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Rabbits are one of the most used experimental animals for investigating the mechanisms

of human cardiovascular disease and lipid metabolism because they are phylogenetically

closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first

used to study human atherosclerosis more than 100 years ago and are still playing an

important role in cardiovascular research. Furthermore, transgenic rabbits generated by

pronuclear microinjection provided another means to investigate many gene functions

associated with human disease. Because of the lack of both rabbit embryonic stem cells

and the genome information, for a long time, it has been a dream for scientists to obtain

knockout rabbits generated by homologous recombination-based genomic manipulation

as in mice. This obstacle has greatly hampered using genetically modified rabbits to

disclose the molecular mechanisms of many human diseases. The advent of genome

editing technologies has dramatically extended the applications of experimental animals

including rabbits. In this review, we will update genetically modified rabbits, including

transgenic, knock-out, and knock-in rabbits during the past decades regarding their use

in cardiovascular research and point out the perspectives in future.
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INTRODUCTION

Rabbits were first used for disclosing the pathogenesis of human atherosclerosis a century ago.
In 1908, a Russian physician, Alexander I. Ignatowski (1875–1955) fed rabbits with a diet
supplemented with animal proteins (milk, meat, and eggs) and found that these rabbits developed
pronounced aortic atherosclerosis.

Later, a Russian experimental pathologist, Nikolai N. Anichkov (or Anitschkow) (1885–1964)
further demonstrated that it was dietary cholesterol rather than proteins that play the
critical role in the pathogenesis of atherosclerosis in rabbits and proposed a causal
role of cholesterol in the development of atherosclerosis (Fan et al., 2015). Now, a
consensus has been widely hold in this field that, in both humans and experimental
animals, high levels of plasma cholesterol carried by apolipoprotein (apo)-B-containing
particles such as low density lipoproteins (LDL) initiate the development of atherosclerosis
(Steinberg, 2004). These pioneering studies derived from rabbit experiments not only
provided the first evidence but also established a theory basis of the “lipid hypothesis” of
atherosclerosis (Steinberg, 2004). Since then, cholesterol-fed rabbits along withWatanabe heritable
hyperlipidemic (WHHL) rabbits, a mutant rabbit with genetic deficiency of LDL receptor
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functions, have been extensively used to elucidate multiple
facets of the pathophysiology of human atherosclerosis,
leading to the discovery of the LDL receptor functions in
familial hypercholesterolemia (Goldstein et al., 1983) and
the development of the most-prescribed lipid-lowering drug,
statin (Brown and Goldstein, 2004). On the other hand,
transgenic rabbits with overexpression of various genes were
generated from early 90’s and served as an alternative tool
for investigating the gene functions in cardiovascular disease.
Moreover, recent genome editing technology has provided
enormous opportunities to create knock-out (KO) and knock-in
(KI) rabbits. Important roles of rabbits in studying human
atherosclerosis have been extensively reviewed in the previous
reviews (Fan et al., 1999a, 2015, 2018; Fan and Watanabe, 2000,
2003). In this review, we will focus on genetically modified
rabbits for their applications in cardiovascular research.

