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Abstract
The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious 
relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein 
Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The 
statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent pro
teins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal 
mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal 
dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional spe
cialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of 
these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins 
will be more assortative, and these proteins will have a higher degree of hydrophilic–hydrophobic segregation in the 
sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogen
etic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly 
reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evo
lution. This study provides new insights into how the diversity in the functionality of proteins increases and how the 
dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of 
the origin and evolution of lives.

Key words: protein evolution, protein structure and dynamics, evolution of plasticity and complexity, scaling ana
lysis, normal mode analysis.
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Introduction
The evolution of organisms takes place over time, as 
Darwin noted in his On the Origin of Species. It is usually 
naively discussed that the complexity of life has increased 
throughout evolution, whereas its validity is not always 
confirmed (McShea 1996; Adami et al. 2000; Furusawa 
and Kaneko 2000). Generally, it is widely accepted that 
complexity should be characterized as the difficulty of re
ducing a system to constitutional components. If the sys
tem consists of more different internal components, the 
complexity is generally higher. According to this idea, 
one can simply assume that eukaryote cells are more com
plex than prokaryotes, and multicellular organisms with 
more distinct cell types are more complex than unicellular 
organisms, as is also adopted in The Major Transitions in 
Evolution (Maynard Smith and Szathmary 1997). Parallel 

to the increasing complexity of organisms, proteins, as 
the basic building blocks of organisms, are also undergoing 
continuous evolution. Previously, there were evolutionary 
studies elaborating on the phylogenetic analysis of pro
teomes (Gerstein et al. 1994; Caetano-Anollés et al. 2009, 
2021) or the proteins that share the common ancestral se
quence or structure (Labas et al. 2002; Pin et al. 2003; 
Zardoya 2005; Morcos et al. 2011; Finnigan et al. 2012; 
Espada et al. 2015). To uncover the connection between 
organism evolution and protein evolution (Liu and Rost 
2001; Koonin et al. 2002; Pál et al. 2006; Zeldovich and 
Shakhnovich 2008; Sikosek and Chan 2014), combining 
the view of evolution from two perspectives may be neces
sary. In the microscopic view (molecule level), the evolu
tion of a protein does not necessarily follow the 
evolutionary path as the species evolve (Choi and Kim 
2006); while in the macroscopic view (organism level), if 
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considering an ensemble of thousands of proteins within 
the same organism, just as thermodynamic laws and col
lective order can emerge from the random motions of mo
lecules, it may be possible to discover a “collective” trend 
consistent with the increase of organismal complexity.

Notably, the recent development of artificial intelli
gence (AI) provides us with new and powerful tools to 
help us elucidate the trends in protein evolution on the 
macroscopic scale. AlphaFold, an AI system developed by 
DeepMind, which makes full use of the coevolutionary in
formation to predict protein structure, has already won an 
unprecedented and overwhelming success in protein 
structure predictions (Senior et al. 2020; Jumper et al. 
2021). Despite the limitations noted in previous research 
(Bagdonas et al. 2021; Pak et al. 2021; Ruff and Pappu 
2021), AlphaFold 2 is acknowledged to provide high- 
accuracy predictions of protein structures, even for se
quences with relatively fewer homologous sequences 
(Jumper et al. 2021). The exceeding accuracy and the speed 
of AlphaFold 2 provide the possibility of generating an ex
tensive database of structure predictions. AlphaFold 
Protein Structure Database (AlphaFold DB) provides 
now provides free access to about 200 million predicted 
protein structures, which covers the complete proteome 
of various organisms ranging from bacteria, archaea, uni
cellular and multicellular eukaryotes to humans (Varadi 
et al. 2022), and it keeps expanding. AlphaFold DB not 
only offers the potential to answer critical questions in 
medical and biological sciences (Robertson et al. 2021; 
Bayly-Jones and Whisstock 2022), but also shows new pos
sibilities in the study of protein evolution. Instead of focus
ing only on specific families of proteins (Bayly-Jones and 
Whisstock 2022), we can now perform comparative struc
tural analyses for the proteins in different organisms. 
Combined with other essential evolutionary analyses, the 
statistics of the full-proteome protein structures may 
help us uncover the hidden connection between protein 
evolution and organism evolution.

In this work, based on the AlphaFold-predicted struc
tures of the proteomes of 48 organisms, we perform com
parative analyses of the constituent proteins of different 
organisms. The statistical results indicate a correlation be
tween the flexibility of constituent proteins and the com
plexity of organisms; that is to say, for organisms with 
higher complexity, their constituent proteins will have lar
ger radii of gyration, higher coil fractions, and slower vibra
tions, statistically. By conducting normal mode analysis and 
scaling analyses, we demonstrate that higher organismal 
complexity correlates with lower fractal dimensions in 
both the structure and dynamics of the constituent pro
teins, suggesting that higher functional specialization is as
sociated with higher organismal complexity. We also 
uncover the topology and sequence bases of these correla
tions. As the organismal complexity increases, the residue 
contact networks of the constituent proteins will be 
more assortative, and these proteins will have a higher de
gree of hydrophilic–hydrophobic segregation in the se
quences. Furthermore, by comparing the statistical 

structural proximity across the proteomes with the phylo
genetic tree of homologous proteins, we show that, statis
tical structural proximity across the proteomes may 
indirectly reflect the phylogenetic proximity of homolo
gous proteins among organisms. Such a result suggests a 
statistical trend of protein evolution in parallel with organ
ism evolution. This study provides new insights into how 
the diversity of protein functionality increases and how 
the dimensionality of the protein dynamics manifold re
duces in the evolution, contributing to the understanding 
of the origin and evolution of lives.

