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Abstract

CRISPR-Cas9 technology is routinely applied for targeted mutagenesis in model organisms

and cell lines. Recent studies indicate that the prokaryotic CRISPR-Cas9 system is affected

by eukaryotic chromatin structures. Here, we show that the likelihood of successful muta-

genesis correlates with transcript levels during early development in zebrafish (Danio rerio)

embryos. In an experimental setting, we found that guide RNAs differ in their onset of muta-

genesis activity in vivo. Furthermore, some guide RNAs with high in vitro activity possessed

poor mutagenesis activity in vivo, suggesting the presence of factors that limit the mutagen-

esis in vivo. Using open access datasets generated from early developmental stages of the

zebrafish, and guide RNAs selected from the CRISPRz database, we provide further evi-

dence for an association between gene expression during early development and the suc-

cess of CRISPR-Cas9 mutagenesis in zebrafish embryos. In order to further inspect the

effect of chromatin on CRISPR-Cas9 mutagenesis, we analysed the relationship of selected

chromatin features on CRISPR-Cas9 mutagenesis efficiency using publicly available data

from zebrafish embryos. We found a correlation between chromatin openness and the effi-

ciency of CRISPR-Cas9 mutagenesis. These results indicate that CRISPR-Cas9 mutagen-

esis is influenced by chromatin accessibility in zebrafish embryos.

Introduction

Since its discovery in Streptococcus pyogenes, the CRISPR-Cas9 (Clustered regularly inter-

spaced short palindromic repeats–CRISPR associated 9) system has been extensively applied

to modify the eukaryotic genome in a targeted manner [1,2]. CRISPR-Cas9 technology takes

advantage of the bacterial Cas9 endonuclease, which generates a double stranded break

in its DNA target [1]. The repair of the break by the error prone repair machinery of non-

homologous end joining often leads to the incorporation of mutations and permanent modifi-

cations to the genome [2].
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Cas9 is directed to bind its target sequence by a single chimeric guide RNA molecule (sgRNA),

which recognizes an approximately 20 nucleotide target site, followed by the three nucleotide pro-

tospacer adjacent motif (PAM)-sequence (5’-NGG-3’) [1–3]. The sgRNA sequence is considered

the limiting step in mutagenesis design, as the genomic target site needs to be unique. An optimal

GC-content and specific nucleotides at key positions in the target sequence can also alter the effi-

ciency and the specificity of mutagenesis [4–8]. The efficiency and unspecific, off-target binding

of the nuclease are not easy to predict. As a result, multiple algorithms and online tools have been

created for the identification of guide RNA targets with optimal Cas9 loading scores and the least

amount of off-targets [9–17]. However, the in silico predictions do not always correlate with the

observed mutagenesis efficiency and specificity [11,18–20].

Eukaryotic gene expression is regulated at the epigenetic level by packing of DNA into

nucleosomes, which are formed by wrapping 146bp of DNA around a histone octamer [21].

These eukaryotic chromatin structures fundamentally differ from bacterial DNA packing, and

being a prokaryotic enzyme, it is plausible that Cas9 cannot fully operate around all chromatin

structures. Indeed, recent evidence indicates that chromatin influences Cas9 binding by limit-

ing the accessibility of the target site [10,18,22–25]. Cas9 takes longer to scan for the target

sites buried in heterochromatin, whereas targets located in euchromatin are more accessible,

and thus easier to locate [24]. However, heterochromatin does not entirely prevent Cas9 from

binding to potential target sites and despite binding, cleavage does not necessarily occur

[22,24]. Target site accessibility is reflected in the tendency of Cas9 to act on secondary targets,

so it plays an important role when designing effective sgRNAs with maximum efficiency and a

minimal number of off-targets [10,17,18]. If the intended target is buried in heterochromatin,

it is more probable that Cas9 binds to secondary targets and is more likely to find those in the

exon regions in euchromatin [18]. Evidence supporting the involvement of chromatin accessi-

bility in Cas9 binding has emerged in in vitro models, cell lines and in the zebrafish (Danio
rerio) [10,17,23–26]. However, detailed understanding on which chromatin features contribute

to chromatin accessibility this is still lacking.

Compared to cell lines, zebrafish can present additional challenges for genome editing.

Compared to other vertebrates, the teleost specific genome duplication has resulted in multiple

similar genes or pseudogenes and this can, in some instances, complicate the identification of

unique targets for sgRNA. Secondly, to generate mutant zebrafish, the sgRNA and Cas9 are

microinjected into the fertilized embryo, and mutagenesis occurs during the first hours of

development [27]. Compared to cell lines, the fertilized, CRISPR-injected zygote presents a

challenge for all mutagenesis techniques as it undergoes developmental and differentiation

processes that require global changes in chromatin. Lastly, the first cell division in zebrafish

takes place very rapidly (40 minutes after fertilization), when compared to the cell divisions for

example in mice (reaching E1.5 at 24 hours post fertilization, hpf). Mutagenesis occuring after

this first cell division may more likely lead to mosaicism.