“NATURALLY” GENETICALLY MODIFIED
RABBITS

Spontaneous mutations in rabbits can be found accidentally and
they can be used in controlling the coat color for commercial
purposes such as tyrosinase and the melanocortin 1 receptor
(Aigner et al., 2000; Xiao et al., 2019). However, some
spontaneous mutations in rabbits can cause a pronounced
phenotype that can mimic human diseases, such as Watanabe
heritable hyperlipidemic (WHHL) rabbits (Watanabe, 1980),
St. Thomas hyperlipidemic rabbits (Laville et al., 1987; Seddon
et al., 1987) and complement 6 deficient rabbits (Rother, 1986;
Liu et al., 2007a). WHHL rabbits were originally established by
Dr. Yoshio Watanabe (1927–2008) at Kobe University, Japan,
through serial inbreeding (Watanabe, 1980). Homozygous
WHHL rabbits exhibit spontaneous hypercholesterolemia
characterized by high levels of LDLs and severe atherosclerosis
and often serve as a human familial hypercholesterolemia
model (Watanabe et al., 1985). Genetic analysis revealed
that WHHL rabbits have defective LDL receptor functions
due to a deletion of 12 nucleotides in exon 4 of the LDL
receptor gene, which leads to a 4-amino acid deletion in the
cysteine-rich ligand-binding domain of the LDL receptor
protein (Yamamoto et al., 1986). LDL receptor mutations
can be easily detected by PCR analysis (Sun et al., 2002a);
however, high levels of plasma LDL-cholesterol are the major
manifestation observed in homozygous WHHL rabbits. In
addition to hyperlipidemia and aortic atherosclerosis, some
WHHL rabbits (later designated as WHHL-MI) show coronary
atherosclerosis and myocardial infarction (Shiomi et al., 2003;
Shiomi and Fan, 2008). Using WHHL rabbits, Tomoike et al.
further developed a subline of WHHL designated a hereditary
hypertriglyceridemic rabbit after selected in-breeding. This

Abbreviations: Apo, Apolipoprotein; Cas9, CRISPR-associated (Cas) protein 9;

CETP, Cholesteryl ester transfer protein; CRISPR, Clustered regularly interspaced

short palindromic repeat; FH, Familial hypercholesterolemia; HDL, High

density lipoproteins; IDL, Intermediate density lipoproteins; LDL, Low density

lipoproteins; KI, Knock-in; KO, Knock-out; TALEN, Transcription activator-like

effector nuclease; Tg, Transgenic; VLDL, Very low density lipoprotein; WHHL,

Watanabe heritable hyperlipidemic; ZFN, Zinc finger nuclease.

model exhibited postprandial hypertriglyceridemia along with
insulin resistance and visceral obesity although polygenetic loci
for these pathophysiogical changes have not been determined
(Kawai et al., 2006). In addition to WHHL rabbits, the St.
Thomas hospital hyperlipidemic rabbits were developed by
La Ville et al. in London (Laville et al., 1987; Seddon et al.,
1987). Different from WHHL rabbits which have high plasma
LDL levels due to LDL receptor dysfunctions, the St. Thomas
hospital hyperlipidemic rabbits showed high levels of very
low density lipoproteins (VLDL) and intermediate density
lipoproteins (IDL), and LDL, thus this rabbit model resembles
human familial combined hyperlipidemia. Elevated plasma
cholesterol levels in these rabbits were caused by overproduction
of these apo-B-containing lipoproteins in the liver although the
genetic mutations responsible for hyperlipidemia have not been
examined in details. There is a complement-6 (C6) deficient
rabbit originally reported by Rother in 1986 (Rother, 1986). C6
deficiency in these rabbits arises from a single gene defect and is
not known to be associated with other genetic abnormalities. In
spite of this, C6 deficient rabbits are protective against cholesterol
diet-induced atherosclerosis (Schmiedt et al., 1998).