Results
The Statistics of AlphaFold-Predicted Structures 
Indicate a Correlation Between the Flexibility of 
Constituent Proteins and the Complexity of 
Organisms
We perform a comparative analysis of the predicted pro
tein structures of the 48 organisms from the AlphaFold 
DB. The details of the full dataset are listed in 
supplementary table S1, Supplementary Material online. 
Here, let us first focus on the proteins from the 16 model 
organisms with similar chain lengths. Namely, for the pro
teomes of various organisms, we always select the protein 
structures with chain lengths N ≈ 250, calculate their struc
tural characteristics, and conduct statistical analyses. As 
shown in figure 1A, despite having similar chain lengths, 
the constituent proteins in different organisms have differ
ent distributions of radii of gyration Rg. We perform a two- 
sample Kolmogorov–Smirnov (KS) test to compare the Rg 

distributions of the proteins in different organisms (details 
listed in supplementary material Methods, Supplementary 
Material online). It is observed that some organisms have 
very similar Rg distributions, and there are no statistically 
significant differences between them (e.g., Methanococcus 
jannaschii vs. Escherichia coli, and mouse vs. rat). 
However, for some distinct organisms, for example, prokar
yotes versus eukaryotes (e.g., E. coli vs. yeast), unicellular 
versus multicellular organisms (e.g., yeast vs. mouse), or 
multicellular organisms with significantly different num
bers of cell types (e.g., Caenorhabditis elegans vs. human), 
there are statistically significant differences between 
them. More interestingly, if we sort the organisms accord
ing to the median Rg, it is observed that a larger median Rg 

correlate with increasing organismal complexity. To evalu
ate such a correlation, for a given organism proteome, we 
introduce the total number of proteins and the total chain 
length of the proteins as measures of organismal complex
ity. As shown in figure 1B, both complexity measures are 
proportional to the median Rg for proteins with similar 
chain lengths, demonstrating the correlation between pro
tein flexibility and organismal complexity. Note that such a 
correlation is robust. For example, if one considers the pro
teins with other given chain lengths or selects other struc
tural descriptors such as the solvent-accessible surface 
areas (SASA) to quantify the flexibility of the proteins, 
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similar correlations can also be observed (supplementary 
fig. S2, Supplementary Material online).

To demonstrate such a correlation clearly, we select five 
species with different organismal complexity for detailed 
examinations. The five selected species include archaea 
(M. jannaschii), bacteria (E. coli), unicellular eukaryotes 
(budding yeast, Saccharomyces cerevisiae), multicellular in
vertebrates (C. elegans), and human (Homo sapiens). Based 
on the proteomes of these organisms, we select the pro
teins with chain lengths N ≈ 250, conduct structural ana
lysis, and perform comparative analysis. The histograms 
shown in figure 1C–E demonstrate how the shape, second
ary structures, and equilibrium dynamics of the proteins 
vary in the selected organisms.

First, as shown in figure 1C, for the proteins with similar 
chain lengths, the mean value, as well as the standard 

deviation of the radius of gyration Rg gradually increases 
for organisms with higher complexity. Then, we apply 
the Define Secondary Structure of Proteins algorithm 
(Kabsch and Sander 1983; Joosten et al. 2011) to assign sec
ondary structures (helices, sheets, or coils) to the proteins 
and investigate how the structural flexibility of the con
stituent proteins varies in different organisms. We find 
that the average fraction of coils increases as the organis
mal complexity increases (fig. 1D). Next, we examine the 
dynamical flexibility of the proteins according to their vi
brations around the native structure. These vibrations 
are closely related to the functional dynamics of the pro
teins, and can be predicted by the elastic network model 
(ENM) (Haliloglu et al. 1997; Bahar et al. 1998, 2010). 
Based on ENM, one can conduct the normal mode analysis 
and obtain the eigenvalues corresponding to the vibration 

A B

C D

E F

FIG. 1. The statistics of AlphaFold-predicted structures indicate the correlation between the flexibility of constituent proteins and the complexity 
of organisms. (A) For the proteins from 16 model organisms with similar chain lengths N ≈ 250 (225 ≤ N < 275), the distributions of the radii of 
gyration Rg are shown as the box-and-whiskers (extreme values not shown). Here, the triangle and the vertical bar in the box denote the mean 
value and the median of the Rg, respectively. (B) For all the 48 organisms in AlphaFold DB, the measures of organismal complexity (the total 
number of proteins and the total chain length of the proteins in the organism proteome) versus median Rg of the proteins with chain lengths 
N ≈ 250. For proteins from the five selected organisms with chain length N ≈ 250, the histogram of the (C ) radii of gyration Rg, (D) coil fraction, 
and (E) the slowest mode eigenvalue λ1 at the logarithmic scale. (F) The distribution of the normalized Rg (i.e., Rg/N1/3) for all the proteins in the 
proteome of the five selected organisms.
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modes (Case 1994; Hayward et al. 1995; Wako and Endo 
2017). Among these eigenvalues, the smallest nonzero 
eigenvalue λ1, which corresponds to the square of the 
slowest mode frequency (λ1 ∼ ω2

1) and is proportional 
to the inverse square of the amplitude of the motion 
(λ1 ∼ A−2

1 ), can be recognized as a measure of dynamical 
flexibility. As shown in figure 1E, statistically, for organisms 
with higher complexity, their constituent proteins will ex
hibit slower vibrations (i.e., smaller λ1) around the equilib
rium. Usually, the slow vibrations are closely related to the 
high modularity of the residue contact networks. We also 
show that for the proteins with similar chain lengths, the 
mean value and the standard deviation of modularity in
crease as the organismal complexity increases (see 
supplementary figs. S3 and S4, Supplementary Material on
line). In short, the above results clearly demonstrate the 
correlation between the flexibility of constituent proteins 
and the complexity of organisms. Further analyses show 
that even if we remove the proteins with low prediction 
confidence from the dataset, a similar correlation can still 
be observed (see Discussion and supplementary fig. S5, 
Supplementary Material online).