During development, the chromatin landscape is under constant change in order to enable

coordinated growth and differentiation [28–30]. The zygote is supported by the available mater-

nal transcripts and the zygotic genome remains transcriptionally inactive until the maternal to

zygotic genome activation (MZT) at the mid blastula transition (MBT) [31]. Our current under-

standing of zygotic chromatin is limited, but it has been shown that a specific histone modifica-

tion pre-patterning marks developmentally active and inactive genes during development [32].

The nuclease accessibility of the developing, chromatin-packed genome of embryos remains

poorly understood. Previously, it was observed that chromatin does not influence CRISPR-Cas9

targeting in zebrafish embryos in an MNase assay (Micrococcal nuclease assay), but later

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) results suggested

that CRISPR-Cas9 is more likely to be successful when targeting open chromatin [9,17]. More
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information on the influence of chromatin on CRISPR-Cas9 mutagenesis in model organisms

is needed in order to improve the efficiency of genome engineering methodologies.

In this study, we observed discrepancies between the in vitro and in vivo activities of

sgRNAs, and that selected sgRNAs differ for their onset of mutagenesis. We saw an association

between successful mutagenesis and the transcript levels during early development. We looked

further into the involvement of gene activation and chromatin in explaining the CRISPR-Cas9

mutagenesis efficiency in zebrafish embryos. Our results indicate that gene expression and

chromatin openness are associated with the efficiency of CRISPR-Cas9 mutagenesis. However,

we saw no association of mutagenesis efficiency with either exon methylation or histone H3

Lysine 4 trimethylation (H3K4me3) at promoters.

Results

Good in vitro activity of sgRNA does not assure in vivo efficacy

Analyzing the efficacy of different sgRNAs in vivo is laborious. To improve the screening

for efficient sgRNAs, in vitro digestion of the target sequence can be used. We analyzed the

mutagenesis activity of six sgRNAs first in vitro and then selected three for analysis in vivo.

As shown in Fig 1, some sgRNAs with good in vitro efficiency presented low or no in vivo
activity. This suggests that factors present in vivo prevent Cas9 from acting on its target site.

Fig 1. In vitro and in vivo CRISPR-Cas9 mutagenesis efficiencies do not correlate for all genes. a) An in vitro digestion assay shows that sgRNAs differ

in their efficiencies. Below the gene name, + and - indicate the presence or absence of Cas9 protein in the reaction. On the right the wild type (wt) and the

mutant products are indicated. b) The in vivo CRISPR-Cas9 mutagenesis visualized for ca6, cxcr2 and pycard with a heteroduplex mobility assay, with the

wild type (wt) and the mutant products indicated. 5 embryos were collected per sample at 8hpf.

https://doi.org/10.1371/journal.pone.0196238.g001
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Importantly, cxcr2 had neither detectable gene expression nor mutagenesis efficiency, whereas

the genes permissive for mutagenesis (pycard, ca6) showed early expression (Fig 1, S1 Fig).

This led us to hypothesize that the onset and the level of gene expression could influence the

CRISPR-Cas9 mutagenesis. The corresponding results using the T7 Endonuclease I assay are

displayed in S2 Fig. In our hands the T7 Endonuclease I assay has a lower resolution compared

to the heteroduplex mobility assay, especially with sgRNAs of lower efficiency. On the other

hand, the T7 Endonuclease I assay can be readily used for quantitation of mutagenesis effi-

ciency, especially with sgRNAs of higher efficiency.

The onset of mutagenesis differs between sgRNAs in vivo
As we saw a discrepancy between in vivo and in vitro mutagenesis efficiencies for some sgRNAs,

we next analyzed whether the onset of mutagenesis correlates with the onset of gene expression.

To avoid the delay of mRNA transcription for Cas9 activity, we used a ready Cas9 protein in our

experiments with appropriate preincubation step to allow the sgRNA to complex with Cas9.

