. EEGwas recorded using
the g.SAHARA dry active electrode system and three g.USBamp
amplifiers (Guger Technologies). Usable without electrode gel,
dry electrodes have the advantage to be set up faster than systems
with wet electrodes and may thus be more convenient for the
user. The system used in this study is designed to capture a
frequency range from 0.1 to 40Hz. We recorded with 32 dry
electrodes on the scalp positioned according to the 10-20 system
at Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F5, F3, F1, Fz, F2,
F4, F6, FC1, FCz, FC2, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4, P1, Pz, P2, and POz. The reference electrode was placed
on the left mastoid, the ground electrode on the right mastoid.
Further, ECGwas recorded with two electrodes on the users’ right
clavicle and lowest left rib, and respiration was monitored with a
respiration belt.

2.2. Users
Feasibility of continuous real-time rating of the subjective
perception of robot behavior was evaluated in three users [age:
24 (S1), 26 (S2), and 30 (S3), all right-handed, S1 female]. S1
had no previous robot experience, S2 moderate experience with
robots, i.e., worked with robots in a BCI context irregularly for
approximately 2 years, and S3 already had a substantial amount
of experience working with robots, i.e., worked extensively with
robots at university and in in-depth projects for multiple years.
All users were students of the University of Freiburg. Informed
consent was provided before participation. The experiments were
approved by the ethics committee of the University of Freiburg.

The users were seated in a way so that they could observe the
robot’s movements without moving their head, and in a position

FIGURE 1 | Structural diagram. A robot performs pre-programmed trajectories in the proximity of a user. The user subjectively and continuously rates the human

compliance of the trajectories. In parallel, EEG, ECG, and respiration are measured. After the experiments, the EEG, ECG, respiration, and hand position data are

used to regress the ratings. We report the correlation coefficient (Pearson’s ρ) and root mean square error (RMSE) between ratings and regression outputs as intuitive

quantitative measures. Our long-term goal is to provide real-time feedback to reinforcement-learning algorithms controlling the robot without explicit user ratings.
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FIGURE 2 | Paradigm setting, reconstruction, and rating system. (A) Photograph of the real setting. The picture was edited to make the user anonymous and to

display the background in black and white. (B) Reconstruction in V-REP. (C) Robot behavior rating system with a wireless controller. The users rated the robot’s

behavior within a continuous range from −1 to 1. To do that, the users had to keep a thumbstick on a wireless controller on an outward circular path with their right

thumb, where a left position represented a very bad rating (−1, red), a position to the right represented a good rating (1, blue), and a position straight up or down

represented a neutral rating (0, yellow). This system was introduced so that the movement effort for the thumb was the same at each position, making an EEG

analysis possible.

in which the trajectories of the robotic arm could not intersect in
any way with the users’ body or head. 45, 95, and 95 trajectories
were recorded in block of 15 for each user, respectively.

2.3. Rating System
The users were instructed to rate the quality of the behavior
of the robot continuously during their interaction by moving
the right thumbstick on a wireless controller (Logitech F710)
into different directions (Figure 2C). We did not ask for a more
specific evaluation variable to gain a preferably generalizable
evaluation of the robot’s performance.

To rate the robot’s behavior as good, the users had to move
the thumbstick to the right; a position on the left was linked to
a bad rating, and a position in the middle corresponded to a
neutral rating. This rating strategy was thus designed in a way
that, at all times, the users had to keep the thumbstick at a
maximal deflection, to generate a tonic motor output at a similar
level irrespective of the rating conveyed and thus to minimize
movement-related brain responses possibly confounding EEG
correlates of the ratings (see section 5). Randomizing the
direction of rating for each robot trajectory could be used
to further avoid such a confound but would make the task
more difficult for the users and could thus potentially introduce
inadvertently wrong ratings. We therefore chose to keep the

direction of rating constant across all robot trajectories in this
pilot study.

To calculate the rating, we first had to translate the x and
y position of the thumbstick (both ranged from −1 to 1) into
a rotation angle, and from that to a continuous rating from
−1 (very bad) to 1 (very good), as shown in Figure 2. Thus,
the conversion of the thumbstick x, y position to the rating is
defined as

rating =
abs(arctan2d(y, x))− 90

90
(1)

where arctan2d is the four-quadrant inverse tangent in degrees.

2.4. Real-Time Data Processing
Robot joint angles were controlled with the MoveIt! motion
planning framework (Chitta et al., 2012) via the Robot Operating
System (ROS) (Quigley et al., 2009). EEG and peripheral (ECG,
respiration) data were recorded at a 512-Hz sampling rate with
the BCI2000 software (Schalk et al., 2004), using the Matlab
Signal Processing (Matlab 2014a, The MathWorks, USA) module
for real-time access to the raw EEG signals. In Matlab, a network
connection to the local ROS master, controlling the robotic arm,
was established. During the recording, the data were stored in a
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ring buffer and processed 16 times per second. EEG data were re-
referenced to common average and filtered with a Butterworth
band-pass filter of 3rd order between 0.5 and 40Hz. For this, the
filter coefficients were passed on between the blocks to avert filter
artifacts and allow filtering on such short time segments. A ROS
custom message type was used for the broadcasting of the data.
The collected EEG, ECG, respiration, and the rating data were
sent 16 times per second to the ROS master, where they were
timestamped and stored together with the seven joint angles of
the robotic arm.