Furthermore, similar structural statistics can be extended 
to the analysis of the full proteomes. To compare the proteins 
with different chain lengths, we normalize the radii of gyr
ation as Rg/N1/3. When a protein is highly ordered and densely 
packed into a globular shape, then the normalized Rg will be 
small; in contrast, when a protein is highly disordered or de
viates from a globular shape, then the normalized Rg will be 
large. The statistics of the normalized Rg are shown in figure 
1F. For the five selected organisms, the statistics of the full 
proteome show a similar trend as the statistics of the proteins 
with comparable chain lengths. For organisms with higher 
complexity, there will be larger mean values and standard de
viations of the normalized Rg. In supplementary figure S2, 
Supplementary Material online, we conduct similar statistics 
for the full proteomes of all the 48 organisms in AlphaFold 
DB, compare the differences between the normalized Rg dis
tribution of different organisms, and show the correlations 
between the normalized Rg and the complexity measures. 
These results further suggest that the increasing organismal 
complexity is accompanied by higher flexibility of the pro
teins in the full proteome. Further analyses (see 
supplementary fig. S4, Supplementary Material online) also 
show that structural diversity (measured by the standard de
viation of the normalized Rg) of constituent proteins also cor
relates with organismal complexity.

The Scaling Analyses Suggest a Decreasing Fractal 
Dimension of Constituent Proteins as the Organismal 
Complexity Increases
Based on the Protein Data Bank (PDB) (Berman et al. 
2000), recent scaling analyses (Tang et al. 2017; Tang and 
Kaneko 2020) revealed the power laws related to the size 
dependence of the protein structure and dynamics. 
Due to the limited number of experimentally determined 
protein structures, it had been unable to compare the 

scaling coefficients for proteomes of different organisms 
separately. AlphaFold DB, however, compensates for the 
lack of experimental data, enables us to perform accurate 
scaling analyses of proteins across different organisms, 
compare scaling coefficients, and reveal the correlation be
tween the organism’s complexity and the structural dy
namics of their constituent proteins.

In this work, based on the predicted structures from 
AlphaFold DB, we apply the scaling analyses to the pro
teins from different species. For proteins within an organ
ism, we first divide the proteins into bins according to their 
chain lengths. Then, for the proteins in the same bin (i.e., 
with similar chain length N ), we calculate the mean value, 
as well as standard error, of the length of the shortest prin
cipal semi-axis LC and the slowest mode eigenvalue λ1. In 
this way, we obtain the size dependence of proteins’ shape 
and dynamics. Figure 2A and B shows the results of the 
scaling analysis for the five selected organisms.

Let us first analyze the scaling relations between protein 
shape and chain length N for different species. As the pro
tein shape is described by the length of the shortest prin
cipal semi-axis LC, there will be a scaling relation: LC ∼ N1/d, 
where d is the average fractal dimension of the proteins. 
For example, when a protein is densely packed into a 
globular shape in 3D space, there will be LC ∼ Rg ∼ N1/3 

(i.e., d = 3). The scaling analyses shown in figure 2A indi
cate that the average fractal dimensions d vary across dif
ferent organisms. Besides, for all the organisms, it is 
observed that d ≤ 3, displaying that the proteins are not al
ways folded into densely packed globules. Previous studies 
on the fractal structure of the proteins (Lewis and Rees 
1985; Liang and Dill 2001; Reuveni et al. 2008), as well as 
the statistics of the normalized Rg (see fig. 1F), can support 
such a result.

Then, we investigate the size dependence of the equilib
rium dynamics of the native proteins. Previous research 
based on the PDB had shown that as the protein chain 
length N increases, the vibrations of the protein would be
come slower (Tang and Kaneko 2020), that is, the slowest 
mode eigenvalue λ1 versus chain length N obeys the scaling 
relation: λ1 ∼ N−μ, where μ ≈ 1. Notably, based on the 
AlphaFold DB, as shown in figure 2B, detailed analyses re
veal that the scaling coefficients μ vary across different 
organisms.

Next, let us take a closer look at the scaling coefficients d 
in figure 2A, one can find that, for two organisms with sig
nificant complexity differences (e.g., E. coli vs. human), 
there are significant differences in the corresponding frac
tal dimension d. The average fractal dimension of the con
stituent proteins of human is significantly lower than that 
of E. coli. According to such a result, one may conjecture 
that the average fractal dimension of constituent proteins 
is negatively correlated with the organismal complexity. To 
validate such a conjecture, we estimate the average fractal 
dimension d for all the 48 species in AlphaFold DB and 
evaluate their correlation with the complexity measures 
(total kinds of proteins and total chain lengths of proteins) 
of the organisms. The fittings in figure 2C confirm such a 
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conjecture. The negative Pearson correlation coefficients 
indicate that for the species with higher organismal 
complexity, their constituent proteins will be lower 
average fractal dimension d. Such a correlation can also 
be validated by the statistics of the fractal dimension 
(i.e., the average packing dimension calculated with 
the box-counting method) for all the proteins (see 
supplementary fig. S1C, Supplementary Material online). 
Besides, for a given proteome, the average fractal dimen
sion of the proteins can also be estimated by the size de
pendence of the modularity Q of the proteins’ residue 
contact networks (Guimerà et al. 2004; Tang and Kaneko 
2020). Although the average fractal dimension d̃ (esti
mated from N vs. Q) may be different from d (estimated 
from N vs. LC), it is also observed that a decreasing fractal 
dimension d̃ correlates with the increase of organismal 
complexity (see supplementary fig. S3B, Supplementary 
Material online). Similarly, we evaluate the correlation be
tween the scaling coefficient μ and organismal complexity. 
As shown in supplementary figure S3D, Supplementary 
Material online, the scaling coefficient μ is correlated 
with the measures of organismal complexity, suggesting 
that the constituent proteins of organisms with higher 
complexity will have slower vibration frequencies.

