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Lactoferrin (Lf), an iron-binding glycoprotein, regulates the immune system.

It has broad-spectrum antimicrobial activity and is critical for child physical

growth and development. As a common additive in the dairy industry, it is

crucial to quantify LF content. This study established a self-assembly and

universal fluorescence aptasensor for detecting LF in milk powder based on

structure-selective dyes of PicoGreen intercalated in the label-free aptamer.

Herein, the aptamer functions as both a specific recognition element against

targets and a fluorescent signal reporter integrated with structure-selective

dyes. First, the aptamer folds into a three-dimensional spatial structure based

on complementary base pairings and intermolecular weak non-covalent

interactions. Then, the dye is intercalated into the minor groove structures

of the aptamer and triggers its potential fluorescent property. When the

target exists, the aptamer binds to it preferentially, and its space structure

unfolds. This causes the freeing of the subsequent dye and decreases the

corresponding fluorescence. Hence, the reflected fluorescence signals could

directly determine the target concentrations. Under the optimum conditions,

a good linear relationship (R2, 0.980) was obtained in the Lf range from 20

to 500 nM with a detection limit of 3 nM (2.4 mg/kg) and good specificity,

as well as a reliable recovery of 95.8–105.1% in milk powder. In addition,

the universality was also confirmed with a good performance by quickly
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changing the aptamers against other targets (chlorpyrifos, acetamiprid, bovine

thyroglobulin, and human transferrin) or utilizing another fluorescence dye.

Therefore, this self-assembly aptasensor provides a universal and concise

strategy for effective detection.

KEYWORDS

aptamer, fluorescent aptasensor, DNA intercalated dyes, lactoferrin detection, milk
powder

Introduction

Lactoferrin (LF) is an essential biofunctional iron-binding
protein of the innate immune system with a molecular weight of
approximately 80 kDa. It affects host defense and tumor growth
inhibition and has antibacterial, antiviral, and antiparasitic
activities (1, 2). Recently, LF has been applied in dairy products
and commercial foods for non-breastfed infants as a functional
component, promoting optimal growth (3, 4). In 2012, the
GB14880-2012 “Food Nutrition Fortification Use Standard”
issued by the National Health and Wellness Commission of
the People’s Republic of China listed LF as a nutritional
fortification and set the maximum use of LF at 100 mg/100 × g
for infant foods. To date, different analytical techniques have
been established (5). Although chromatographic methods,
such as high-performance liquid chromatography (HPLC) (6,
7), high-performance capillary electrophoresis (HPCE) (8),
and high-performance liquid chromatography-tandem mass
spectrometry (HPLC-MS/MS) (9), have good reproducibility
and high accuracy, they would require complex pretreatment
processes and professional personnel to operate. In recent years,
antibody-based biosensors, such as electrochemical sensors
(10), surface-enhanced Raman spectroscopy (11), and enzyme-
linked immunosorbent assays (12), have gradually been used to
detect LF. However, the antibody is generally more expensive,
complicated to prepare with animal immunization experiments,
and requires strict conditions to ensure its stability. Hence,
simple and convenient methods are of great significance for
sensitive LF detection.

Nucleic acid aptamers are single-stranded deoxyribonucleic
acid (DNA) or RNA sequences generated from a random
oligonucleotide library through the systematic evolution of
ligands by exponential enrichment (SELEX) (13, 14). They
exhibit many advantages, such as small size, simple synthesis,
good stability, and non-immunogenic nature, as viable
alternatives to antibodies (15). Numerous aptasensors (16) have
been recently established. Among them, fluorescence-based
aptasensors are the most common type, featuring simplicity, fast
response, high sensitivity, and universal applicability (17, 18).
However, most of them require labeling aptamers or modifying
bases with fluorescent groups, which are time-consuming and

expensive, and the affinity of the aptamer to the target and
the detection sensitivity are affected (19). Therefore, label-free
fluorescent aptasensors have attracted much interest due to
their flexible design and versatility.