TRANSGENIC RABBITS

Because spontaneous mutant rabbits with obvious phenotypes
resembling human disease phenotypes are rare and accidently
discovered by experimental animal staff, it is necessary to make
genetically modified rabbits according to one’s own research
purposes. The technology for producing transgenic (Tg) rabbits
was almost concurrently reported by German (Brem et al.,
1985) and US (Hammer et al., 1985) groups in 1985, but the
actual use of Tg rabbit technology as an experimental tool
in the field of cardiovascular diseases was not realized until
1994 when John Taylor’s laboratory at the Gladstone Institute
of Cardiovascular Disease in San Francisco created the first
Tg rabbit expressing human hepatic lipase (Fan et al., 1994).
Later on, they also produced Tg rabbits expressing human
apoB-100 (Fan et al., 1995), apoE (Huang et al., 1997; Fan
et al., 1998), and apoB mRNA editing protein (Yamanaka
et al., 1995). Until now, more than 20 kinds of Tg rabbits
expressing different genes that are involved in lipid metabolism
and atherosclerosis have been reported and studies using these
Tg rabbits have provided considerable insights into themolecular
mechanisms of these gene functions in lipoprotein metabolism
and atherosclerosis (Fan and Watanabe, 2003; Peng, 2012;
Fan et al., 2015). The transgenes expressed in Tg rabbits for
the study of lipoprotein metabolism and atherosclerosis can
generally be classified into three categories: (1) those proteins
that constitute lipoprotein structures such as apo(a) (Rouy
et al., 1998; Fan et al., 1999b), apoAI (Duverger et al., 1996a),
apoAII (Koike et al., 2009a; Wang et al., 2013), apoB-100 (Fan
et al., 1995), apoCIII (Ding et al., 2011), and apoE (Huang
et al., 1997; Fan et al., 1998); (2) those enzymes or transfer
proteins that participate in the lipid metabolism such as hepatic
lipase (Fan et al., 1994), lipoprotein lipase (Fan et al., 2001a),
phospholipid transfer protein (Masson et al., 2011), apoB-100
mRNA editing enzyme catalytic polypeptide protein (Yamanaka
et al., 1995), lecithin:cholesterol acyltransferase (Hoeg et al.,
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1996), endothelial lipase (Wang et al., 2017); and (3) those
proteins that may exert some functions on the arterial wall
cells which participate in the pathogenesis of atherosclerosis
including matrix metalloproteinase-1,9,12 (Liang et al., 2006;
Niimi et al., 2019; Chen et al., 2020), 15-lipoxygenase (Shen
et al., 1996), C-reactive protein (Koike et al., 2009b), and vascular
endothelial growth factor (Kitajima et al., 2005) (Table 1). In
addition, Tg rabbits have also been used for the investigation
of human heart diseases, including LQT syndrome (Brunner
et al., 2008), hypertrophic cardiomyopathy (Marian et al., 1999)
and tachycardia-induced cardiomyopathy (Suzuki et al., 2009).
This is because, in comparison with mice and rats, the rabbit
heart is similar to that of humans in both structure and function
(Bers, 2002; Marian, 2006; Pogwizd and Bers, 2008). For example,
like human heart in which β-myosin heavy chain (β-MyHC)
accounts for 90% of total myofibrillar myosin, rabbit heart is
composed of 80% β-MyCH which is different from the mouse
heart predominated by 95% α-MyHC (Marian, 2005; Bosze
et al., 2016). Tg rabbits can be generated by microinjecting
a transgenic DNA construct into the pronuclei of fertilized
embryos (Fan et al., 1999a; Kitajima et al., 2003). The transgenic
constructs are typically composed of the transgene (either cDNA
or genomic DNA) under the control of a tissue-specific promoter
such as liver- and macrophage-specific promoter. In addition
to the pronuclear microinjection method, other methods such
as sperm vector (Wang et al., 2003; Li et al., 2006, 2010; Shen
et al., 2006), ICSI-mediated transgenesis (Li et al., 2010; Zhang
et al., 2016), somatic cell nuclear transfer (SCNT) (Li et al.,
2009) or chimeric SCNT (Matsuda et al., 2002; Skrzyszowska
et al., 2006), lentiviral vectors (Hiripi et al., 2010), transposon-
mediated transgenesis (Katter et al., 2013; Ivics et al., 2014),
and novel genome editing technology (Song J. et al., 2016; Yang
et al., 2016; Li et al., 2019) have been reported to produce Tg
rabbits. In spite of this, the pronuclear microinjection is still the
most common method even though transgene integration rate
is low.