Three of our functional sgRNAs were chosen for the analysis. The sgRNAs targeting ca10a,

sema4gb, or ca6 were co-injected with the Cas9 protein into the 1-cell stage embryo and the

onset of mutagenesis was analyzed using both a heteroduplex mobility assay and a T7 Endonu-

clease I mutation detection assays. As shown in Fig 2 using the heteroduplex mobility assay, the

first mutations become detectable as soon as 1hpf for ca10a and sema4gb, whereas the first muta-

tions for ca6 appeared at 3hpf (Fig 2). These results indicate that the onset of mutagenesis differs

depending on the sgRNAs in zebrafish embryos. Based on these results, we analyzed the relation-

ship of early gene expression and mutagenesis efficiency in more detail with all our sgRNAs. We

were able to detect mutagenesis activity at 1hpf (roughly corresponding to 4-cell stage).

Likelihood of successful mutagenesis in relation to the expression level of

the target gene in zebrafish embryos

Altogether, we have designed 86 sgRNAs using the crispr.mit.edu, ChopChop (V1 and V2) and

CRISPRscan softwares [9,14,15]. Of these sgRNAs, 30% showed detectable in vivo activity (S1

Fig 2. Onset of mutagenesis differs between sgRNAs. Heteroduplex mobility assay to demonstrate the onset of mutagenesis using high efficiency guide

RNAs targeting three different genes with different gene expression patterns in early development. Embryos were collected at timepoints 1, 2, 3, 4, 6hpf (15–

20 embryos per group). The gene name above the gel image indicates CRISPR-Cas9 injected embryos and control indicates uninjected controls. The legend

on the side indicates the positions of wt (wild type) and mutant bands in the gel. Red arrows indicate the point at which first mutations can be detected.

https://doi.org/10.1371/journal.pone.0196238.g002
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Table). As GC-content (%) has been suggested to influence the effectiveness of CRISPR-Cas9

mutagenesis, we analyzed the GC-content of our sgRNAs (S1 Table) [18]. The GC-content of

our functional sgRNAs was found to be similar (Mann-Whitney U-test; p-value 0.452) to that of

the non-functional sgRNAs.

When we compared the expression of the genes that we were able to mutate to those we

were not, the genes resistant for mutagenesis more often had a very low expression level (Fig

3). However, the difference did not reach statistical significance (Fischer’s exact test; not signif-

icant). Moreover, a majority of genes (79%) permissive for mutagenesis underwent an increase

in the number of transcripts around the MZT (identified here as a positive change in the num-

ber of transcripts between the oblong sphere stage and 50% epiboly). This occurred more

often than in the genes resistant to mutagenesis (50%). However, this observation was not sta-

tistically significant (Fischer’s exact test) (Fig 3). To examine whether the lack of statistical sig-

nificance was due to a type two error, we decided to determine whether there is a correlation

between target gene expression and mutagenesis efficiency using larger datasets.

Fig 3. Relationship of transcript levels in early development and low mutagenesis efficiency. Pie charts of the RNA-seq data

corresponding to graphs in S1 Fig. a) Number of transcripts for the genes resistant to (left) or permissive (right) for mutagenesis

between the oblong sphere and the 15-somite stage (Fischer’s exact test; not significant). 0.5 RPKM (Reads per Kilobase of

transcript per Million mapped reads) was used as a limit for low expression. b) The number of genes resistant (left) or permissive

(right) for CRISPR-Cas9 mutagenesis in which the number of transcripts is increased or decreased between the oblong sphere-

stage and 50% epiboly (around the MZT) (Fischer’s exact test; not significant).

https://doi.org/10.1371/journal.pone.0196238.g003
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Mutagenesis efficiency correlates with gene expression and chromatin

accessibility in zebrafish embryos

In searching for factors that would explain the poor in vivo activity of some sgRNAs, we inves-

tigated available open access datasets. As genes with low expression values tended to be more

difficult to mutate in our setting (Fig 3), we analyzed the association between expression levels

and mutagenesis efficiency in greater depth, using large datasets in order to avoid type 2 error.

We obtained CRISPR-Cas9 sgRNA efficiency data from CRISPRz database for all analyses

[33]. We used open access RNA-seq data (E-GEOD-45706) for our primary analysis of the cor-

relation between CRISPR-Cas9 mutagenesis and gene expression [33,34]. We found signifi-

cant correlations in early development (between 64-cell stage and 36hpf), at the oblong sphere

stage (3.66hpf, Spearman correlation 0.227; p-value 0.001) and at 36hpf (Spearman correlation

0.230; p-value 0.001). A strong correlation was observed at the oblong sphere stage which

occurs shortly after MBT, around the time of zygotic genome activation. These results suggest

that transcriptional activity influences CRISPR-Cas9 mutagenesis at early development

(Table 1).