As an essential type of single-stranded oligonucleotide,
aptamers display three prominent characteristics for developing
label-free fluorescent sensors (20, 21). (i) The aptamer exhibits
multiple negatively charged phosphate functional groups, which
result in the aggregation of positively charged small molecule
probes and enable efficient probe fluorescence quenching, such
as perylene (22), pyrene (23), silole (24), and tetraphenylethene
(25) derivatives. (ii) Some special folded spatial conformations
of aptamers, such as protoporphyrin (26), malachite green,
thioflavin T (27), N-methyl mesoporphyrin IX (28), and DFHBI
(29), could enable the intercalation of dyes to produce strong
fluorescence (30). (iii) The aptamer can be easily hybridized with
its complementary chain, forming a double helix conformation
of double-stranded DNA (dsDNA) through hydrogen bonding
from base pairing (31). Thus, some minor groove binding dyes
could specifically intercalate into dsDNA, inducing exponential
fluorescence enhancement and enabling sensitive detection
of PicoGreen (PG) (32), SYBR Green I (SGI) (33), and
AccuBlue (34). There are inherent base-complementary pairings
in the self-assembly structure of the aptamers’ flexible folding.
Therefore, the minor groove-binding dyes could also intercalate
into the aptamer structure to fabricate various aptasensors.

Herein, a self-assembly and universal fluorescence
aptasensor was designed for the sensitive detection of LF
in milk powder based on the specific embedding dye PicoGreen
(PG), of which there are few pieces of literature introducing PG-
based self-assembly aptasensors. PG is a highly ultrasensitive
fluorescent dye that does not fluoresce when it is free. Upon
binding to dsDNA and inducing a >1,000-fold fluorescence
enhancement (35), dsDNA detection concentrations as low as
25 pg·mL−1 were enabled. The aptamer against LF was screened
using capillary electrophoresis (CE)-SELEX by our group in
2020 with good affinity (KD, 20.74 nM) and specificity (36).
Without LF, the aptamers formed a specific spatial structure by
self-assembly folding. The dyes recognized the minor groove
structures and intercalated into them, generating a noteworthy
augmentation of the fluorescence signal. In the presence of LF,

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.992188
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-992188 September 9, 2022 Time: 14:46 # 3

Liu et al. 10.3389/fnut.2022.992188

the aptamer binds to it preferentially, and its space structure
is unfolded. This caused the freeing of the subsequent dye and
decreased the corresponding fluorescence. In addition, the
universality was also confirmed against the other four targets or
utilizing another dye. This label-free strategy achieved universal
and sensitive detection only by “mix-and-detect” procedures,
contenting the need to design simple and feasible aptasensors.

Experimental

Reagents and materials

Lactoferrin (LF, from bovine milk), α-lactalbumin (α-La),
casein (CS), chlorpyrifos, β-lactoglobulin (β-Lg), serum albumin
(SA), and acetamiprid were procured from Sigma-Aldrich
(Shanghai, China). Bovine thyroglobulin (TG) and human
transferrin (H-TF) were acquired from Shanghai Yuanye Bio-
Technology Co., Ltd. (Shanghai, China). Pico Green (PG)
was procured from Shanghai BioScience Co., Ltd. (Shanghai,
China), and SYBR Green I (SGI) was secured from Thermo
Fisher Scientific Inc. (Bartlesville, United States). Acetic acid
was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Three different milk powders were obtained
from a local store. The aptamers were synthesized by Sangon
Biotechnology Co., Ltd. (Shanghai, China), and the aptamer
sequences are listed in Supplementary Table 1.