Higher Organismal Complexity Correlates With 
Higher Functional Specialization and Lower 
Dimensionality in Protein Dynamics
According to the “structure-dynamics-function” paradigm 
(Friedman 1985; Agarwal 2006; Haliloglu and Bahar 2015), 
the dynamics encoded by the 3D structure determine 
the functionality of the protein. As reported by previous 
research, for proteins with ordered native structures, the 
dynamics are suggested to be constrained to low- 

dimensional manifolds and could be described by a few 
“slow modes” which correspond to low vibration fre
quency, low excitation energies, and large amplitudes mo
tions. These slow modes are robustly encoded in the native 
structure of proteins. One may conjecture that the slow 
mode distributions of the constituent proteins are also 
correlated with the organismal complexity. To validate 
such a conjecture, for every protein, we construct the cor
responding elastic network and conduct the normal mode 
analysis. In this way, the vibration spectrum can be ob
tained (see Materials and Methods). In the spectrum, the 
eigengap between the leading two eigenvalues (λ1 and 
λ2) reflects how much the equilibrium dynamics of the 
protein will be dominated by the slowest normal mode 
(Togashi et al. 2007). For example, if λ2/λ1 = 10, then the 
ratio of the square amplitudes of the two modes will 
be: A2

1/A2
2 = λ2/λ1 = 10, that is, the motion along the dir

ection of the first mode is an order of magnitude greater 
than the motion along the direction of the second 
mode, reflecting a high functional specialization of the 
protein, or say, low dimensionality in protein dynamics. 
In contrast, if λ2/λ1 ≈ 1.01, the protein has almost the 
same tendency to move along the directions associated 
with the first and second slowest modes, indicating a high
er dimensionality in dynamics and a lower functional spe
cialization of the proteins. In short, the eigengaps between 
the leading eigenvalues and dimensionality in protein dy
namics can act as measures of the functional specialization 
of the proteins.

Similar to previous sections, for the proteins with similar 
chain lengths N ≈ 250 from the five selected organisms, we 
conduct normal mode analysis based on the ENM and cal
culate the corresponding eigenvalues. Then, the distribu
tions of the eigengaps λ2/λ1, λ3/λ2, and λ4/λ3 (at 
logarithmic scale) are obtained. As shown in figure 3A– 

A B C

FIG. 2. The scaling analyses suggest a decreasing fractal dimension of constituent proteins as the organismal complexity increases. For the pro
teins from five selected organisms, the size (chain length N ) dependence of (A) length of the shortest semi-axis Lc and (B) the slowest mode 
eigenvalue λ1. Here, for the data in all the bins, the average standard error of LC is below 3.5% of the mean value, and the average standard error 
of λ1 is below 13.1% of the mean value. The fitted scaling coefficients d (fractal dimension) and μ are listed in the legends of the subplots (A) and 
(B), respectively. These scaling coefficients are obtained by robust fittings with Theil–Sen estimators (95% confidence interval). (C ) For all the 48 
organisms in AlphaFold DB, the measures of complexity (the total number of proteins and the total chain length of the proteins in the organism 
proteome) versus the estimated fractal dimension d.
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C, all the average ratios between neighboring eigenvalues 
increase as the organismal complexity increases, clearly 
demonstrating the increasing scale separation in the vibra
tional frequencies of the constituent proteins. This result 
indicates that, for organisms with higher complexity, their 
constituent proteins will have higher functional specializa
tion and lower dimensionality. Moreover, it is worth not
ing that similar correlations can happen on every scale. 
As the organismal complexity increases, the constituent 
proteins have a statistical trend that the motions along 
the direction of the first modes have evolved to be 
much greater than the second, the motions along the se
cond modes have evolved to be much greater than the 
third, etc.

To quantify such a scale-free property, it is necessary to 
introduce the power laws to describe the vibrations of the 
proteins. Previous studies have shown that the vibrational 
spectrum of proteins obeys a power-law distribution 
(Reuveni et al. 2008), and the rank-size distribution of 
the inverse of eigenvalues follows a Zipf-like distribution 
(Tang et al. 2020; Tang and Kaneko 2021; Xie et al. 
2022). In supplementary figure S6, Supplementary 
Material online, several proteins are provided as examples. 
These proteins have similar chain lengths, but their vibra
tion spectra are different. The rank-size distribution of the 
slow-mode eigenvalues shows a power-law-like behavior, 
which can be described as Zipf’s law, that is, λ−1

i ∼ i−z, 
where z is known as Zipf’s coefficient.

Generally, for the proteins with similar sizes, a larger z cor
responds with larger eigengaps (fig. 3D). In figure 3E, the sta
tistics of Zipf’s coefficients z show that, for organisms with 
higher complexity, z will be larger, that is, there will be larger 
eigengaps in the vibrational spectra of constituent proteins. 
Such a correlation is illustrated in figure 3F. In the illustration, 
the conformational space (the space encompassing all pos
sible structures results from thermal fluctuations) of a pro
tein around its native structure is represented as an 
ellipsoid. The axes of the ellipsoids denote the normal modes, 
and their semi-length represents the square magnitudes of 
the motions in the directions of the normal modes. The func
tional specialization and low dimensionality correspond to 
the anisotropy of the conformational space. As the organis
mal complexity increases, both the structure and dynamics 
of the constituent proteins show a statistical trend towards 
dimensional reduction.