2.5. Post-hoc Data Reconstruction
Robot joint states, EEG, physiological recordings, and rating data
were all stored in ROS bag files and later loaded into Matlab with
help of ROS. To be able to reconstruct the exact trajectories of
the robot, e.g., to calculate the distance between the users’ head
and the robotic hand and the hand’s velocity, V-REP (Rohmer
et al., 2013) (Coppelia Robotics) was used together with itsMatlab
API (Figure 2B). As replacement for the Schunk hand, which
was not available in V-REP, we used the BarrettHand (BARRETT
TECH) in the reconstruction, which has approximately the

same size and shape, and was also equipped with three
fingers. The trajectories, relative to the users head, are show
in Figure 3.

2.6. Evaluation Structure
The data acquired during the pilot experiments is evaluated two-
fold. First, to better understand the recorded data and investigate
the influence of user robot experience, we analyse the data and
present the results of this feature-driven analysis in section 3.
To permit a richer analysis, the experiments were further
recreated in reconstructions using V-REP, as described above.
Second, to evaluate which kind of input data are potentially the
most informative for proving feedback to reinforcement-learning
algorithms, we perform end-to-end regression analyses of the
data in the attempt to reconstruct the users’ ratings of the robotic
behavior. Regressions are performed within and across users.
We quantify the regression results using correlations (Pearson’s
ρ) and the root mean square error (RMSE). These metrics
are reported in section 4.5. Figure 1 schematically depicts the
structure of our approach.

FIGURE 3 | Effector trajectories and ratings. Users with no previous robot experience (S1), moderate robot experience (S2), and substantial robot experience (S3).

The positions of the points correspond to the position of the base of the robotic hand. The color of each point displays the user’s rating of the robot’s behavior at this

point in time. Red color indicates a negative rating, blue color indicated a positive rating; white corresponds with a neutral rating. The axes show the distance of the

robotic hand from the user’s head (gray sphere, triangle represents user’s nose) in meters within the respective dimension (x, y, z).
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3. TRAJECTORY AND RATING

From the reconstruction in V-REP, we extracted the position of
the robotic hand base over time. By combining the positions in
3D with the subjective rating at the same points in time, we were
able to create trajectory-rating maps for each user, which are
shown in Figure 3.

The trajectory-rating maps reveal a number of commonalities
in the robot ratings across the users. For example, trajectories
which were pre-programmed to end in an incorrect position (i.e.,
not within reach of the user) were expected and consistently
labeled as “bad” by all users. Further, positions in which the
robotic hand was above and behind a user’s head, and thus not
in the user’s field of vision were also always rated as “bad.” The
initial robot pose was mostly rated as neutral or close-to neutral.
Other distinct positions of the robotic hand, like grasping,
over-head, or correct/incorrect end-positions were rated more
strongly, either positive or negative, than positions occurring
during ongoing movements, or between the distinct poses.

However, despite the small number of users investigated, we
also observed some distinct inter-individual differences in the
robot ratings. S1, with no previous robot experience, gave in
general lower ratings (mean: 0.04 ± 0.34), even if the robot
was fulfilling the task objectively correct, like in the grasping
position. The correct end-position was also sometimes rated
as bad, especially if the robotic hand approached the user in
a relatively steep angle from above. The negative ratings were
often only in the range of 0 to −0.5. S2, with moderate robot
experience, rated the majority of poses as good (mean: 0.23
± 0.59), except the positions in which the robotic hand was
positioned over the user’s head, and thus out of the field of
vision, and the wrong end-position. These were rated as strongly
negative. S3, with a substantial amount of robot experience, again
rated the robot’s behavior as overall more positive than the other
two users (mean: 0.37 ± 0.44). In general, the trajectory ratings
in S3 appeared to be more similar to the user with moderate
robot experience. Over-head and wrong end-position were rated
negatively by all users, but least so by S3.

3.1. Key Poses During the Human-Robot
Interaction
From these trajectory-rating maps, we selected four key positions
of the robot hand for deeper analysis: the grasping position, the
over-head position, the correct end-position, and the incorrect
end-position. These, and the initial position, are displayed from
three different viewpoints in Figure 4.

In the four key positions, we calculated the mean rating for
each user by identifying the spatial center of the robot hand
position associated with each key pose and extracting the ratings
within a cube with 40 cm side length around the center point.
The mean ratings for the different users are listed in Table 1 and
illustrated in Figure 5.

3.2. Development of Ratings Over the Time
of the Experiment
As we expected that robot ratings might undergo systematic
changes on the time scale of our experiment, we further analyzed

FIGURE 4 | Key robot poses during the human-robot interaction. In addition

to the initial pose, four key poses were pre-programmed into the trajectories.

The object-grasping pose, a pose above the user’s head and outside of its

field of view, the correct end pose where the grasped object is delivered to the

user, and the wrong end pose where the grasped object cannot be properly

delivered to the user. Screenshots from the V-REP reconstruction.