RABBIT EMBRYONIC STEM CELLS AND
GENOME INFORMATION

Because of the lack of both rabbit embryonic stem (ES) cells and
the genome information, it has been considered impossible to
create KO rabbits by homologous recombination-based genomic
modification as to generate KOmice. Unavailability of KO rabbits
also constitutes another obstacle that hampers researchers to
study loss-of-functions of genes in rabbits. We strived to use
somatic cell nuclear transfer technique to generate KO rabbits
after Chesne et al. reported the first cloned rabbit about 17 years
ago (Chesne et al., 2002). However, after enormous attempts,
we got to the conclusion that the production of KO rabbits
by somatic cell nuclear transfer is far remote from reality.
As a research tool, nuclear transfer technique is unworkable
owing to the extraordinarily low efficiency of gene transfer into
somatic cells and the possibility in generating cloned rabbits
(Song J. et al., 2020). Many groups reported that they could
obtain rabbit ES-like cells, but none of these so-called ES-like

cells have been proved to be able to generate chimera rabbits
(Fan et al., 2015). Rabbit genome has long been an empty area
mainly because of budget insufficiency and narrow research
communities. In 2014, Carneiro et al. successfully reported a
high-quality reference genome using the European rabbit with
references to domestication and speciation (Carneiro et al.,
2014a,b). Almost at the same period, we along with researchers
from the US, Japan and China organized an International
Rabbit Genome Sequencing Project Consortium aiming at
implementingmore extensive whole-genome sequencing of three
kinds of common laboratory rabbits: Japanese white rabbits,
New Zealand white rabbits and WHHL rabbits. In addition, we
performed deep transcriptome sequencing of the aortas, livers,
hearts, and kidneys of cholesterol-fed and WHHL rabbits (Wang
et al., 2016). After a 2-year collaborative work, we were able to
completed whole-genome sequencing of 10 male rabbits for each
line with coverage of 13x for each individual after alignment to
the reference genome. With the successful completion of rabbit
genome sequencing (Carneiro et al., 2014a,b; Wang et al., 2016),
researchers now can easily not only design PCR primers to study
gene expression in rabbits but also to generate KO rabbits using
genome editing techniques as described below. Rabbit genome
information is now available from the NCBI database and a
comprehensive rabbit transcriptome information established by
the Chinese Academy of Sciences in Shanghai (Zhou et al., 2018)
is also available at http://www.picb.ac.cn/RabGTD/.

KNOCK-OUT AND KNOCK-IN RABBITS BY
GENOME EDITING TECHNIQUES

In the past decade, the emergence of three powerful genome
editing technologies has dramatically enhanced the application of
genetically modified rabbits (Song J. et al., 2020). The first one is
the zinc finger nuclease (ZFN)-mediated genome editing method
by which KO rats were successfully created in 2009 (Geurts et al.,
2009). Two years later after the birth of KO rats, Flisikowska et al.
generated the first immunoglobulin KO rabbits in an attempt to
produce humanized antibodies (Flisikowska et al., 2011). Almost
at the same time, we successfully created apoCIII KO rabbits
with ZFN-mediated genome editing technology (Yang et al.,
2013). ZFNs are engineered DNA-cleaving enzymes made by
fusing a tailor-made DNA-binding domain to the DNA cleavage
domain of Fok1, a type II restriction enzyme. ZFNs generate
site-specific double-strand breaks in the DNA at researcher-
assigned sites, thus resulting in targeted modification of the
genome. However, while ZFNs were not extensively applied in
this field, the second generation of the genome editing tool,
transcription activator-like effector nucleases (TALEN) were
shown up to make the first KO rats in 2011 (Tesson et al.,
2011). TALENs are considered much simpler to design and
assemble than ZFNs. The DNA binding domain in TALENs
was derived from Xanthomonas spp. Bacteria (Christian et al.,
2010; Miller et al., 2011). While TALENs utilize the same Fok I
endonuclease domain as ZFNs, its DNA binding domain contains
a repeated highly conserved 33–34 amino acid sequence with
divergent 12th and 13th amino acids which called Repeat Variable
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TABLE 1 | Transgenic rabbits for the study of human lipoproteins and atherosclerosis.