Organismal Complexity Correlates With the 
Assortativity of the Residue Contact Networks and 
the Hydrophilic–hydrophobic Segregation in Protein 
Sequences
In previous studies, residue contact networks of native 
proteins have been shown to play a dominating role in de
termining protein dynamics and functions (Bahar et al. 
2010; Atilgan et al. 2012). The residue contacts are, in 
turn, largely determined by the protein sequences. 
Therefore, we may use the residue contact network as a 

bridge to investigate how organismal complexity corre
lates with the sequences of the constituent proteins.

In the previous subsection, we show that higher organ
ismal complexity correlates with larger scale separation in 
the vibrational frequencies of the proteins. In fact, such a 
correlation in frequency space can correspond to the 
changes in the distribution of the residues’ local packing 
density in the real space. According to the local density 
model (Halle 2002), there is a nearly linear relationship be
tween the residues’ square of vibration frequency and the 
local packing density. As a result, the increasing eigengaps 
in vibrational frequencies corresponds to the increasing 
variances of the residues local packing density. In protein 
molecules, the residue packing density is mainly deter
mined by the hydrophobic effects. As illustrated in figure 
4A, by avoiding exposure to water, hydrophobic residues 
are buried in the interior of the protein, forming the hydro
phobic cores with high local packing density. In contrast, 
the hydrophilic (polar) residues are likely to exposure to 
the solvent and have low local packing density. It is such 
hydrophobic effects that serve as the major driving force 
of protein folding (Dill 1990; Dill and MacCallum 2012).

For the proteins with similar chain lengths, the variance 
of the local packing density is closely related to the assor
tativity ρ of the residue contact network. The assortativity 
of a network is defined as the Pearson correlation coeffi
cient of degrees between pairs of linked nodes (Newman 
2002, 2003). According to the definition, if the residues 
(nodes) with high packing density (degrees) are more likely 
to have contact with each other, then there will be a higher 
assortativity ρ and a larger variance in the packing density 
distribution of residues. Remarkably, as shown in figure 4B, 
as the organismal complexity increases, the constituent 
proteins with similar chain lengths will have a larger 
mean value of assortativity ρ. Notably, such a correlation 
is in line with the trend related to the increasing eigengap 
of vibration spectra. As shown in figure 4C, for the proteins 
in our dataset, regardless of the species they belong to, the 
assortativity ρ is proportional to Zipf’s coefficient z. This 
result indicates that we have found the topological de
scriptor associated with the functional specialization of 
the protein.

Next, let us discuss how organismal complexity corre
lates with the sequences of the constituent proteins. As il
lustrated in figure 4A, the spatial segregation of 
hydrophilic and hydrophobic residues is closely related 
to their segregation in sequence. When hydrophilic and 
hydrophobic residues are uniformly mixed and randomly 
distributed in the sequence, they will be less likely to 
have profound spatial segregation. Conversely, when there 
are longer hydrophilic or hydrophobic fragments in a se
quence, the hydrophobic cores can be formed more easily. 
Here, we introduce the hydropathy variation CVHP to 
quantify the hydrophilic–hydrophobic segregation in pro
tein sequences, where CVHP is defined as the coefficient of 
variation (i.e., standard deviation divided by the mean va
lue) of the filtered hydropathy profile of a sequence (see 
Materials and Methods). As shown in figure 4D, for 
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proteins with similar chain lengths, as the complexity of 
the organism increase, there will be a larger average 
CVHP, which corresponds to a more significant hydrophil
ic–hydrophobic segregation. Further evaluation of such a 
correlation is shown in supplementary figure S8, 
Supplementary Material online. As shown in figure 4E, 
for proteins in our dataset, regardless of the organisms 
they belong to, the hydropathy variation CVHP is propor
tional to the assortativity of the residue contact network, 
implying that the spatial segregations of hydrophilic and 
hydrophobic residues do have statistically significant cor
relation with the sequence segregations.

The sequence analysis result also uncovers the differ
ences between the constituent proteins from archaea 
(M. jannaschii) and bacteria (E. coli). Although their struc
tures (e.g., radii of gyration) do not show significant differ
ences (see fig. 1C), their sequences do show significant 
differences (fig. 4D). These results do not mean that 
E. coli has a significantly higher complexity than M. jan
naschii. It is their living environments that determine the 
major difference in sequence. As a thermophilic methano
genic archean, M. jannaschii lives in extreme environments 
such as hypothermal vents at the bottom of the oceans. 
The optimal growth temperature of M. jannaschii is about 
85 °C (Jones et al. 1983; Bult et al. 1996), which is even high
er than the melting temperature (∼50 °C) of most proteins 

in E. coli (Ghosh and Dill 2010). The low hydropathy segre
gation in the protein sequences of M. jannaschii contri
butes to the stabilization of the surface residues of the 
proteins, thus leading to the organism’s adaptation to a 
hot environment.