As methylation is known to correlate with transcriptional repression, we used zebrafish

exon methylation data to analyze whether there is any correlation between exon methylation

and the success of CRISPR-Cas9 mutagenesis [33,35]. As is shown in Table 2, there was no sig-

nificant correlation between exon methylation and CRISPR-Cas9 mutagenesis efficiency at the

1-cell stage or at MBT (Table 2). Similarly, using open access data on embryonic histone meth-

ylation, we analyzed whether there is a correlation of H3K4me3 at promoters with CRISPR--

Cas9 mutagenesis efficiency. As shown in Table 2, there seemed to be a correlation but this did

not reach statistical significance (Spearman correlation 0.263; p-value = 0.074) [33,36].

ATAC-sequencing is a recent next generation sequencing method, which can be used to

directly analyze chromatin accessibility. Open access ATAC-seq data for the zebrafish embryo

is available at the 4hpf timepoint [37]. We compared mutagenesis efficiency data with ATAC-

seq data at transcription start sites for a total of 263 genes. We discovered a significant, albeit

rather weak correlation, indicating that chromatin accessibility appears to be one of the factors

that explain the efficiency of CRISPR-Cas9 mutagenesis in zebrafish embryos (Table 2).

Table 2. Correlation between mutagenesis efficiency and chromatin features at different developmental stages and timepoints.

Chromatin feature n Developmental stage/Timepoint Spearman correlation p-value

Exon methylation 263 1-cell 0.115 0.063

Mid blastula transition 0.107 0.084

H3K4me3 47 75–80% epiboly 0.263 0.074

Chromatin accessibility 263 4hpf 0.182 0.003�

https://doi.org/10.1371/journal.pone.0196238.t002

Table 1. Correlation between mutagenesis efficiency and gene expression at different developmental stages dur-

ing early development. n = 209.

Developmental stage Spearman correlation p-value

64-cell 0.190 0.006�

oblong-sphere 0.227 0.001�

50%-epiboly 0.187 0.007�

15-somite 0.210 0.002�

36hpf 0.230 0.001�

48hpf 0.182 0.008�

60hpf 0.188 0.006�

72hpf 0.131 0.058

https://doi.org/10.1371/journal.pone.0196238.t001
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Discussion

In this study, we found discrepancies between the in vitro and in vivo efficiencies of some

sgRNAs. These discrepancies suggested the presence of cellular factors which limit mutagene-

sis, and encouraged us to analyze chromatin involvement in more detail at the transcriptomic

and epigenomic levels. Because the transcript counts of the early embryo can be masked by the

presence of maternal transcripts, it is difficult to establish the exact relationship between gene

expression and mutagenesis efficiency [38]. However, we found weak but significant correla-

tions of gene expression with mutagenesis efficiency during early development, with the stron-

gest correlation at the oblong sphere stage (3.66hpf, Spearman correlation 0.227; p-value

0.001) and later at 36hpf (Spearman correlation 0.230; p-value 0.001). The correlation at the

oblong sphere stage suggests that genes which become active at the MZT are more accessible

for Cas9 and hence undergo more efficient mutagenesis.

As chromatin structure is complex, its effect on target site accessibility has to be determined

for each structural level, starting with direct modifications to DNA bases, continuing with

analysis of histone modifications signaling for open chromatin, and ending with analysis of

chromatin accessibility. A detailed analysis is required in order to understand how CRISPR--

Cas9 mutagenesis activity could be manipulated at molecular level using for example chemical

inhibitors of histone deacetylase activity. DNA methylation is known to mark transcriptional

inactivity and recruit modified histones at the exons [39]. In our study, exon methylation was

not found to significantly influence the activity of mutagenesis in zebrafish embryos. In con-

firmation, it has previously been suggested that Cas9 can act independently from DNA meth-

ylation in cell lines, and that, in general, most protein-DNA interactions are independent of

DNA methylation [7,40]. If DNA methylation is not a limiting factor, we hypothesized that

mutagenesis might correlate with higher order structures, specifically histone modifications.

Various histone modifications mediate transcriptional activation and repression, and form

nucleosome structures, which bind chromatin into an inactive heterochromatin state.

H3K4me3 is a well known modification occurring in early development [41]. The most

strongly suggestive, albeit not significant, correlation between experimental data and

CRISPR-Cas9 mutagenesis efficiency was found with H3K4me3 data (Spearman correlation

0.263, p-value 0.07) [32]. This was expected, given the association with transcriptional activity

at early developmental stages. As mutagenesis can already be detected at 1hpf it is possible that

we fail to see a stronger correlation because the inspected timepoint is late and the histone

landscape at 75–80% epiboly is dissimilar to that which is present before the MBT. In addition,

if data from multiple timepoints would be available it would provide a more comprehensive

view to opening of local chromatin structures. Also, observing only H3K4me3 signals might

not accurately reflect the chromatin state in early embryos, as there are also other histone

marks for open and closed chromatin, including H3K9me3 and H3K27me3 as well as

H3K27ac at promoters [28,32,42]. A wider scale analysis of histone modifications could pro-

vide more insight into the association of CRISPR-Cas9 efficiency with histone landscape.