TABLE 1 | Mean ± std subjective ratings at key robot positions.

User (rob. exp.) Grasping Over-head Correct end Wrong end

S1 (no) 0.00 ± 0.21 −0.33 ± 0.23 0.20 ± 0.42 −0.50 ± 0.21

S2 (moderate) 0.64 ± 0.27 −0.52 ± 0.38 0.63 ± 0.33 −0.70 ± 0.25

S3 (substantial) 0.84 ± 0.22 −0.28 ± 0.22 0.79 ± 0.25 −0.17 ± 0.38

the temporal development of ratings in these key positions
(Figure 6). The long-term stability was assessed by applying a
moving-average filter to smooth out fast fluctuations. While the
overall distribution of ratings for the key positions stayed quite
stable over the experiment, the absolute strength of the ratings
did vary over the course of the experiment, especially in S1,
the user without robot experience. Specifically, S1 displayed a
tendency to rate the objectively “positive” poses, i.e., the grasping
pose and the correct end-position, lower toward the end than
at the beginning of the experiment. In S2 and S3, the users
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FIGURE 5 | Mean subjective ratings at key robot positions. Key robot

positions are depicted in Figure 4. Rating sample from cube with 40 cm side

length centered on key pose. The error bars show the standard deviation of

the rating sample.

FIGURE 6 | Development of ratings at key robot positions during the

experiment. The y-axis shows the subjective rating when the robotic hand was

positioned for grasping (blue), in an over-head position (yellow), at the correct

end-position for delivery (green), or at a wrong, too-high end-position (red).

The x-axis shows the development of the ratings over the duration of the

experiment. The ratings are smoothed with a moving-average filter consisting

of a Gaussian weighted window with the size of 1
5 th of the total samples per

condition, which was convolved with the raw ratings.

with moderate and substantial robot experience, particularly
the ratings of the positive poses stayed more stable over time.
Together, these observations fit well to our expectations that
robot perception may change over time, and that such changes
may be depended on previous robot exposure.

3.3. Effect of Robot Distance and Velocity
To understand the relationship of the subjective rating with both
the velocity and the distance of the robotic hand in reference
to the user’s head, we calculated these metrics for each time
point. For each user and feature, we estimated Pearson’s Linear
Correlation Coefficient (Pearson’s ρ) (Table 2).

The distance of the robotic hand correlated moderately
positive with the rating of the users S2 and S3, while it did
not exhibit any correlation for S1 (with no previous robot
experience). The correlation of subjective rating with the hand
velocity was only weakly negative for S3, and moderately positive
in S1, while there was no such effects in S2.

4. REGRESSION FOR RATING PREDICTION

To show the feasibility of our proposed method we trained
diverse regressors to predict the subjective ratings from
the recorded data within and across users. We focused on
the aforementioned feasibility, exploring features proposed
in the literature and probing for a possible motor bias.
Regressions are performed with python using pytorch (Paszke
et al., 2017) version 1.0.0, braindecode (Schirrmeister et al.,
2017) version 0.4.7 and scikit-learn (Pedregosa et al., 2011)
version 0.20.2.

4.1. Data Pre-processing
For each user, we downsampled the data to 256Hz, standardized
to amean of 0 and a variance of 1 using an exponentially weighted
mean with factor 0.001 and split them three-fold. We kept the
last three minutes of data separate for final evaluation of our
regressors. The last 3min before the final evaluation set were used
as validation set during the manual hyper-parameter search. The
remainder of the recording was used as training set. For the final
evaluation, which is reported here, training set and validation set
were combined into a single training set.

4.2. Evaluation Metrics
We evaluated the similarity of the predicted rating to the true
rating by calculating their correlation coefficient (Pearson’s ρ)
and the RMSE of their difference. We report both metrics here
because they reflect two different aspects of the predictions. The
correlation coefficient only compares the shape of predictions
and ratings while the RMSE compares the values. For
reinforcement-learning, proper approximation of the shape of
the rating is already sufficient. Using predicted ratings which
additionally have correct scaling and value range is of course
better but much more difficult to achieve. Thus, our preferred
metric is the correlation coefficient.

4.3. Feature Extraction
To probe for differential information content, we split the data
into different components. First the different modalities, the
robot hand 3D coordinates (robot pos.), the ECG and respiration
data (periphery data), and the EEG data were split. Each of
these data modalities and their combinations were fed as-is to
the regressors. To prevent to much redundancy in the results
we only report the combination of all three modalities. For
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TABLE 2 | Linear correlation of robot distance and velocity with subjective ratings.