Phylogenetic Proximity of Homologous Proteins 
Correlates With the Statistical Structural Proximity 
of the Proteomes
In previous sections, our statistical structural analysis of 
proteomes has shown that the organismal complexity 
can be reflected by the structural properties of the con
stituent proteins. Since the complexity of organisms has 
emerged through evolution, one may conjecture that 
the phylogenetic proximity can be reflected in the struc
tural statistics of the constituent proteins. To validate 
such a conjecture, here we define the statistical structural 
proximity between two proteomes based on the KS statis
tic D (Massey 1951) between the distributions of the radii 
of gyration Rg for proteins with similar chain length N ≈ 
250. Intuitively, the KS statistic D can be understood as 
the largest absolute difference between two cumulative 
distribution functions. When two proteomes have very 
similar Rg  distributions, then their distance (KS statistic 
D) will be small, and the statistical structural proximity 

A

B

C

D

E

F

FIG. 3. The increasing eigengaps in the vibration spectra imply that higher organismal complexity correlates with higher functional specialization 
and lower dimensionality in protein dynamics. For proteins with similar chain lengths N (225 ≤ N < 275) in the five selected organisms, the dis
tribution of the eigengaps (A) λ2/λ1, (B) λ3/λ2, and (C ) λ4/λ3 at the logarithmic scale. (D) Illustration of power-law spectra at the logarithmic scale 
with Zipf’s coefficients z = 0.8, 1.0, and 1.2. (E) For proteins with similar chain lengths in different species, the distribution of Zipf’s coefficients z. 
(F) Illustration of the trend of dimensional reduction in the conformational spaces. The arrows in subplots (D) and (F) indicate the increase in 
organismal complexity.
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between the two proteomes will be high. By calculating the 
KS statistic between every two organisms, a statistical 
structural distance matrix can be constructed. 
Interestingly, the phylogenetic tree (fig. 5A) generated 
with the sequences of a homological gene shows corres
pondence with the statistical structural distance matrix. 
The lineages that are close in the phylogenetic tree also 
have a small distance (i.e., small KS statistic D) between 
the proteomes. Such a result not only demonstrates that 
phylogenetic proximity correlates with the statistical 
structural proximity of the proteomes, but also suggests 
that there is a statistical trend of protein evolution in par
allel with organism evolution.

Notably, the matrix shown in figure 5B is based on a sim
plistic definition of statistical structural proximity between 
proteomes, say, only Rg for proteins with similar chain 
lengths are considered. One may take into account pro
teins with other chain lengths or introduce other structural 
descriptors (e.g., SASA, secondary structures, modularity, 
etc.) to refine the definition. Further analysis (see 
supplementary fig. S9, Supplementary Material online) 
shows that, even though statistical structural proximity 

based on other descriptors may vary in values, we can gen
erally observe that the lineages that are close in the phylo
genetic tree show high statistical structural proximity. In all, 
the statistical structural proximity across the proteomes 
may indirectly reflect the evolutionary relationships among 
species.

Discussion
In this work, based on the protein structures predicted by 
AlphaFold, we propose a statistical framework for prote
ome analysis by comparing the protein structures in differ
ent organisms. Rather than studying the evolution of 
specific protein families or superfamilies, this study aims 
to reveal the correlations between organismal complexity 
and structural or dynamical properties of the constituent 
proteins. It is observed that, statistically, the constituent 
proteins of higher-complexity organisms will have higher 
flexibility, lower fractal dimensions in both structure and 
dynamics, and higher degrees of hydrophobicity segrega
tion in both their structures and sequences. Note that 
these correlations do not depend on the definition of 

A

B

D

C

E

FIG. 4. Organismal complexity correlates with the assortativity of the residue contact networks and the hydrophilic–hydrophobic segregation in 
protein sequences. (A) Illustration of a protein sequence (left) folds into a native structure described as an assortative residue contact network 
(right). The hydrophobic (H ) and polar (P) amino acid residues are represented as the nodes. When the protein folds into the native structure, 
the hydrophobic residues tend to aggregate into a densely connected hydrophobic core. In the subplot (right), the numbers represent the node’s 
degree (number of connections with other nodes). (B) For proteins with similar chain length N (225 ≤ N < 275) in the five selected organisms, the 
histogram of residue contact network assortativity ρ. (C ) The scattering plot and the fitted trend line of the assortativity ρ versus Zipf’s coef
ficient z. (D) For proteins with similar chain lengths N in different organisms, the histogram of the hydropathy variations CVHP. (E) The scattering 
plot and the fitted trend line of hydropathy variation CVHP versus residue contact network assortativity ρ.
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complexity. Although the mathematical definition of com
plexity is still controversial (Lloyd 2001), different measures 
of organismal complexity (e.g., number of cell types, genome 
size, proteome size, etc.) are correlated (Markov et al. 2010; 
Niklas et al. 2014). Besides, it is worth noting that the struc
ture prediction confidence of AlphaFold will not affect our 
main conclusions. For the AlphaFold-predicted structures, 
lower prediction confidence (which can be quantified as 
lower pLDDT values, see supplementary material SI, 
Supplementary Material online) usually arrives for proteins 
with long disordered regions (Jumper et al. 2021). 
Interestingly, even if we remove those proteins with lower 
prediction confidence (i.e., with long intrinsic disorder re
gions) from the dataset, similar correlations can still be ob
served (see supplementary fig. S2, Supplementary Material
online). Moreover, our study focuses primarily on the global 
dynamics (e.g., slowest modes) that are robust to the local 
variations in native structures (Bahar et al. 2010; Tang 
et al. 2020). Such insensitivity to prediction confidence 
can further strengthen our conclusions.

Our topological and sequence analyses show that higher 
organismal complexity correlates with the assortativity of 
the residue contact networks and the hydrophilic–hydro
phobic segregation in protein sequences. These correlations 
are consistent with what has been suggested by previous evo
lutionary studies (Phillips 2009, 2012, 2020; Hemery and 
Rivoire 2015; Foy et al. 2019; Moret et al. 2019), and may 
guide the design or modification of proteins. For example, 
one may enhance the flexibility or functional sensitivity of 
a protein by greater segregation of hydrophobic and hydro
philic amino acids in the sequence. Besides, hydrophilic– 
hydrophobic segregation can also prevent the dysfunctional 
aggregation of proteins (Foy et al. 2019). Notably, the se
quence analysis does not rely on AlphaFold predictions in 
any way, which acts as essential support that our main con
clusions do not arise from a systematic bias inherent in struc
tural prediction methods, but reflect the natural tendency.