Genes Expression cells Major phenotypes References

Apolipoproteins (apo)

Apo(a) Liver Atherogenic Rouy et al., 1998; Fan et al., 2001b; Ichikawa et al., 2002; Sun

et al., 2002b; Kitajima et al., 2007

Apo(a) and apoB Liver Not determined Rouy et al., 1998

ApoA-I Liver Athero-protective Duverger et al., 1996a,b

ApoA-II Liver Athero-protective Koike et al., 2009a; Wang et al., 2013

ApoA-I/C-III/A-IV Liver and intestine No effect on atherosclerosis Recalde et al., 2004

ApoB-100 Liver LDL↑, HDL↓ Fan et al., 1995

ApoCIII Liver VLDL↑ Ding et al., 2011

ApoE2 Liver Atherogenic Huang et al., 1997

ApoE3 Liver Atherogenic Fan et al., 1998; Huang et al., 1999

Enzymes or transfer proteins

APOPEC1 Liver LDL↓, liver carcinoma Yamanaka et al., 1995

APOPEC1 Knockdown by RNAi Lean Jolivet et al., 2014

CETP Liver HDL↓ Gao et al., 2017

Endothelial lipase Liver Atheroprotective Wang et al., 2017; Yan et al., 2020b

Hepatic lipase Liver Athero-protective Fan et al., 1994

LCAT Liver Athero-protective Hoeg et al., 1996

Lipoprotein lipase Universal Athero-protective Fan et al., 2001a

PLTP Universal Atherogenic Masson et al., 2011

Vascular cell factors

C-reactive protein Liver Thrombogenic Matsuda et al., 2011

Lipoprotein lipase Macrophage Atherogenic Ichikawa et al., 2005

15-lypooxygenase Macrophage Athero-protective Shen et al., 1996

MMP-1 Macrophage Aortic aneurysm↑ Niimi et al., 2019

MMP-9 Macrophage Vascular calcification Chen et al., 2020

MMP-12 Macrophage Atherogenic Liang et al., 2006; Yamada et al., 2008

Urotensin II Macrophage Atherogenic Zhao et al., 2015

VEGF Liver Hemangiomas and impaired glomerular functions Kitajima et al., 2005; Liu et al., 2007b

APOPEC1, apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1; CETP, cholesteryl ester transfer protein; LCAT, lecithin:cholesterol acyltransferase; PLTP, phospholipid

transfer protein; MMP, matrix metalloproteinase; VEGF, vascular endothelial cell growth factor. ↑, increase; ↓, decrease.

Diresidue (RVD) for recognizing one specific nucleotide, for
example, NN for guanine, NI for adenine, HD for cytosine,
and NG for thymine. This direct relationship between amino
acid sequence and DNA recognition has made engineering
sequence specific binding domains much easier than ZFNs (Boch
et al., 2009; Moscou and Bogdanove, 2009). Using TALEN
technology, Lai’s laboratory at GIBH, immediately generated
two kinds of KO rabbits: an immunodeficent KO rabbit with
deficiency of Rag1 and Rag2 genes (Song et al., 2013) and
fumarylacetoacetate hydrolase deficient rabbits (Li et al., 2017),
which mimics human genetic disease tyrosinemia type I, an
autosomal recessive disorder caused by mutations in the both
copies of the gene encoding the enzyme. Although TALENs are
considered superior to ZFNs in terms of fewer off-target effects,
easy design and production, it was soon replaced by the CRISPR-
Cas9 based genome editing technology, which is even more rapid
and modular than the TALEN platform. Cas9 is an endonuclease
playing a protective role against foreign nucleic acids in the
adaptive immune system in bacteria. The feature of bacterial
CRISPR immune system is that genetic materials taken up from

previous invasive elements are expressed in crRNA, which could
direct the Cas9 endonuclease to cut foreign DNA elements
containing the same sequences (Jinek et al., 2012). Therefore, the
CRISPR/Cas9 system has been remolded from bacterial immune
system to the genome editing tool, using a designed RNA to guide
Cas9 nuclease to the specific DNA sequence (Hsu et al., 2014).
Binding of Cas9 nuclease on a specific protospacer adjacent motif
(PAM) sequence on the genome (NGG for spCas9) will unwind
the adjacent sequence, allowing the RNA:DNA pairing, which
activates the nuclease domains in Cas9 to cut DNA and make
double-strand breaks. While ZFNs and TALENs rely on protein-
DNA recognition, which is less predictable for design and more
labor and time consuming for assembly, the CRISPR/Cas9 system
relies on the RNA–DNA recognition, which is much simpler and
more predictable.

