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a b s t r a c t   

Background: The coronavirus disease 2019 (COVID-19) pandemic has become a major public health threat. 
This study aims to evaluate the effect of virus mutation activities and policy interventions on COVID-19 
transmissibility in Hong Kong. 
Methods: In this study, we integrated the genetic activities of multiple proteins, and quantified the effect of 
government interventions and mutation activities against the time-varying effective reproduction number 
Rt. 
Findings: We found a significantly positive relationship between Rt and mutation activities and a sig-
nificantly negative relationship between Rt and government interventions. The results showed that the 
mutations that contributed most to the increase of Rt were from the spike, nucleocapsid and ORF1b genes. 
Policy of prohibition on group gathering was estimated to have the largest impact on mitigating virus 
transmissibility. The model explained 63.2% of the Rt variability with the R2. 
Conclusion: Our study provided a convenient framework to estimate the effect of genetic contribution and 
government interventions on pathogen transmissibility. We showed that the S, N and ORF1b protein had 
significant contribution to the increase of transmissibility of SARS-CoV-2 in Hong Kong, while restrictions of 
public gathering and suspension of face-to-face class are the most effective government interventions 
strategies. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health 
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Introduction 

Coronavirus disease 2019 (COVID-19), a respiratory infectious 
disease caused by the severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2), was declared to be a public health 

emergency of international concern by the World Health 
Organization (WHO) in January 2020 [1]. As of November 23, 2021, 
there are over 256 million cumulative confirmed cases of COVID-19, 
with more than 5.1 million deaths globally [2]. 

Previous studies identified a clear relationship between mole-
cular-level mutation activity in the Spike (S) protein and transmis-
sion advantage of SARS-CoV-2 [3–7], and evolution in SARS-CoV-2 
virus pose huge challenges in the continuous control of the outbreak  
[6,8]. However, most of the evaluations of epidemiological impact of 
mutations were based on modelling substitutions in the S protein. 
Multiple mutations, or mutations in other proteins, have not been 
systematically considered. On the other hand, public health inter-
vention policy could also modify infectious disease transmissibility. 
Studies in many countries and regions indicated that a series of 
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control measures, such as cordons sanitaire and social distancing, 
could effectively mitigate the spread of COVID-19 [7,9–14]. In re-
sponse to the widespread community COVID-19 transmission, Hong 
Kong government has implemented various public health interven-
tions. Though both virus evolution and government interventions 
critically determine the COVID-19 transmissibility, there has been 
few statistical methods to jointly analyze multiple mutations and 
policy measures [15]. In this study, we proposed a statistical fra-
mework to assess the genetic activities of multiple proteins in SARS- 
CoV-2, and quantified the effect of public health interventions and 
integrated mutation activities on COVID-19 transmissibility. We used 
the publicly available COVID-19 surveillance data and the human 
SARS-CoV-2 strains in Hong Kong as a demonstrating example. 

Materials and methods 

The human SARS-CoV-2 strains were retrieved from Global 
Initiative on Sharing all Influenza Data (GISAID) [16]. All available 
strains in Hong Kong SAR with the collection date ranging from 
January 21 to December 16, 2020 amount a total number of 412 full- 
length sequences and 298 Spike protein sequences. Three full-length 
sequences without clear collection date were then excluded. Mul-
tiple sequence alignment was performed using MAFFT (version 7)  
[17] and the Wuhan-Hu-1 genome (GISAID: EPI_ISL_402125) was 
considered as the reference strain. 

The time-varying effective reproduction number Rt was em-
ployed to measure the instantaneous transmissibility of infectious 
disease [5,18–20], which was defined as the expected number of 
secondary cases arising from a primary case infected at and before 
time t. The data of Rt as well as number of confirmed cases were 
collected from website of Centre for Health Protection (CHP) in Hong 
Kong [21]. The information of government interventions was col-
lected from Hong Kong Government news page [22]. The interven-
tions included closures of schools, orders for government employees 
to work from home, restrictions of restaurant dining, restrictions on 
group gatherings, closures of entertainment places and suspensions 
of non-essential public services. All the interventions were coded as 
binary variables, see Supplementary Material S1 for details. 