Linear correlation with subjective rating

Robot hand distance Robot hand velocity

User (rob. exp.) Pearson’s ρ

S1 (no) −0.002 0.226

S2 (moderate) 0.369 −0.039

S3 (substantial) 0.205 −0.197

modality splits containing EEG data, we additionally tested three
electrode selections and seven frequency-band selections. Based
on literature (Cavanagh et al., 2010; Cavanagh and Frank, 2014;
Spüler and Niethammer, 2015; Völker et al., 2018a), a potential
target for a physiological brain signal underlying the rating could
potentially be the delta (0–4Hz) and theta (4–8Hz) frequency
bands, especially in the midline electrodes. Thus we, in addition
to the raw EEG data, used band-passes from 0 to 4 and 4 to
8Hz and selected all electrodes located on the head midline
(all electrodes containing a z in the 10–20 nomenclature). To
investigate the influence of a potential motor bias we further
band-passed the EEG data from 8 to 14Hz (alpha band), 14 to
20Hz (low-beta band), 20 to 30Hz (mid-beta band) and 30 to
40Hz (high-beta/low-gamma band) and selected all electrodes
located on the sensorimotor cortex (all electrodes containing a C
in the 10–20 nomenclature).We report the results of all the triplet
combinations of these features, i.e., four data modality selections,
three electrode selections, and seven frequency-band selections,
resulting in 44 (2+2 ·3 ·7) result samples per regressor described
in sections 4.5, 4.6.

4.4. Statistics
In our visualizations and statistics, we focused on aspects which
generalize over the whole sample, analysing the regression results
pooled over all but the investigated aspect. We use this approach
to compensate for the small user sample inherent to a pilot study.
Trying to generate results for specific feature, user, and regressor
combinations is possible but would most likely not generalize
well to a larger user cohort. To evaluate whether a result
sample of a given aspect (feature, user, or regressor) significantly
differed from its peers, we performed non-parametric tests as
our samples were non normal distributed. When pairs were
available, we performed two-sided sign-tests using our own
implementation. When no pairs were available, e.g., when
comparing data selections containing EEG data to data selections
without EEG data, we performed two-sided Mann–Whitney-U-
tests with continuity correction, as implemented in scipy (Jones
et al., 2001) version 1.3.0. In both tests, ties correction
was performed.

To asses whether the reported regression performances were
above chance level, we permuted the subjective ratings of the
training set 106 times and compared them to the subjective
ratings of the test set using the metrics listed in section 4.2. The
length of permuted training subjective ratings was truncated to
the length of test subjective ratings after permutation to ensure

that our samples were drawn from the entire training subjective
ratings distribution. The p-values of each regression performance
was calculated as

p =
npermutation≥regression + 1

npermutations + 1
(2)

with npermutations = 106 and npermutation≥regression the number of
permutations having an equal or better performance than the
tested regression result.

All calculated p-values were corrected for multiple testing
using the false discovery rate (FDR) correction for dependent
p-values (Benjamini and Yekutieli, 2001) as implemented in
the multipletests function of statsmodels (Seabold and Perktold,
2010) version 0.9.0. We report the FDR-corrected p-values
as q-values.

4.5. CNN Regression
We adapted three CNN classification architectures for regression
analysis by removing the softmax layer and applying the
mean square error (MSE) loss function to the training.
The specific architectures used were (i) a 6-layered CNN
(Deep4Net, 4 convolution-pooling blocks), (ii) a 29-layered
residual neural network (EEGResNet-29, 13 residual blocks),
both described by Schirrmeister et al. (2017), and (iii)
a compact CNN (EEGNet V4, 4 layers, 2 convolution-
pooling blocks) (Lawhern et al., 2018). These CNN networks
were chosen because they have previously been shown to
perform well for classification of EEG data. EEGNet and
Deep4Net were used as implemented in the Braindecode toolbox
(https://github.com/TNTLFreiburg/braindecode/).

The weights of the models were initialized using a uniform
distribution as described in Glorot and Bengio (2010). The
models were then trained for 200 epochs, using a batch size
of 64, a learning rate of 0.001 and a weight decay of 0. As
feasibility rather than performance is the main focus of this
paper, we use identical hyper-parameters for all models. That
the models do learn using these hyper-parameters was verified
using the validation set. The input time length of the models
was individually adapted so that the predictor time length (data
used to compute the MSE loss) was exactly 1 s for all models,
irrespective of receptive field size. We use AdamW (Loshchilov
and Hutter, 2017) with default parameters as optimizer and
schedule the learning rate using cosine annealing (Loshchilov and
Hutter, 2016) without restarts.We do not perform early stopping.
Instead we use the regressor of the end of the training to predict
the ratings, irrespective whether a regressor with better validation
accuracy existed during the training.

4.6. Non-CNN Regression
We use four regressors implemented in scikit-learn (Pedregosa
et al., 2011). A linear regressor, a linear support vector regressor
(L-SVR), a non-linear (radial basis function kernel) SVR (RBF-
SVR) and a Random Forest regressor (RFR). Using the validation
set we adjusted the maximal iterations of the RBF-SVR from
infinity to 100,000 and the number of trees of the RFR from 10
to 100. Higher values lead to better validation results for both
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hyper-parameters but had to be limited because of computational
budget. All other parameters were kept to the defaults of scikit-
learn version 0.20.2.

4.7. Within-User Regression
First, we evaluated the regression on different data modalities
within each user. As input data, we either used the position
of the robotic hand in 3D, the EEG data, the peripheral
physiological data (ECG, respiration), or all combined. Table 3
lists the results of all regressors. As a chance level regression
baseline we report the best out of 106 random permutations
of the training labels of each user compared to the test labels
in Table 3a.