Because CRISPR-Cas9 technique is so efficient and powerful,
it was quickly adopted to generate KO rabbits. In this respect,
Chen’s laboratory at the University of Michigan first established a
number of KO rabbits aiming at studying human cardiovascular
disease (Yang et al., 2014) and then KO rabbit boom started. Lai’s
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laboratory at GIBH and Li’s laboratory at Jilin University made
more than 30 KO rabbits using CRISPR-Cas9 along with base-
editing (Liu et al., 2018) and CRISPR/Cpf1 (Wu et al., 2018).
Most KO rabbits were created in attempt to recapitulate human
genetic or congenital disorders or immunodeficient rabbits (Song
J. et al., 2017, 2018) as shown in Table 2. In addition, this
technique has been tried to target the tyrosinase gene to modify
rabbit coat colors (Honda et al., 2015; Song Y. N. et al., 2016, 2017,
2018). The standard protocol for generation of KO rabbits using
CRISPR-Cas9 has been recently published (Yang et al., 2019).
The techniques have been further refined (Liu et al., 2018, 2020)
so we can predict that in the next few years, more and more
KO or KI rabbits will be made using this technology. Here we
will briefly review some valuable KO rabbits created recently to
discuss their usefulness in disclosing the molecular mechanisms
of atherosclerosis.

APOCIII KO RABBITS

ApoCIII is a major component of plasma chylomicrons and
VLDLs, and is a minor component of high density lipoproteins
(HDLs) and was first reported by Brown et al. 50 years ago
(Brown et al., 1969). It is generally believed that physiological
functions of apoCIII is to mediate the triglyceride(TG)-rich
lipoprotein metabolism thereby maintaining the plasma TG
homeostasis and high plasma levels of apoCIII are positively
associated with plasma TG and increases the risk of ischemic
heart disease (Huff and Hegele, 2013; Norata et al., 2015; Ramms
and Gordts, 2018). However, for a long time, it is not clear
whether apoCIII was directly involved in the pathogenesis of
atherosclerosis because mouse models failed to provide a clear
answer (Yan et al., 2020a). Yang et al. first generated apoCIII
KO rabbits using ZNF (Yang et al., 2013) and after several
years efforts to breed enough numbers of homozygous apoCIII
KO rabbits, we were able to examine the hypothesis whether
apoCIII may participate in atherosclerosis. Recently, we have
shown that that genetic deletion of the apoCIII gene in KO rabbits
significantly accelerates catabolism of TG-rich lipoproteins in
the liver and apoCIII deficiency leads to the resistance of KO
rabbits to a cholesterol diet-induced hyperlipidemia and inhibits
atherosclerosis (Yan et al., 2020a). These results indicate that
therapeutic inhibition of apoCIII expression may become a novel
strategy for the treatment of hyperlipidemia and atherosclerosis.

APOE KO RABBITS

ApoE is a ligand for both LDL receptor and LRP and plays an
important role in the catabolism of remnant lipoproteins in the
liver and genetic deficiency of apoE is a cause of human type
III hyperlipoproteinemia (Mahley, 1988; Mahley et al., 1999).
Deletion of apoE in mice even on a normal chow diet exhibited
hyperlipidemia along with spontaneous aortic atherosclerosis
(Plump et al., 1992; Zhang et al., 1992). ApoE KO rabbits were
produced at University of Michigan using CRISPR-Cas9 (Yang
et al., 2014) and Sage Company using ZFN (Ji et al., 2015),
respectively. Even though different techniques were adopted,