Our analysis also shows that the phylogenetic proximity 
of homologous proteins correlates with the statistical 
structural proximity of the proteomes, indicating the evo
lutionary roots of the statistical trend discussed in this 

paper. Although not all the constituent proteins in an or
ganism will evolve in the same direction, statistically, as the 
organismal complexity increases, the constituent proteins 
show higher flexibility. The evolution of many protein fam
ilies is in line with this statistical trend (Brocchieri and 
Karlin 2005; Kasho et al. 2006). Besides, such a trend is 
also consistent with the fact that the intrinsic disorder is 
more abundant in organisms with higher complexity 
(Niklas et al. 2014; Basile et al. 2019). Not only will the in
trinsic disorder proteins (or regions) exhibit high dynamic
al plasticity, as shown in previous research (Meier and 
Özbek 2007; Tokuriki et al. 2008; Tokuriki and Tawfik 
2009; Marsh and Teichmann 2014), but they may also ex
hibit high evolvability (towards more specialized function 
and towards new folds). Still, it is worth noting that, as 
thermostability becomes a selection pressure, the proteins 
can evolve to be less flexible (Berezovsky and Shakhnovich 
2005). This statistical trend is also parallel with the phe
nomenon of evolutionary dimensional reduction observed 
in other experimental and theoretical studies (Hemery and 
Rivoire 2015; Dutta et al. 2018; Furusawa and Kaneko 2018; 
Eckmann et al. 2019; Sakata and Kaneko 2020; Sato and 
Kaneko 2020; Eckmann and Tlusty 2021). In protein dy
namics, it is also implied in the emergence of the funnel- 
like energy landscape (Onuchic et al. 1997), and may con
tribute to the efficiency and robustness of the protein 
function. For allosteric proteins, it is observed that evolu
tion designs the sequence and shapes the structure of 
the proteins, leading toward more specific transition path
ways (Togashi et al. 2007; Li et al. 2011).

Moreover, the statistical correlation between proteins’ 
functional specialization and organismal complexity is in 
line with the experimental observations that ancestral en
zymes are likely to have high promiscuity, as they may be 
able to catalyze a wide variety of chemical reactions 
(O’Loughlin et al. 2006; Khersonsky and Tawfik 2010; 
Takano et al. 2013; Petrovic et al. 2018; Gardner et al. 
2020; Modi et al. 2021). It is widely observed that ancient 
generalist proteins tend to evolve toward specialists 
(Soskine and Tawfik 2010). Previous research in designing 
thermally stable and promiscuous enzymes with ancestral 

gi|410110929|ref|NP_001094128.2| [Rattus norvegicus]

gi|162461907|ref|NP_034611.2| [Mus musculus]

gi|24234688|ref|NP_004125.3| [Homo sapiens]

 gi|54262125|ref|NP_958483.2| [Danio rerio]

gi|24653595|ref|NP_523741.2| [Drosophila melanogaster]

gi|17562024|ref|NP_504291.1| [Caenorhabditis elegans]

gi|297727109|ref|NP_001175918.1| [Oryza sativa Japonica Group]

gi|30691626|ref|NP_195504.2| [Arabidopsis thaliana]

gi|6322505|ref|NP_012579.1| [Saccharomyces cerevisiae S288C]

gi|19114371|ref|NP_593459.1| [Schizosaccharomyces pombe]

0.2

A B

FIG. 5. Phylogenetic proximity of homologous proteins correlates with the statistical structural proximity of the proteomes. (A) A phylogenetic 
tree generated with the sequences of the heat shock protein (HSPA9, HomoloGene: 39452) by NCBI protein BLAST (Gish and States 1993; 
McGinnis and Madden 2004). (B) The statistical structural distance matrix with entries of the KS statistic D between Rg distributions of the 
organisms’ constituent proteins with similar chain length N ≈ 250.
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sequence reconstruction can act as additional support for 
such a trend (Wheeler et al. 2016; Trudeau and Tawfik 
2019; Pinto et al. 2022). Notably, the correlation between 
protein flexibility and functional specialization is also stat
istical. There are counterexamples that proteins with high
er conformational plasticity show higher promiscuity 
(Campbell et al. 2018).

The high thermal stability (which is usually associated 
with low flexibility and high promiscuity) of ancestral en
zymes may in turn be compatible with the low complexity 
of the ancestral species. Organisms with lower complexity 
have relatively smaller genomes and fewer kinds of enzymes 
(Gagler et al. 2022). Despite a small genome size, promiscu
ous enzymes help these organisms achieve a variety of life 
activities. Conversely, larger genomes can encode more 
proteins capable of performing highly specialized functions 
and coping with more complex and diverse cellular envir
onments. The specialization and diversification of proteins 
enable them to function in a more complex and diverse cel
lular environment. Consequently, complex organisms can 
perform their biological functions more effectively, acquir
ing the plasticity to adapt to complex and diverse external 
environments. The compatibility between organismal 
complexity and functional specialization of constituent 
proteins suggests the interdependence between the whole 
and parts for biological systems and other kinds of complex 
systems, shedding light on the design of complex systems. 
As a system becomes more complex, its components or ele
ments should change their properties (e.g., become more 
plastic or modularized).