Chance levels were not competitive (∼0.02) and very similar
(±0.001) across users for Pearson’s ρ, indicating that the correct
shape of the subjective rating cannot be easily guessed. At
the same time, the RMSE chance levels were unexpectedly
competitive for S1 and S3, confirming that these 2 users rated
with lower variance than S2 (0.112 and 0.194 vs. 0.354). No RMSE
regression result based on the data of S1 was significantly better
than random permutations (q ≥ 0.05).

In most cases, the performance in the final evaluation set
was the highest with the robotic hand position as the only
input data. Predictions from EEG only showed rather low
performance, while predictions from ECG & respiration yielded
low performance. A combination of all input data did improve
the performance in some cases, mostly so for non-linearmethods.
Predicted and actual rating in the 3-min test set are displayed
in Figure 7 for the Deep4Net, trained on the robotic hand
position data.

When considering the best results obtained for EEG,
periphery data and the combination of all data types, it
seems like EEG and periphery data each carry information
related to the rating. In the case of the non-linear regressors,
this information could be used to improve the regression
performance. To investigate the origin of this information, we
trained our regressors on different EEG electrode selections and
EEG frequency bands.

4.8. Regression Using Different EEG
Features
We trained our regressors on different EEG electrode selections
and EEG frequency bands. The differentiation of electrodes and
frequency bands has 3 purposes. (1) To investigate the origin of
the subjective-rating related information contained in the EEG.
(2) To test whether indications from the literature transfer to our
paradigm. (3) To probe for a potential motor bias. The results of
these regressions are visualized in Figures 8C,D for electrode and
frequency-band selections, respectively.

For the electrode selection, the only statistically significant
result is that, when considering the shape of the subjective
rating (reflected in Pearson’s ρ), using all electrodes is marginally
better than using only the electrodes located above the
sensorimotor cortex (*C*) (q = 0.016). Non-significant results
when considering shape of the regression are that using all
electrodes is marginally better than using only the midline (*z)
electrodes (q = 0.252) and that using the *C* electrodes is

marginally worse than using the *z electrodes (q= 0.130). When
considering the values of the regressions (reflected by the RMSE),
non-significant results are that using all electrodes is marginally
worse than using both *z electrodes (q = 1) and *C* electrodes
(q = 1) and that using *z electrodes is marginally better than
using *C* electrodes (q= 1). Summarizing, no considerable effect
could be found. It appears like using all electrodes is marginally
best when considering the shape of the regression and using
*z electrodes is marginally best when considering the values of
the regression.

For the frequency-band selections, four comparisons related
to the shape of the regression and one comparison related to
the values of the regressions were statistically significant. Using
the low-beta (14–20Hz) and high-beta/low-gamma (30–40Hz)
frequency bands gave marginally better (higher) correlation
coefficients than using the alpha (8–14Hz) band (q = 0.009 and
0.023, respectively). Using the alpha band was marginally better
than using the mid-beta (20–30Hz) band (q = 0.023). Using
the mid-beta band was marginally better than using the theta
(4–8Hz) band (q = 0.043). Finally, the RMSE was marginally
better (lower) using the theta band than using the delta (0–4Hz)
band. The general tendency seen in the statistically significant
results, higher frequency bands providing better results than
lower frequency bands, can also be seen in the non-significant
results. Similar to the electrode selection, no considerable effect
was found.

An overview of the regression results across all within-user
regressions can be found in Figures 8A, 9B to compare users,
Figures 8B, 9A to compare data types and Figure 8E to compare
regressors. An overview of the across-user regression results is
provided in the next section.

4.9. Across-User Regression
We further applied the regressors trained on the robot
data across users, to test for user-specific differences the
regressors might have learned. The results are shown
in Figure 10. We now only consider Pearson’s ρ as our
performance metric.

A pattern common to all regressors was that models trained
on a user with less experience performed similarly or better
when tested to a user with more experience, relative to within-
user. For example, training on S2 and testing on S3 resulted in
higher correlations in 6 out of 7 regressors, relative to testing on
S2. The 7th regressor (EEGNet v4) performed similarly (0.007
difference) when trained on S2 and tested on both S2 and
S3. Training on a user with more experience and testing on
a user with less experience, reversed the pattern. For example,
training on S3 and testing on S1 and S2 always resulted in
lower correlations than when testing on S3. Increases and
decreases in performance scaled with the experience in 36 out of
42 transfers.

Interestingly, performance gains relative to within-user
regression could be achieved when transferring between S2 and
S3 for some regressors. This was not the case for all regressors
when transferring from S2 and S3 to S1. That is, training on S2
and testing on S3 resulted in better performance than within-
user regression in S3 for both linear regressors. Similarly, training
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TABLE 3 | Regression test-set metrics for different data modalities.

(a) Best of 106 random permutations of the training subjective ratings compared to the test subjective ratings

User Pearson’s ρ RMSE

(rob. exp.)