apoE KO rabbits generated by these two methods exhibit the
same phenotypes (Niimi et al., 2016). Homozygous apoE KO
rabbits on a normal diet only showed mild hyperlipidemia
and their plasma total cholesterol levels reached ∼200 mg/dL,
similar to human type III hyperlipoproteinemia patients, whose
cholesterol levels are elevated to 300∼350 mg/dL (Mahley et al.,
1999). Because plasma levels of cholesterol in apoE KO rabbits
on a normal diet are not high to be atherogenic, there are not
spontaneous atherosclerosis, which is different from apoE KO
mice. However, when apoE KO rabbits were fed a cholesterol diet,
they developed more prominent hypercholesterolemia than WT
rabbits, which is basically caused by the remarkable accumulation
of intestinally-derived remnant lipoproteins, β-VLDLs (Niimi
et al., 2016). Recently, we found that apoE KO rabbits are
highly susceptible to a cholesterol diet-induced atherosclerosis.
Therefore, apoE KO rabbits will serve as a new model for
human hyperlipidemia.

LDL RECEPTOR KO RABBITS

In humans, genetic deficiency of LDL receptor functions causes
severe hypercholesterolemia and atherosclerosis at early ages,
called familial hypercholesterolemia (FH). FH is an autosomal
dominant genetic disorder characterized by elevated plasma LDL
levels due to LDL receptor dysfunctions (Soutar and Naoumova,
2007). Two laboratories have successfully generated LDL receptor
KO rabbits using CRISPR-Cas9 (Yang et al., 2014; Lu et al., 2018).
Similar to human FH, homozygous LDL receptor KO rabbits
develop spontaneous hypercholesterolemia and atherosclerosis
(Lu et al., 2018). Therefore, likeWHHL rabbits, LDL receptor KO
rabbits can be used for the study of human FH.

CHOLESTERYL ESTER TRANSFER
PROTEIN KO RABBITS

Cholesteryl ester transfer protein (CETP) is a glycoprotein that
transfers plasma lipids between HDLs and apoB-containing
particles therefore plays an important role in lipoprotein
metabolism. However, it is not known whether inhibition
of CETP activity can prevent cardiovascular disease because
four CETP inhibitors (torcetrapib, dalcetrapib, evacetrapib, and
anacetrapib) failed to prove their efficacy in terms of reduction
of cardiovascular risk by clinical trials(https://en.wikipedia.org/
wiki/CETP_inhibitor). Since CETP is genetically absent in
rodents (mice and rats) and pigs, rabbits are considered the
best model for investigation of CETP functions because rabbits
have high levels of CETP in the plasma as humans. Taking this
advantage, Zhang et al. created CETP KO rabbits and found
that CETP KO rabbits showed higher plasma levels of HDL-
cholesterol (Zhang et al., 2017). When fed a cholesterol-rich
diet, CETP KO rabbits still exhibited higher HDL-cholesterol
levels accompanied by lower total cholesterol levels than wild-
type (WT) rabbits (Zhang et al., 2017). CETP KO rabbits had
significant less atherosclerosis in both aorta and coronary arteries
than WT rabbits (Zhang et al., 2017). These results indicate

Frontiers in Genetics | www.frontiersin.org 5 February 2021 | Volume 12 | Article 614379

https://en.wikipedia.org/wiki/CETP_inhibitor
https://en.wikipedia.org/wiki/CETP_inhibitor
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Fan et al. Genetically Modified Rabbits

TABLE 2 | Human congenital disease models of KO rabbits recently created by CRISPR-Cas9 or TALEN.