In summary, based on the AlphaFold DB, we establish a 
framework for the comparative analyses of the constituent 
proteins of different organisms. The statistics of 
AlphaFold-predicted structures have revealed the correla
tions between the complexity of organisms and features re
lated to the structures (topology), dynamics, and sequences 
of constituent proteins. Moreover, we show that the phylo
genetic proximity is correlated with the statistical struc
tural proximity of the organisms’ proteomes, indicating 
the connections between protein evolution and organism 
evolution. Our analysis suggests a statistical trend in protein 
evolution, that is, as organisms evolve toward higher com
plexity, their constituent proteins may evolve toward high
er flexibility and structural diversity, statistically. In the 
future, the proteome analysis based on AI-predicted pro
tein structures, integrated with other kinds of bioinforma
tion such as protein–protein interactions (Maslov and 
Sneppen 2002; Zhang et al. 2008), expression levels 
(Drummond et al. 2005), evolutionary speed (Agozzino 
and Dill 2018), etc., will definitely offer us new insight 
into the behaviors and evolution of cells and organisms.

Materials and Methods
Data Availability
All the protein structures used in this study can be down
loaded from AlphaFold Protein Structure Database (Varadi 

et al. 2022). A detailed description of the dataset is listed in 
supplementary table S1, Supplementary Material online. 
The curated data underlying this article are available in 
Github, at https://github.com/qianyuantang/stat-trend- 
protein-evo.

Residue Contact Network
We construct the residue contact networks based on the 
native structure of the proteins. The residues (represented 
as their Cα atoms) are modeled as the nodes of the net
work. Our calculations of the modularity and assortativity 
are based on the residue contact networks corresponding 
to the native structure. When the mutual distance be
tween two residues (nodes) is smaller than the cutoff dis
tance rC, then the two residues will be connected with an 
edge. In this work, we take rC = 8 Å.

Elastic Network Model
By modeling the edges in the residue contact networks as 
linear springs, the ENMs describe the equilibrium fluctua
tions of proteins as vibrations around the native conform
ation. These fluctuations are closely related to the 
functional dynamics of the proteins. In this work, our dis
cussions are based on the Gaussian network model 
(GNM), the simplest form of the ENM, where the residue 
fluctuations are assumed to be Gaussian variables distrib
uted around the equilibrium coordinates. The dynamics 
predicted by GNM can be well matched to experimental 
or simulation results (Haliloglu et al. 1997; Bahar et al. 
2010). With GNM, the potential energy of a protein with 
chain length N is given as: VGNM = (κ/2)

􏽐N
i,j=1 ΔriΓijΔrj, 

where κ is a uniform force constant; Δri and Δrj denote 
the displacement of residues i and j, respectively; and Γij 

is the element of Kirchhoff matrix Γ. For residues i and j 
(i ≠ j), if their mutual distance rij ≤ rC, then Γij = −1; if rij 

> rC, then Γij = 0; and for the diagonal elements, 
Γii = −ki = −

􏽐
j≠i Γij, where ki denote the degree of 

node i. Here we take rC = 8 Å.

Normal Mode Analysis
The eigendecomposition of matrix Γ gives the eigenvalues 
and the corresponding eigenvectors related to the mo
tions of normal modes (Case 1994; Hayward et al. 1995; 
Wako and Endo 2017). To compare the eigenvalues for 
the proteins with different chain lengths, the diagonal ele
ments of matrices Γ are normalized as 1. The normalized 
matrix is also known as the symmetric normalized graph 
Laplacian (Atilgan et al. 2012): L = K−1/2ΓK−1/2, where K 
is a diagonal matrix K = diag[k1, k2, …kN] describing the 
local packing density of the residues. Diagonalizing matrix 
L, we have L = UΛUT, in which matrix Λ = diag[λ0, λ1, λ2, … 
λN−1] (0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1) represents the eigen
values, and matrix U = [u0, u1, u2, …, uN−1 ]T denotes to 
the eigenvectors. The zeroth eigenvector u0 corresponds 
to the translational and rotational motions, other nonzero 
modes correspond to the vibrations of the proteins. The 
nonzero eigenvalue λi is proportional to the square of 
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the vibrational frequency ωi, that is, λi ∼ ω2
i . According to 

the equipartition of energy, the vibration amplitude Ai is 
inversely proportional to the frequency: Ai ∼ 1/ωi. Thus, 
for two nonzero modes i and j, there is A2

i /A2
j = λj/λi.

We use the Python package ProDy to calculate the normal 
modes of the proteins (Bakan et al. 2011).

Power-Law Fitting and the Zipf’s Coefficient
To fit Zipf’s law λ−1

i ∼ i−z and obtain the coefficient z, in 
the calculation, we select the top 25% of the eigenvalues 
to perform the power-law fitting (Alstott et al. 2014). 
Note that the observed evolutionary trend as indicated 
by Zipf’s coefficient z is robust to the details related to 
the normal mode calculation and power-law fitting (see 
supplementary fig. S7, Supplementary Material online).

Hydropathy Variation
In the calculation, we first obtain the original hydropathy 
data of a sequence according to the Zimmerman hydro
phobicity scale of amino acid residues (Zimmerman 
et al. 1968). Then, a moving average with window length 
lw = 7 is introduced to calculate the hydropathy profile. 
If there are no significant hydrophobic–hydrophilic segre
gations in a sequence, the moving average will smooth out 
the differences between hydrophobic and hydrophilic ami
no acids, which will lead to little variation in the filtered 
hydropathy profile. In contrast, when there are significant 
hydropathy segregations in a sequence, there will be large 
variations in the filtered hydropathy profile. Thus, we 
introduce the coefficient of variation CVHP (defined as 
the standard deviation divided by the mean value of the 
filtered hydropathy profile) to quantify the sequential seg
regation of hydrophobic and hydrophilic residues.

Supplementary material
Supplementary data are available at Molecular Biology and 
Evolution online.
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