A higher order structure above the histone landscape is shaped by modified histones orga-

nizing into nucleosomes. Nucleosome occupancy, breathing and remodeling have previously

been found to affect the cleavage activity of Cas9 and consequently, CRISPR-Cas9 mutagenesis

is more successful when targeting the sequences depleted in nucleosomes [25,26,43]. The posi-

tion of the PAM-sequence relative to nucleosomes has been found to be a key determinant of

the Cas9 endonuclease activity in vitro but not in zebrafish [17,23]. Nucleosomes affect chro-

matin accessibility, which can be measured using ATAC-seq [44]. This state-of-the-art method

has been used for identification of accessible chromatin regions during early development

[37]. Using the publicly available data, we found a weak but significant correlation between
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chromatin accessibility and mutagenesis efficiency at the MBT, indicating that chromatin

influences the efficiency of CRISPR-Cas9 mutagenesis in zebrafish embryos, even though it is

not the sole defining factor (Table 2) [37]. Our results are in line with those by others [17] with

different analysis method and dataset. Moreover, our results suggest CRISPR-Cas9 mutagene-

sis efficiency to be independent of exon methylation and H3K4me3 at promoters.

Deciphering the effect of developmental chromatin on the activity of CRISPR-Cas9 muta-

genesis model organisms ultimately leads us to an unanswered question about the regulation

of zygotic genome activation and the signals that regulate this event at early stages before the

MTZ [45]. The genome remains in a transcriptionally inactive state before the MZT, and it is

likely that this inactive chromatin also limits the access of mutagenesis reagents such as Cas9.

It is also likely that Cas9 can gain access during replication, and at sites that contain more per-

missive histone modifications or are depleted in nucleosomes, but only with limited efficacy.

With further cell divisions, chromatin repressive signals then become diluted, leading to chro-

matin opening at the MZT and initiation of transcription [45]. Despite the biological signifi-

cance of the MBT and MZT, we were already able to see mutagenesis taking place at 1hpf for

some genes, so we propose that (when designing CRISPR-Cas9 mutagenesis strategies) chro-

matin structure should be taken into account at a very early timepoint (Fig 2).

Several studies have looked into the correlation of in silico predictions and in vivo activity of

sgRNAs and found that CRISPR-sgRNA design tools often fail to accurately predict sgRNA

activity [11,20,25]. Moreover, it has been observed, that the in silico predictions which are effi-

cient for model organisms are not efficient for cell line based assays and vice versa [11]. As

Haeussler et al. (2016) observed, CRISPR-Cas9 efficiency in mice is better predicted by the

algorithms that have been trained on zebrafish experimental data, than by cell line based algo-

rithms. It is logical to assume this is at least in part due to the fact that mice and zebrafish

undergo similar, conserved developmental dynamics at the transcriptomic and epigenomic

level (at the time when CRISPR-mutagenesis is taking place), and target site accessibility is

largely defined by early chromatin. Thankfully, design tools, which also take into account tar-

get site accessibility, have recently become available [11,14,16,17]. Detailed analysis is required

to pinpoint which are the most important chromatin structures impacting CRISPR-Cas9 activ-

ity. With a better understanding of these, we will hopefully achieve improvements in predic-

tions for experimental design especially in the in vivo models. Eventually, it might be possible

to modify local chromatin to increase target site accessibility and simultaneously decrease the

likelihood of off-target binding. Our results confirm the involvement of chromatin in defining

CRISPR-Cas9 mutagenesis efficiency in a vertebrate model in vivo.

Materials and methods

Zebrafish maintenance

Wild type AB fish were maintained in a flow-through system with a light/dark cycle of 14h/

10h according to the standard procedure. Embryos and larvae were grown in an incubator

(28.5˚C) in embryonic medium/E3 water (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM

MgSO4, and 10–15% Methylene Blue).

Ethics statement and data availability

All experiments were carried out in accordance with the EU-directive 2010/ 63/EU on the pro-

tection of animals used for scientific purposes, and with the Finnish Act on the Protection of

Animals Used for Scientific or Educational Purposes (497/2013) and the Government Decree

on the Protection of Animals Used for Scientific or Educational Purposes (564/2013). We have

only used zebrafish prior to their independently feeding larval stages in this study, which thus
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do not require animal permits. Permit for the zebrafish housing and maintenance for the facil-

ity at the University of Tampere is ESAVI/10079/04.10.06/2015.