Human diseases Targeted genes Major phenotypes References

Congenital cataracts αA-Crystallin Cataracts, microphthalmia, obscurity Yuan et al., 2017

GJ48 Microphthalmia, small lens size, and cataracts Yuan et al., 2016

Muscular dystrophy/hypertrophy ANO5 Muscular dystrophy with increased serum creatine kinase Sui et al., 2018a

DMD Impaired physical activity, elevated serum creatine kinase Sui et al., 2018b

Myostatin Hyperplasia or hypertrophy of muscle Lv et al., 2016 (base editing)

Metabolic diseases

ATP7B Wilson disease, Death at 3 mon Jiang et al., 2018 (Precision

point mutation)

Dentin matrix protein 1 Mineralization defects Liu et al., 2019

GADD45G Congenital defects cleft palate Lu et al., 2019

Glucokinase Maturity-onset diabetes of the young 2 (MODY2) Song Y. et al., 2020

Fumarylacetoacetate hydroxylase Hereditary tyrosinemia type 1 Li et al., 2017 (TALEN)

HOXC13 Hair and nail ectodermal dysplasia Deng et al., 2019

Syndromes

FBN1 Marfanoid-progeroid-lipodystrophy syndrome Chen et al., 2018

SRY Sex reversal syndromes and hermaphroditism syndromes
Song Y. et al., 2017, 2018

LMNA Premature aging syndrome

that genetic ablation of CETP gene inhibits the development of
atherosclerosis in cholesterol-fed rabbits.

APOAII KI RABBITS

ApoAII is the second major apolipoproteins in HDLs. However,
its physiological functions are largely unknown compared with
apoAI. Interestingly, WT rabbits are genetically deficient in
apoAII so their HDLs only contain apoAI. This unique feature
makes WT rabbits as a “natural” apoAII KO model. We first
made Tg rabbits expressing human apoAII gene and found that
hepatic expression of human apoAII inhibits cholesterol diet-
induced atherosclerosis (Wang et al., 2013). To examine the
apoAII specific functions in the absence of apoAI, we further
replaced the rabbit endogenous apoAI with human apoAII gene
through knock-in (KI) using TALEN technology (Koike et al.,
2021). In this way, apoAII KI rabbits expressed exclusively
human apoAII without apoAI in HDL particles, which enables
us to compare the net functions of apoAI-only-HDLs in WT
rabbits with apoAII-only-HDL in KI rabbits in terms of HDL
metabolism and atherosclerosis. In the latest study, we found
that apoAII KI rabbits showed consistently lower TG and higher
HDL-cholesterol levels and developed significantly less aortic
atherosclerosis on a cholesterol diet (Koike et al., 2021).

CONSIDERATIONS AND FUTURE
PERSPECTIVES

Although genetically modified rabbits are an important
experimental model in cardiovascular research, they should not
be simply used as a substitute of mice and rats, as discussed
above. Because rabbits are more expensive, require larger space,
and needmore time to breed compared with mice, the generation
of genetically modified rabbits should be carefully planned to
solve those specific problems that cannot be well-examined in

other experimental animal models, such as the development of
lipid-lowering drugs (Niimi et al., 2020). However, off-target
effects in these animals remain a concern as the genome editing
is extremely productive and efficient. So far, almost all studies
claimed that off-targets in genetically modified rabbits through
genome editing are either none or negligible as comprehensively
discussed in the recent review (Song J. et al., 2020); nevertheless,
there is a need to performed careful genotyping, including
sequencing, and expression validation of genetically modified
rabbit models. It can be expected that more and more genetically
modified rabbits will be made and used in a variety of medical
sciences which will certainly expand our knowledge to explore
new mechanisms of human diseases. Genome editing technique
may eventually replace the pronuclear microinjection for
the generation of Tg rabbits. However, complicated gene
manipulation in rabbits, such as conditional KO in an organ-
or cell-specific and time-controlled manner using the Cre/LoxP
system is still lacking, thus it will be absolutely necessary to
build such a platform in future. Finally, the preservation of
valuable strains of genetically modified rabbits is an urgent
task with increased number of rabbit models produced. In this
aspect, various procedures for cryopreservation of rabbit sperm
(Vicente and Viudes-de-Castro, 1996; Dalimata and Graham,
1997; Nishijima et al., 2015) and embryos (al-Hasani et al.,
1992; Kasai et al., 1992; Marco-Jimenez et al., 2016) have been
reported but have not been standardized. In the future, it may be
necessary to establish an international rabbit bio-resource center
or sperm and embryo bank to stock and share valuable rabbit
models worldwide.
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