Quantifying the genetic activity by g-measure 

Most mutations in the SARS-CoV-2 genome were expected to be 
deleterious and purged swiftly [23]. In previous studies [7,24,25], we 
have proposed a computation framework to detect key mutations 
whose prevalence reached dominance and maintained for a period 
of time. The key mutations were expected to associate with epide-
miological intensity and mutation advantage at population scale. 
Then, the time-varying activities of key mutations can be measured 
by the summation of their prevalence in a certain period of time, 
namely g-measure. Thus, the g-measure reflects the overall level of 
genetic activities of key mutations in the sample sequences, and is 
denoted as =g [g ]t for time interval t. In this study, we employed the 
g-measure to quantify all key mutations in the genome of SARS- 
CoV-2. 

A sliding window was applied to the investigating periods. Let w 
denote the window size that indicated a constant period length, and 
s denote the step length between two consecutive windows. Hence, 
for =g [g ]t in time t, the g-measure was computed based on sample 
sequences collected from t − w/2 to t + w/2. The w was set to be 15 
days, and s is 3 days. 

Integrating analysis of multiple proteins 

Besides mutations in S protein [5,15], substitutions in other 
proteins may also involve in intra-viral protein interactions and 
further affect viral fitness [26]. With this regard, we integrated the 

genetic risk variants under the framework of the Polygenic Risk 
Score (PRS) [27–29]. Let p be the effect size of g-measure calculated 
for protein p, and then a linear model is applied to fit the re-
lationship, 

= + +R pg( ) ,t p0 (1) 

where g(p) is the g-measure of protein p during the investigated 
period. Denote p̂ as a sample estimate, the integrative g-measure of 
multiple proteins is, 

= pg ˆ g( )/ ˆ .t
p p p p (2)  

The advantage of this combination is that it avoids the colli-
nearity between genetic activities on multiple proteins when esti-
mating coefficients simultaneously [27]. Following the framework, 
we also integrated the effect of government interventions It in terms 
of effect size on Rt of each intervention. Generalized linear regression 
was applied to estimate the effect of government interventions and 
g-measures on the transmissibility Rt. Alternative fitting functions 
can be chosen flexibly according to sample size. All statistical ana-
lysis was conducted in R (version 3.6.3), and the two-sided p- 
value <  0.01 was considered as statistically significant. 

Results 

First, we summarized the mutation activity of each protein by g- 
measure for the SARS-CoV-2 virus. Of the 10 proteins in the genome, 
five of them contained dominant substitutions for constructing the 
g-measure, which are the spike (S), nucleocapsid (N), open reading 
frame 1 (ORF1), ORF3a and ORF8. Next, we tested the association 
between the g-measure of these proteins and the transmissibility 
variable Rt. In univariate analysis, four of the proteins were sig-
nificantly associated with Rt (Table S2.1). After controlling for gov-
ernmental interventions, the g-measure of three proteins remained 
to exhibit positive and significant association with the virus trans-
missibility, which were the S protein (coefficient = 0.34, p-value <  
0.001), ORF1b (coefficient = 0.24, p-value < 0.01) and N protein 
(coefficient = 0.22, p-value < 0.01) (Table S3.1). The S protein ex-
hibited the strongest impact on the increasing of virus transmissi-
bility. Our estimates showed that Rt would increase by 0.34 
corresponding to one-unit increase in the g-measure of the S pro-
tein. Direct comparisons of the effect sizes of different genes showed 
the influence of mutations in the ORF1b is 70.6% of the S protein, and 
the effect size of N protein is 64.7% as much of the S protein. 

The effect of government interventions was first examined by 
univariate analysis. Three out of six types of government interven-
tions were significantly related to the reduction of Rt (Table S2.2), 
including the suspension of face-to-face class, ban on gatherings in 
public places and providing limited public services. After controlling 
the mutation summary statistics, only the first two interventions 
remained significant, among which the ban on gatherings had the 
largest effect on reducing Rt (coefficient = −2.21, p-value < 0.001). 