S1 (no) 0.022 0.248

S2 (moderate) 0.021 0.640

S3 (substantial) 0.022 0.366

(b) Linear regressor

Input modality:

Robot EEG Periphery Combined Robot EEG Periphery Combined

S1 (no) 0.257 −0.008 0.002 0.257 0.380 0.385 0.385 0.380

S2 (moderate) 0.650 0.014 −0.008 0.650 0.418 0.548 0.548 0.418

S3 (substantial) 0.750 0.008 −1.69e-4 0.749 0.280 0.424 0.424 0.280

(c) Linear kernel support-vector regressor (L-SVR)

S1 (no) 0.196 8.24e-4 −2.18e-3 0.210 0.369 0.371 0.370 0.368

S2 (moderate) 0.660 0.003 8.07e-4 0.660 0.410 0.547 0.548 0.410

S3 (substantial) 0.722 0.006 5.00e-5 0.710 0.290 0.444 0.413 0.294

(d) Deep4Net regressor

S1 (no) 0.530 0.320 0.259 −0.013 0.325 0.414 0.352 0.498

S2 (moderate) 0.754 0.177 −0.135 0.785 0.366 0.546 0.629 0.353

S3 (substantial) 0.826 0.099 −0.037 0.706 0.251 0.433 0.492 0.640

(e) EEGResNet-29 regressor

S1 (no) 0.551 0.001 0.133 0.210 0.336 0.473 0.379 0.432

S2 (moderate) 0.714 0.271 0.091 0.710 0.390 0.610 1.271 0.396

S3 (substantial) 0.858 −0.026 0.058 0.498 0.214 0.661 0.531 0.518

(f) EEGNet V4 regressor

S1 (no) 0.489 0.083 0.201 0.358 0.344 0.386 0.371 0.362

S2 (moderate) 0.753 0.119 0.138 0.705 0.358 0.572 0.569 0.396

S3 (substantial) 0.869 0.309 −0.050 0.865 0.207 0.399 0.418 0.224

(g) Radial basis function kernel support-vector regressor (RBF-SVR)

S1 (no) 0.507 0.023 −0.052 0.428 0.328 0.372 0.882 0.332

S2 (moderate) 0.391 0.061 −0.007 0.743 1.169 1.505 0.671 0.587

S3 (substantial) 0.675 −0.086 −0.013 0.777 0.385 0.517 0.618 0.276

(h) Random forest regressor (RFR)

S1 (no) 0.500 −0.008 0.107 0.452 0.347 0.425 0.399 0.332

S2 (moderate) 0.589 0.316 0.020 0.674 0.463 0.538 0.653 0.414

S3 (substantial) 0.798 0.173 0.003 0.828 0.261 0.427 0.454 0.252

EEG refers to EEG data without any feature selection. Italic entries highlight best results for each regressor. Underlined entries highlight best results for each user. Bold entries highlight

overall best results. Gray entries had q ≥ 0.05 when corrected for 28 tests (4 modalities · 7 regressors).

on S3 and testing on S2 resulted in better performance than
within-user regression in S2 in 4 out of 7 regressors. Furthermore,
the best performance in S2 was achieved by transferring from
S3 using a CNN regressor (Deep4Net). For S1 and S3, best
performance was achieved within-user (EEGRestNet-29 and
EEGNet v4, respectively).

5. DISCUSSION

The main contribution of the present study is to describe and
evaluate a novel method for continuous rating of subjective
user perception during direct human-robot interaction. Our

rating approach is continuous in two respects: first, ratings are
conveyed on a continuous scale, secondly, these ratings are
acquired continuously over the whole time period during which
users interact with the robotic system. This rating system was
designed to minimize movement-related confounding effects
(see section 5.4), and as we have demonstrated, allows to
generate real-time user feedback during a grasp-and-deliver
task of a robotic arm by means of a wireless controller.
We have used our rating system to let users evaluate
the general behavioral quality of the robot the users were
interacting with, ranging from “positive” to “negative.” However,
the rating system is amendable to any other continuous
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FIGURE 7 | Regression of subjective rating, using the robotic hand position as input. The network used was the Deep4Net, with a predictor time length of 1 s. The

orange curve shows the actual rating given by the users, the blue curve shows the predicted rating. mse, mean square error; r, Pearson’s ρ; p, p-value (uncorrected

for multiple testing).

variable, and would thus also allow rating of factors like
subjective valence and arousal, or trustworthiness of a robot, as
in Sarkar et al. (2017).