A high-speed refrigerated centrifuge (Neofuge 15R, Heal
Force, Shanghai, China) and a vortex coagulator (Vortex 2,
IKA, Staufen, Germany) were used to process the milk powders.
Ultrapure water with a specific resistance of 18.25 M� cm was
obtained from a Millipore filtration system (Millipore, Bedford,
MA, United States). The fluorescence intensity was scanned
by a microplate reader (Synergy HTX, BioTek, Vermont,
United States) with an excitation wavelength of 485 nm and an
emission wavelength of 528 nm. The 50 µm id bare capillary
with a total length of 32.6 cm (effective length 20.3 cm)
was obtained from Sino Sumtech (Handan, Hebei, China).
High-performance capillary electrophoresis (HPCE) equipped
with a UV detector (214 nm) was supported by Hanon
Group (Jinan, China).

Preparation of the aptasensor

First, we optimized the concentration of PG. Then, 10 µL
of PG at different concentrations (1 × , 3 × , 5 × , 7 × , 10
× , and 20 × ) was added to a solution containing 30 µL of
100 nM aptamer and incubated for 5 min at room temperature.
The fluorescence intensities at 528 nm were recorded with a
microplate reader, and the excitation wavelength was 485 nm.

LF aptamer (30 µL, 100 nM) was incubated with LF
solution (60 µL, different concentrations) for 15 min at room

temperature. Then, 10 µL of PG (5 × ) was added and reacted
for 5 min, and the fluorescence values were determined by a
microplate reader.

Detection of lactoferrin in milk powder

A certain amount (0.04 g) of milk powder was accurately
weighed and then dissolved in 30 mM acetic acid solution
and centrifuged at 5,000 rpm for 15 min (to dissolve fat and
sediment protein). The supernatant (approximately 400 µL)
was diluted with an equal volume of ultrapure water and
passed through a 0.22 µm filter membrane. First, we chose one
commercially available milk powder labeled with no LF as a
blank sample, and its matrix solution was spiked with standard
LF at concentrations of 0, 10, 20, 50, 100, 200, 500, and 1,000 nM.
The linear relationship between quenching efficiencies (F0–
F)/F0 and LF concentrations was fitted.

Three LF concentrations of 50, 100, and 200 nM were
chosen in the recovery assay. Before the blank milk powder
treatment, the LF stock solutions were spiked into the milk
powder. After that, the fluorescence intensities of the processed
samples were recorded, and the recoveries were calculated
according to the calibration curve constructed in the matrix. In
the actual application, the milk powder with three different LF
concentration contents was treated and measured, and the LF
content was calculated from the fluorescence intensities.

Universality of the aptasensor

Four targets were selected as follows: chlorpyrifos
(350.59 g/mol), acetamiprid (222.68 g/mol), TG (660 kDa), and
H-TF (76 kDa). Under the optimal experimental conditions,
the applicability of each target was investigated. The flexibility
is verified by utilizing another fluorescent dye, SGI. First,
the optimal concentration of SGI in the sensor system was
determined. Then, the detection performance of the sensing
system using SGI as a fluorescent probe was investigated under
optimal conditions.

Capillary electrophoresis assay

The bare capillaries were rinsed with 1 M NaOH for 25 min
and then with ultrapure water for 5 min. In the HPCE assay,
sequential rinses for the capillary with 1 M NaOH, water, and
running buffer solution each for 3 min were required between
each run. The sample was injected at 0.5 psi for 20 s or the
required time. The detection wavelength was set to 214 nm.
During separation, a high voltage of 12 kV (the inlet as the
anode) and a temperature of 22◦C were maintained.
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The dsDNA aptasensor assay based on
PicoGreen

A total of 20 µL of LF aptamer (100 nM) was incubated
with 50 µL of different concentrations (300–3,000 nM) of
LF standard solution for 15 min at room temperature. Then,
20 µL of 300 nM complementary DNA (cDNA) was added
and incubated for 30 min. Subsequently, 10 µL of PG (7×)
was added, and the fluorescence values were scanned with a
microplate reader after 5 min.