The computational data analysed in this study were collected from open access sources, as

detailed in the appropriate sections.

Design and production of sgRNAs for CRISPR/Cas9 mediated genome

editing

Target sequences (S1 Table) for sgRNA design were chosen using the online based CRISPR

design tool (http://crispr.mit.edu/), ChopChop.V1 or V2 [14,15] or CRISPRscan [9]. Target

site uniqueness was verified with the NCBI BLAST analysis against the zebrafish genome

(GRCz10). sgRNAs were produced as described previously [46]. Briefly, the sgRNA oligo

(Sigma-Aldrich) and the T7 promoter site oligo (S1 and S2 Tables) (Sigma-Aldrich) were

annealed and in vitro transcribed using the MEGAshortscript T7 Transcription Kit (Ambion

Life Technologies, CA, USA). The integrity and size of the produced sgRNAs were analyzed

with gel electrophoresis (1% agarose in Tris-acetate-EDTA, TAE). The concentration of the

sgRNAs was measured with the Qubit1 RNA BR Assay kit (Thermo Fisher Scientific, MA

USA 02451) and Nanodrop 2000 (Thermo Fischer Scientific).

sgRNA and Cas9 microinjection and genomic DNA extraction

The sgRNAs and the Cas9 protein (ToolGen Inc., Seoul, South Korea) were co-injected into

one-cell stage zebrafish embryos with a micro injector (PV830 Pneumatic PicoPump, World

Precision Instruments) under a Nikon microscope (SMZ645), using borosilicate needles pre-

pared with a Flaming/Brown micropipette puller. Needles were calibrated by injecting solution

into a halocarbon oil droplet to achieve a diameter of 12μm (approximately 1nl). The embryos

were aligned on 1.2% agarose E3 water plates prior to the injection. An injection solution con-

taining 130ng/μl sgRNA and 250ng/μl of the Cas9 protein in nuclease-free water was incu-

bated 37˚C 15min. Rhodamine dextran was added to the solution for the visualization of the

injections under a Zeiss Lumar V12 fluorescence microscope. To analyze the onset of the

mutagenesis 10–20 CRISPR-Cas9 injected embryos were collected and frozen in liquid nitro-

gen for DNA extractions at 1, 2, 3, 4, 6hpf (hours post fertilization). To analyze the in vivo
mutagenesis efficiency, 5 embryos were collectedat 8hpf and immediately frozen in liquid

nitrogen. For DNA extraction, the embryos were lysed 4h 55˚C in lysis buffer (10mM Tris pH

8,2, 10mM EDTA, 200mM NaCl, 0.5% SDS, 200μg/ml Proteinase K). DNA was precipitated

1h -20˚C using two volumes of ethanol. DNA was then pelleted by centrifuging 16,000g

10min. The pellet was washed with 200μl of 70% ethanol before resuspending in 200μl of

water. A purification step with phenol-chloroform was performed after treatment with 15u of

RNase A (Thermo Fischer Scientific) per 100μl of sample, 1h 37˚C.

Heteroduplex mobility assay

Targeted loci were amplified from the genomic DNA by PCR using the Maxima Hot Start

DNA polymerase (Thermo Fischer Scientific) according to the manufacturer’s instructions.

The PCR primers (S3 Table) were designed to anneal upstream and downstream of the

expected cutting site. The PCR product was purified using Exo I and FastAP (Thermo Fischer

Scientific) treatment 15min 37˚C, then 15min 85˚C. 10μl of the purified PCR product was

annealed in a reaction containing 1x NEBuffer 2 (New England Biolabs, MA, USA) and was

run on a 10% polyacrylamide gel. The gel was stained with GelRed (Bitium Inc., Fremont,

CA).
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T7 Endonuclease I mutation detection assay

After purifying and annealing the PCR amplified locus, 10μl of this product was incubated

30min 37˚C with 6 units of T7 Endonuclease I (New England Biolabs). The obtained products

were separated on a 2.0% agarose TAE gel. The gel was stained with GelRed. The band sizes

were compared to control samples.

In vitro digestion of DNA with the Cas9-gRNA complex

To test the in vitro cutting potential, equimolar amounts of the Cas9 protein (ToolGen Inc.)

and sgRNA were pre-incubated 15min 37˚C in NEB 3 Buffer (New England Biolabs) and 1%

Bovine serum albumin (Sigma Aldrich). For the template, a 850–1,200bp site around the target

was amplified using Maxima Hot Start DNA polymerase according to the manufacturer’s

instructions. The template was then purified (GeneJET PCR Purification kit, Thermo Fischer

Scientific). The template was then added to a final 10:10:1 ratio (Cas9:sgRNA:template PCR

product). The reaction mix was incubated 3h 28˚C as this is the temperature at which zebrafish

embryos are maintained. After this, we incubated the sample with 300U of Proteinase K 37˚C

10min to release the Cas9. Proteinase K was inactivated by incubation 65˚C 10min. Samples

were run on a 1% agarose TAE gel to analyze the cutting efficiency.