Next, we examined how well the genetic measure and govern-
ment interventions could explain the trend of Rt. Following Eq. 2, an 
integrated g-measure was constructed to summarize the overall 
mutation activities from S, N and ORF1b, and an integrated gov-
ernment intervention variable was formed likewise to account for 
the suspension of face-to-face class and ban on gathering. A gen-
eralized linear model was applied to evaluate the genetic and policy 
intervention contribution to Rt (Fig. 1a). These two summary mea-
sures explained 63.2% (R-squared) of the variability of virus trans-
missibility. The intercept 2.40 in the model indicated the 
reproductive number when no genetic mutation and intervention 
occurred, which was very close to the result estimated in January, 
2020 when the virus just began to spread in China (R0 = 2.68, 95% CI 
2.47–2.86) [30]. 
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Discussion and conclusion 

In this study, we quantitatively assessed the effect of genetic 
activities in multiple proteins and public health interventions on the 
transmissibility of SARS-CoV-2 in Hong Kong SAR. 

The S, ORF1b and N protein mutations were shown to be posi-
tively and significantly associated with virus transmissibility after 
controlling for governmental interventions. The finding could be 
reasonably explained by the biological evidences. The S protein is 
responsible for attachment of the virus to host cell-surface receptor  
[31] and is the principal target of neutralizing antibodies [32], while 
mutations on S protein will affect functional properties thus increase 
virus infectivity and monoclonal antibodies escape [23]. For in-
stance, experimental studies have shown that the variants con-
taining 614 G on the S protein were significantly more infectious 
than the variant carrying 614D. Genetic variants carrying A475V, 
L452R, V483A, and F490L, which are located on the receptor binding 
site (RBD), became resistant to neutralizing antibodies [33,34]. Be-
sides, the N protein is also a major target for antibody response and 
contains T cell epitopes [35], and the RNA-dependent RNA poly-
merase (RdRp) in ORF1b plays a central role in the replication and 
transcription cycle of SARS-CoV-2 [36]. These proteins are critical in 
determining the course of transmission, infection and reproduction 
of the virus. 

Moreover, previous studies found strong evidences between non- 
pharmaceutical interventions and the reduction of Rt in multiple 

regions [10,11,14]. In this study, the genetic aspect of the virus was 
further included in the model to control the effect of mutations. 
Public gathering restriction and suspension of face-to-face teaching 
were estimated to have significant effect on mitigating Rt. Besides, 
our fitted model accurately captured the three waves of COVID-19 
outbreak in Hong Kong (Fig. 1, red curve), occurred in March, June- 
July and November, 2020. During these periods, the estimated Rt 

raised to greater than 1.0 for over 10 successive days (Fig. 1a, blue 
curve). 

Several limitations of this study should also be noted. First, the 
COVID-19 cases and SARS-CoV-2 strains were mapped to timeline 
according to their reporting time and sequence collection date, while 
temporal lag might exist in reality [37]. Second, the genetic activities 
of import cases may not contribute to Rt since the imported cases 
have not seeded transmission due to quarantine measures in Hong 
Kong. In this study, the g-measure only accounted activities of mu-
tations whose prevalence reached dominant and maintained for a 
period of time. The occasionally increased mutation prevalence was 
not included in the g-measure, and thus minimized the bias causing 
by sequences of imported cases. Moreover, during the first wave in 
March 2020 in Hong Kong when most of the cases were imported  
[38], the scale of g-measure was small. And the second and third 
waves in Hong Kong were mainly driven and composed by local 
transmission (Fig. 1b). Therefore, the limitation due to importation 
are minor. Third, the statistical association between the g-measure 

Fig. 1. The summary of COVID-19 cases and effective reproductive number (Rt) through time in Hong Kong SAR. 
Fig. 1a shows the observed Rt (red curve) and fitted Rt (blue curve) in Hong Kong, and the grey dash line represents Rt equals to 1.0. The number of confirmed cases is shown in  
Fig. 1b. They are classified as imported case (light red bars), epidemiologically linked with imported case (dark red bars), local case (light blue bars) and epidemiologically linked 
with local case (dark blue bars).(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and Rt, and interpretation of a causative relationship should be 
considered together with biological mechanisms and evidence. 

To conclude, this study provided a convenient statistical frame-
work to evaluate the effect of genetic contribution and non-phar-
maceutical intervention on modifying pathogen transmissibility. We 
showed that the S, ORF1b and N protein had significant contribution 
to the increase of Rt during the first three waves of COVID-19 in Hong 
Kong, while restrictions of public gathering and suspension of face- 
to-face class are the most effective government interventions stra-
tegies. 
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