5.1. Subjective Ratings
In the present study, we chose a scenario inspired by emerging
brain-computer interfacing (BCI) applications. While our main

focus was on demonstrating the basic feasibility and usefulness of
our continuous rating system, the data that we obtained during
the evaluation process in three users with different levels of
previous direct experience with robotic systems lead to several
preliminary observations that provide potentially useful starting
points for further large scale investigations. As described in 3
in more detail, the three users showed distinct rating patterns
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FIGURE 8 | User, feature, and regressor overview. Each matrix is based on the results of the 924 test-set regressions (3 users · 44 features · 7 models), split

according to visualized parameter. Numbers in the lower and upper triangles of each comparison matrix are the differences between median RMSE (blue) and

Pearson’s ρ (orange), respectively. Bold font indicates q < 0.05. Arrows indicate the parameter with better performance of each pair. The gray-scale background of

each cell codes for the corresponding q-value. Separate FDR corrections for each triangle of each matrix. (A) Users: FDR-correction for 3 tests. mod., moderate;

subst., substantial; exp., experience. (B) Data types: FDR-correction for six tests. (C) Electrodes. FDR-correction for 3 tests. *All EEG electrodes, *z: midline

electrodes, *C*: sensorimotor cortex electrodes. (D) Frequency bands: FDR-correction for 21 tests. The corner frequencies of band-pass filters used are indicated in

the square brackets. (E) Regressor: FDR-correction for 21 tests. SV, support vector.

with, for example, temporally more stable rating behavior in the
users with more extensive previous robot exposure (Figure 6). Of
course, based on the current data, we cannot decide whether it
was experience per se or possibly pre-existing personality traits
such as anxiety, or a more or less positive basic attitude and
trust in technology in general, and robots in particular, that
had a modulating influence on the inter-individual differences
that we have observed. This line of interpretation would also
fit to the results demonstrated by Sarkar et al. (2017). There,
users with more experience rated the robots as less intelligent
and less safe than their counterparts with less experience. Such
and related questions could be addressed using experimental
procedures with fine-grained rating systems as we have
described here.

5.2. Regression of Subjective Ratings
While explicit user ratings can be useful, in many situations
it would be inconvenient or even impossible to obtain such
ratings. For example, in a BCI scenario, as investigated here,
where paralyzed patients may entirely loose the ability to convey
motor responses. Implicit (based on physiological measurements
from the users) or objective/contextual sources of information
(based on the robot behavior or environmental factors) could
help in such situations. We thus tested whether various neuro-
and peripheral recordings (EEG, ECG, respiration) as well as
kinematic properties of the robot actions contained information
about the subjective ratings. As we did not observe strong
linear correlations, we applied diverse regression methods
to predict subjective ratings. At least based on the data
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FIGURE 9 | Regression within users. Pearson’s ρ (orange, higher is better) and the RMSE (blue, lower is better) are displayed separately in split violins. As test-set, the

last 3 min of the experiment was used for each user. The dashed lines within the split violins represent the quartiles (from bottom to top, 25th, 50th, and 75th

percentiles, respectively). Overlaid to the split violins are dot-plots with horizontal jitter (for better visibility) representing the data sample underlying the split violins. The

horizontal bars above and below the split violins indicate the performed significance tests with matching q-value (FDR-corrected p-value). Bold font indicates q <

0.05. The evaluation metrics with their corresponding half-violins, dot-plots, and significance bars are color-coded. (A) Regression results split across data types: 21

or 441 test-set regressions per split violin (3 users · 1 features · 7 models or 3 users · 21 feature · 7 models). Significance (unpaired: Mann–Whitney-U, paired:

sign-test) FDR-corrected for 6 tests. Separate corrections for each metric. (B) Regression results split across users: 308 test-set regressions (44 features · 7 models)

per split violin. Significance (sign-test) FDR-corrected for 3 tests. Separate corrections for each metric.
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FIGURE 10 | Across-user transfer matrices. Regression across users trained on the position of the robotic hand. As test-set, the last 3 min of the experiment was

used for each user. The transfer matrix displays the user on which the regressor was trained (y-axis) and the user on which it was evaluated (x-axis). The evaluation

metric (Pearson’s ρ) is displayed color-coded and in text within the respective field.

available here, robot hand position was the best predictor
for the subjective ratings, reaching correlation coefficients up
to 0.869.

Robot hand position based performance of the different
regressors revealed a consistent ranking of the users. According
to correlation coefficient, user rank scaled with experience. This

could be interpreted as a sign that more experienced users
produce subjective ratings which are more consistent over time
and thus provide a better generalization form training to testing.
The aspect of rating consistency was also discussed in 5.1. There,
we noted that due to the small sample size of our pilot cohort
other personal traits influencing rating consistency can not be
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ruled out. Additionally, the amount of training data also scaled
with experience (cf. section 2.2), which could have biased the
regression performance. Finally, according to rmse, user rank no
longer scaled with experience, further supporting our caution.

Dry EEG and peripheral physiological recordings were not
very useful for the regression analysis. Only weak correlation
values between predicted and actual rating up to 0.320 could be
achieved in the final evaluation sets. A combination of different
data modalities also did not improve the prediction beyond that
obtained with the robot position as the only input. Dry EEG
as used here has a generally lower signal-to-noise ratio than
conventional EEG (Mathewson et al., 2017), and the experiments
were conducted in a high-noise setting. Thus, in future, improved
dry EEG recording techniques (Fiedler et al., 2015) or gel-filled
EEG electrodes applied in recording conditions optimized for
high EEG signal quality (Völker et al., 2018a) could help to
evaluate the full potential of EEG in the present context. Further
peripheral physiological signals such as electrodermal activity
(EDA), as an index of arousal and stress (Fowles, 1980), could
also be tested in future studies.