Gene expression analysis of CRISPR targeted genes

The CRISPRz database contains a list of 1,398 validated zebrafish sgRNAs collected from vari-

ous published resources [33]. In addition to sgRNA sequences, the associated mutagenesis effi-

ciencies have been recorded in 325 unique zebrafish genes. We compared these mutagenesis

efficiencies, from somatic cells, with a publicly available RNA-seq expression dataset housed in

the ArrayExpress database [47]. The dataset (ArrayExpress E-GEOD-45706: https://www.ebi.

ac.uk/arrayexpress/experiments/E-GEOD-45706) consists of RNA-seq data performed for

samples from multiple stages of zebrafish development: 64-cell, oblong-sphere, 50%-epiboly,

15-somite, 36hpf, 48hpf, 60hpf and 72hpf (and 1 week, excluded from this analysis). Using the

Stats package of the SciPy library, we performed Spearman rank correlation analyses of expres-

sion data for each sample in each ArrayExpress RNA-seq dataset; using the expression values

for genes with available mutagenesis data for somatic cells in CRISPRz [48].

Histone modification in zebrafish promoters

The ArrayExpress dataset E-GEOD-4863 (https://www.ebi.ac.uk/arrayexpress/experiments/

E-GEOD-4863/) is based on custom microarrays for the identification of ChIP binding sites of

antibodies against the H3K4me3 in the promoters of zebrafish genes [36]. From the microar-

ray datasets, the log of the median values of the 60-mer probes were summed for each gene,

averaged, and then paired with CRISPRz mutagenesis values. Subsequently, these paired values

were used to perform the Spearman rank correlation analysis.

Exon methylation analysis of zebrafish genes

McGaughey et al. showed that exon methylation was a better indication of mRNA expression

than promoter methylation [35]. Their genome-wide ChIP-seq analysis of whole embryo zeb-

rafish DNA methylation is available as an ArrayExpress dataset E-GEOD-52110 (https://www.

ebi.ac.uk/arrayexpress/experiments/E-GEOD-52110/) at the 1-cell stage and at MBT. We first

translated all ChIP-seq peaks from Zv9 genome coordinates to GRCz10 coordinates and then

mapped them to exons annotated in the GRCz10 genome. A summation of all ChIP-seq peaks

which overlapped exons was calculated for each gene, this sum was divided by the total length
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of the gene’s exons to generate a methylation coefficient. The methylation coefficients were

then combined with mutagenesis data to compute Spearman rank correlations for each

timepoint.

ATAC-seq analysis of zebrafish transcriptional units

ATAC-seq is a powerful method for identifying regions of accessible chromatin and it can be

used to generate nucleotide resolution mapping of the hyperactive Tn5 transposase binding

sites in the genome. An ATAC-seq analysis of 4hpf zebrafish has been previously completed

and is available as an ArrayExpress dataset E-GEOD-74231 (https://www.ebi.ac.uk/array

express/experiments/E-GEOD-74231/) [37]. SRR2747531 was downloaded from the NCBI

Sequence Read Archive [37]. Reads were inspected using Fastqc version 0.11.5 and deemed to

be of good quality and no further quality filtering or trimming was performed [49]. Subse-

quently, reads were aligned with Bowtie2 version 2.3.2 [50] using the parameter—very-sensi-

tive-local against the Ensembl Zebrafish reference genome GRCz10. Alignments were filtered

and sorted using samtools version 1.4 with the parameter -q 20. Duplicates were removed

using Picard Markduplicates version 2.6.0 with the parameters REMOVE_DUPLICATES =

TRUE VALIDATION_STRINGENCY = LENIENT [51]. As the alignment was performed

against recent reference it was necessary to perform peak- calling independently of the original

paper [37]. Furthermore, due to advances in peak calling softwares, peak calling was per-

formed with macs2 version 2.1.1 using the parameters—nomodel—shift -100—extsize 200 -q

0.05 –broad [52]. Transcription start sites (TSSs) for all transcripts annotated in the GRCz10

genome were pooled for each gene. TSSs within 500nt were clustered as a single transcriptional

unit. Of the total 22,152 zebrafish genes, 18,687 had a single transcript. Subsequent clustering

created single transcriptional units in 2,233 of the remaining 3,465 genes with more than one

annotated transcription start site. For clustered TSSs, the midpoint was used as the representa-

tive TSS. For each TSS, a +/- 1,000nt region was used to associate ATAC-seq peaks from the