Results and discussion

Principle and feasibility

As depicted in Figure 1A, the sensing system for LF
detection consisted of three parts: aptamers, PG dyes, and LF
targets. Without LF, the aptamers formed a specific spatial
structure by self-assembly folding due to the combined
and additive effect of complementary base pairings and
intermolecular weak non-covalent interactions (e.g.,
electrostatic and π-π interactions, hydrophobic effects,
hydrogen bonding and van der Waals forces). At this stage, the
PG dyes recognized the minor groove structures, intercalated
into them, and stimulated their potential fluorescent
properties, initiating a strong fluorescence. LF targets induced
configuration changes in aptamers owing to their high-affinity
bonding, concurrently forcing the amount of the inserted
dyes to decrease and causing a significant reduction in the
fluorescence signal. Hence, the LF target concentrations could
be directly determined through the reflected fluorescence
signals.

Figure 1B shows the feasibility of the sensing system
(fluorescence spectra in Supplementary Figure 1A). The
mixture of PG and aptamer generated a distinct fluorescence
enhancement. In contrast, no single component produced
substantially no fluorescence, which indicated that PG had
availably intercalated into the partial spatial structures of the
aptamer. Adding LF (100 nM, 1 µM) decreased the fluorescence,
suggesting that the aptamer was more inclined to bind with its
target LF, thus retaining more free PG dye. This phenomenon
can also be explained by our previous molecular docking model
(36) of aptamer/LF recognition that involved the 18 amino acids
of LF and 17 key bases of aptamer, whose interaction would
unfold the spatial structure of the aptamer and free the dyes.
The result preliminarily proves that the experimental principle
is feasible.

Optimization of the aptasensor

The concentration and incubation time of PG were
optimized to achieve optimal performance. Supplementary
Figure 1B shows the effect of different concentrations of
PG on the fluorescence signal. The maximum fluorescence
intensity value was obtained when the PG concentration was
increased to 5 × , indicating that at this concentration, PG can
completely intercalate into the minor groove of the aptamer.
Nevertheless, the fluorescence values tended to decrease when
the concentration was more than 5 × because an excessively
high PG concentration would cause a spatial site resistance effect
and thus affect the fluorescence intensity. Therefore, 5 × PG
was used for further experiments. In addition, the reaction
time of PG also plays a vital role in the sensing process.
Supplementary Figure 1C shows that the fluorescence intensity
maintained a plateau within 5–30 min of incubation time.

FIGURE 1

(A) The principle of the label-free aptasensor strategy for LF detection. (B) Feasibility verification of the aptasensor.
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To improve the detection efficiency, the incubation time was
determined to be 5 min.

Sensitivity, specificity, and stability

The sensing performance was evaluated in terms of
sensitivity, specificity, and stability. Figure 2A shows that
the fluorescence intensity declined progressively as the
concentration of LF increased from 0 to 3,000 nM and reached
a plateau when the concentration surpassed 500 nM. The
fluorescence quenching efficiency (F0-F)/F0 showed a good
linear relationship with LF concentration in the range of 20–500
nM (in logarithmic form) with a correlation coefficient (R2) of
0.992 (Figure 2A inset image). The limit of detection (LOD,
3σ/k) was 2 nM. The value of (F0–F)/F0 is defined as the
quenching efficiency, where F0 and F are the fluorescence values

in the absence and presence of LF, respectively. The proposed
aptasensor presented an available performance only through a
simple “mix-and-detect” procedure.

To investigate the specificity of the sensing strategy, four
types of high-abundance proteins commonly found in milk
at high concentrations were tested, including serum albumin
(SA), casein (CS), β-lactoglobulin (β-Lg), and α-lactalbumin
(α-La). Figure 2B shows only LF, and mixture 2 (containing
LF, CS, α-La, β-Lg, and SA) presented a noticeable reduction
in fluorescence intensities in the sensing system. In contrast,
the other proteins and mixture 1 (containing CS, α-La, β-
Lg, and SA) led to almost no decrease even though their
concentrations were 4-fold excess (2 µM) than the target
LF. The results illustrated that the introduced self-assembled
aptasensor presented good specificity for LF detection. However,
mixture 2 of the control proteins (each at 2 µM) and LF
(0.5 µM) still exhibited a slight influence on the fluorescence

FIGURE 2

(A) The linear relationship between (F0–F)/F0 and the concentrations of LF. (B) The specificity of the aptasensor strategy. (C) Stability assessment
of the fluorescence aptasensors. (D) The calibration curve in milk powder matrix.
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TABLE 1 Recovery assay in milk powder using PG-based aptasensor
(n = 3).