5.3. EEG Signals Related to Subjective
Ratings
In a preliminary attempt to identify EEG signals related to the
subjective ratings, we investigated the selection of EEG electrodes
and frequency bands. As reported in section 4.8, it appeared
like using all electrodes was marginally but partially statistically
significantly best when considering the shape of the regression
and using *z electrodes was marginally but non-significantly best
when considering the values of the regression (cf. Figure 8C).
The latter would be in line with reports form the literature
highlighting the importance of *z electrodes for detecting error-
related brain activity (Cavanagh et al., 2010; Cavanagh and
Frank, 2014; Spüler and Niethammer, 2015; Völker et al., 2018a).
Unfortunately, we could not find further evidence relating our
results to the literature as we could not show that the delta
and theta bands play a dominant role in the encoding of error-
related brain activity in our paradigm. Rather, frequencies in
the alpha and beta bands seemed to be more informative, albeit
only partially significantly (cf. Figure 8D). At the moment it is
still unclear whether this trend is related to error signals or a
motor bias.

5.4. Motor Bias
In order to be compatible with EEG, we designed the
experimental paradigm in such a way that each evaluation
value corresponds to an equal tonic motor output. However,
directional motor signals (Waldert et al., 2009) could potentially
still confound the interpretation of EEG signals correlated with
subjective ratings. No evidence of a motor bias was found using
the electrode selection as the *C* performed consistently worst.
However, one would have expected to observe improved results
when using the alpha and beta bands relative to the delta and
theta bands, with a dominance of the alpha band. Indeed, alpha
and beta bands were the best bands when considering non-
significant RMSE results but with a dominance of the mid-beta
band. In the partially significant Pearson’s ρ results, the low-beta
band dominated, which is not entirely typical of a motor bias,

especially relative to the alpha band (Pfurtscheller and Lopes da
Silva, 1999). At this point, a motor bias cannot be entirely ruled
out based on the frequency-band selection. More experiments
and data analysis, for example by contrasting the EEG data
during extremely negative with extremely positive subjective
ratings, will be needed to resolve this question. Future studies
should explicitly control for motor bias, e.g., by switching the
vertical or horizontal axis of the rating system, either between
measurement sessions or between users.

5.5. Across-User Regression of Subjective
Ratings
To investigate whether the models have learned user-specific
characteristics, we have applied the models trained on the
training set of one user to the test sets of all users. In section 4.9 we
have described the general patterns underlying our initial across-
user regression results. Based on our 3 pilot users, we found
that the user’s prior experience with robots might also play a
role when transferring models between users. Models trained on
users with less experience mostly increased their performance
when transferred to users with more experience (in 15 out of 21
transfers) and vice versa (in 21 out of 21 transfers). The more
experience the transferred to user had the better the correlation
coefficient and vice versa (in 36 out of 42 transfers). As the best
across-user transfers always performed better on the tested user
but only rarely surpassed the within-user test on the training
user, our findings hint at the possibility that regressors have
learned both user-specific and general characteristics. This seems
to make it possible to generalize across users in decoding of
subjective perception from kinematic data of the robot actions.
At the same time, the results indicate that a good set of
training data from which the CNN is able to generalize well
might be more important than the user-specific differences of
the users.

In addition to our small sample size and differences in the
amount of training data, it is here also important to consider
that, as discussed in section 5.2, within-user performance
(Pearson’s ρ) appeared to scale with experience, which might
be a confounding factor here. If the reported patterns still hold
for larger samples, disentangling the factors, if possible, will
be necessary to differentiate their contributions to the reported
across user transfer effect. It will also be interesting to investigate
whether the across-user performance can be improved beyond
the within-user performance by combining the data of additional
users in the across-user training. Including the training data of
the tested user into a hybrid within/across-user training could
also further improve regression performance. Although such data
would not be directly available in an online BCI scenario an initial
across-user model could be fine-tuned as more and more labeled
data of a new user become available during an online experiment
as e.g., we have done for online-adaptive classification using
CNNs in Kuhner et al. (2019).

6. OUTLOOK

The connection of subjective continuous ratings in real
human-robot interaction with EEG allows the search for
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neurophysiological correlates of these ratings, which could then
be used as features for automated behavior adaptation algorithms
during robot interaction with paralyzed patients. Even if such
a search would fail, the availability of continuous ratings would
make it possible to generate fine-grained robotic behavior
policies, which in turn could be used to improve robot behavior.
In the future, the availability of continuous rating data may
be useful both in post-hoc and real-time application scenarios.
For example, post-hoc analysis of continuous robot-related
user rating would allow to study how different aspects of
robot behavior may shape user perception, and how user
perception evolves over time. Real-time analysis of ratings could
convey important teaching signals for real-time adaptation and
personalization of robot behavior, for example for users with
different levels of previous exposure to robots. Thus in the
future, real-time ratings combined with reinforcement-learning
methods, e.g., Deep Q-Networks (DQNs, Mnih et al., 2015) or
Deep Deterministic Policy Gradient algorithms (DDPG, Lillicrap
et al., 2015), could enable robot systems that keep optimizing
their behavior in a human-compliant manner.
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