E-GEOD-74231 dataset. For each of these regions, an ATAC-seq coefficient was generated by

summation of the product of ATAC-seq signal value by total overlap with the TSS region,

divided by the length of the region (2,000nt). In cases where after clustering a gene still had

more than one TSS ATAC-seq peak, a correlation was performed for all TSS regions and then

averaged. Subsequently, all zebrafish genes possessed a single ATAC-seq coefficient. These

were then combined with the mutagenesis data from the CRISPRz database in order to com-

pute the Spearman rank correlation.

Supporting information

S1 Table. sgRNA target site sequences for each genomic target. sgRNAs used in the experi-

ments in this paper are indicated by a � after the gene name. Functional (Yes/No) indicates

observed in vivo activity.

(DOCX)

S2 Table. sgRNA template sequence. The extra 3’ guanines (G/GG) were used if target

sequence has one or two 5’ guanines. N- indicates the position of the target sequence.

(DOCX)

S3 Table. Primers used in T7 Endonuclease I assay (T7EI), Heteroduplex mobility assay

(HMA) and In vitro Digestion Assay (IVDA).

(DOCX)

S1 Fig. The relationship of mutagenesis efficiency and transcript level. The graph a) pres-

ents the expression of the genes resistant to CRISPR-Cas9 mutagenesis, at the early stages of

Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio)

PLOS ONE | https://doi.org/10.1371/journal.pone.0196238 April 23, 2018 11 / 15

https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-74231/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-74231/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196238.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196238.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196238.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196238.s004
https://doi.org/10.1371/journal.pone.0196238


development. The graph b) presents the genes that were successfully mutated with CRISPR--

Cas9. 2–10 sgRNAs have been used for mutagenesis. RPKM, Reads per Kilobase of transcript

per Million mapped reads. All sgRNA sequences have been given in S1 Table.

(TIF)

S2 Fig. T7 endonuclease I assay results corresponding to Fig 1. The in vivo CRISPR-Cas9

mutagenesis efficiencies for selected genes estimated with the T7EI assay for ca6, cxcr2 and

pycard. 5 embryos were collected per sample at 8hpf. Black arrows indicate the mutated cleav-

age products for ca6.

(TIF)
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on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol

2016 - 7-5;17.

12. Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-

specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE 2014; 9(9):e108424.

https://doi.org/10.1371/journal.pone.0108424 PMID: 25247697

13. Rahman MK, Rahman MS. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity pre-

diction in CRISPR/Cas9 systems. PLoS ONE 2017; 12(8):e0181943. https://doi.org/10.1371/journal.

pone.0181943 PMID: 28767689

14. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next gen-

eration of CRISPR genome engineering. Nucleic Acids Res 2016 Jul 08,; 44(W1):272.

15. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN

web tool for genome editing. Nucleic Acids Res 2014 Jul; 42(Web Server issue):401.

16. Chari R, Mali P, Moosburner M, Church GM. Unraveling CRISPR-Cas9 genome engineering parame-

ters via a library-on-library approach. Nat Methods 2015 Sep; 12(9):823–826. https://doi.org/10.1038/

nmeth.3473 PMID: 26167643

17. Chen Y, Zeng S, Hu R, Wang X, Huang W, Liu J, et al. Using local chromatin structure to improve

CRISPR/Cas9 efficiency in zebrafish. PLoS ONE 2017; 12(8):e0182528. https://doi.org/10.1371/

journal.pone.0182528 PMID: 28800611

18. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide binding of the CRISPR

endonuclease Cas9 in mammalian cells. Nat Biotechnol 2014 Jul; 32(7):670–676. https://doi.org/10.

1038/nbt.2889 PMID: 24752079

19. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA. Heritable genome editing

in C. elegans via a CRISPR-Cas9 system. Nat Methods 2013 Aug; 10(8):741–743. https://doi.org/10.

1038/nmeth.2532 PMID: 23817069

20. Lee CM, Davis TH, Bao G. Examination of CRISPR/Cas9 design tools and the effect of target site

accessibility on Cas9 activity. Exp Physiol 2017 Mar 16,.

21. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome

core particle at 2.8 A resolution. Nature 1997 Sep 18,; 389(6648):251–260. https://doi.org/10.1038/

38444 PMID: 9305837

22. Chen X, Rinsma M, Janssen JM, Liu J, Maggio I, Gonçalves, Manuel A F V. Probing the impact of chro-
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