Added (nM) Found (nM) Recovery (%) RSD (%)

50 47.9 95.8 3.6

100 98.2 98.2 3.9

200 210.1 105.1 1.4

signal as LF (0.5 µM) only, which thereby suggested that the
matrix effects of the sample need to be considered in practical
applications.

To assess the stability, the fluorescence intensities of a blank
sample and a standard LF of 500 nM were measured in an
interday assay for seven consecutive days (Figure 2C). The
coefficient of variation (CV) can relatively reflect the dispersion
of experimental data and is also commonly used to evaluate the
repeatability and stability of experiments (37). Higher CV values

indicate higher detection errors, while lower values indicate
more stable results. The calculated CV of the interday assay was
4.75%, wherein the low value demonstrated the good stability of
the aptasensor.

Lactoferrin determination in milk
powder

The experiments were carried out in a milk powder matrix
to assess the operability and usefulness of the introduced
aptasensor in actual samples. One commercially available
milk powder labeled with no LF was chosen as a blank
sample, which was validated by a high-performance capillary
electrophoresis (HPCE) assay (Supplementary Figure 2 an
insert picture). After simple dissolution and centrifugation,
the sample matrix was spiked with standard LF in the
concentration range of 0–1,000 nM. Figure 2D shows that

FIGURE 3

The linear relationship between (F0–F)/F0 and the concentrations of targets: (A) human transferrin (H-TF, 50–500 nM); (B) bovine thyroglobulin
(TG, 50–500 nM); (C) chlorpyrifos (50–1,000 ppb); (D) acetamiprid (50–1,000 ppb).
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the fluorescence signal gradually decreased with increasing LF
concentration. A good linear relationship was obtained over
the range of 20–500 nM for the value of (F0-F)/F0 and the
concentration of LF, and the LOD was calculated to be 3 nM
(2.4 mg/kg). The detection limit meets China’s GB14880-2012,
which shall not exceed 1.0 g/kg. Such high sensitivity could
predict the potential LF content in milk powders. Although
the slope presented a difference from that in the standard
solution, the detection results of LF in matrixes could be
quantitatively deduced by the calibration curve in the standard
solution multiplied by an adjustment factor. In addition, the
coefficient of determination (R2) in matrixes was greater than
0.98, showing good linearity in the analytical range. The

results showed that the system fluorescence signal responded
well to the LF concentration in the milk powder matrix.
Furthermore, the aptasensor showed a good average recovery
of 95.8–105.1%, with a relative standard deviation (RSD) of
less than 4% in the milk powder sample (Table 1), which
indicated that this developed aptasensor works well in practical
applications.

Universality verification

In addition, the universality was confirmed by easily
changing the aptamers against two other types of large

FIGURE 4

(A) The principle of the fluorescence aptasensor based on SGI. (B) Feasibility verification. (C) Optimization of SGI concentration. (D) Relationship
between fluorescence intensity and the concentrations of LF. (E) Evaluation of aptasensor specificity. (F) The linear relationship was obtained in
the milk powder matrix between (F0–F)/F0 and the concentrations of LF.

TABLE 2 Performance comparison of various methods for detecting LF.

Method Linear range LOD References

Radial immunodiffusion 250–4,000 µg/mL – (39)

Capillary electrophoresis 10–500 µg/mL 5.0 µg/mL (40)

Liquid chromatography 10–1,000 µg/mL 500 µg/mL (liquid samples) (41)

420 µg/mL (solid samples)

Microfluidic paper 0–1,000 µg/mL 110 µg/mL (42)

ELISA 5–600 × 10−3 µg/mL 3.23 × 10−3 µg/mL (43)

Surface plasmon resonance 0–1 µg/mL 1.11 × 10−3 µg/mL (44)

Electrochemical sensor 10−5–1 µg/mL 4.9 × 10−6 µg/mL (10)

Self-assembly fluorescent aptasensor 20–500 nM (1.6–40 µg/mL) 2 nM (0.16 µg/mL) This work
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molecular proteins (human transferrin and bovine
thyroglobulin) and two kinds of small molecular pesticides
(chlorpyrifos and acetamiprid). As shown in Figures 3A–D, the
quenching efficiency (F0–F)/F0 values of all targets have good
linear relationships with the target concentrations as well as
good correlation coefficients (R2> 0.95). The results confirmed
that the proposed strategy is likely to be a sensitive and universal
aptasensor.

Furthermore, the flexibility of the fluorescent aptasensor
was also verified utilizing another fluorescent dye, SYBR Green
I (SGI) (Figures 4A–F), with similar characteristics to PG,
enabling dsDNA detection concentrations as low as 20 pg/mL
(38). In the range of 20–500 nM, good linear relationships
were obtained in the standard solution (R2, 0.990) and the
milk powder matrix (R2, 0.986) with LODs of 5.4 and 5.9 nM,
respectively. Meanwhile, the aptasensor exhibited good selective
specificity and spiked recovery (106.2–108.5%, Supplementary
Table 2), indicating that the strategy is feasible in practical
applications.

Furthermore, we applied this strategy to determine the LF
content in three milk powders, which were also quantified using
the HPCE method (8) (Supplementary Figure 2). The content
of LF in milk powders detected by the two methods is listed in
Supplementary Table 3, and the results show that the HPCE
method is roughly consistent with our aptasensor. However, the
aptasensor took only 20 min to complete a quick analysis in
all samples, which was much shorter than that required by the
commercial CE of approximately 120 min for all samples.

Comparison with other methods

The performance comparison of this aptasensor with other
LF methods is shown in Table 2. Radial immunodiffusion
is one of the simplest methods; however, it has poor
sensitivity. HPCE, HPLC, and SPR techniques have shown
good performance, but they are expensive and require
professional technicians. Microfluidic paper and ELISA have
high accuracy, but both are based on the immunoreaction
between LF and its antibody, which are expensive reagents
and complicated to prepare. Among the detection methods,
the present work reported a very low LOD of 0.16 µg/mL (2
nM). Although Huang et al. (10) reported a higher sensitivity
with a lower LOD, electrochemical sensors still rely heavily
on expensive electrochemical systems with high resolution,
and cyclic voltammetry requires 20 scans to obtain reliable
results. The self-assembled fluorescent aptasensor presented a
low dependence on instruments and an available performance
with a simple “mix-and-detect” procedure, high sensitivity and
time savings compared with other reported methods for LF
detection.

Conclusion

In conclusion, we presented a label-free and universal
aptasensor for LF detection in milk powder based on the
dual functions of aptamers as a specific recognition element
against targets and a fluorescent signal reporter integrated
with structure-selective dyes. The direct-recognition aptasensor
avoids the synthesis, consumption and complex optimization
of the complimentary chains generally required in dsDNA-
based aptasensors and gains a better performance (LOD,
2 nM vs. 205 nM, Supplementary Figure 3) by a facile
“mix-and-detect” operation. Furthermore, this strategy has
been demonstrated for four target detection methods (TG,
H-TF, chlorpyrifos, and acetamiprid) and two fluorescence
dyes (PG and SGI). Therefore, the aptasensor provides
expansive prospects for developing a simple, general, cost-
effective detection.
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