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Background: Resistance to oxaliplatin-based chemotherapy is a major cause of recurrence in colorectal

cancer (CRC) patients. There is increasing evidence indicating that circHIPK3 is involved in the develop-

ment and progression of tumours. However, little is known about the potential role of circHIPK3 in CRC

chemotherapy and its molecular mechanisms in chemoresistance also remain unclear.

Methods: Quantitative real-time PCR was performed to detect circHIPK3 expression in tissues of 2 cohorts

of CRC patients who received oxaliplatin-based chemotherapy. The chemoresistant effects of circHIPK3

were assessed by cell viability, apoptosis, and autophagy assays. The relationship between circHIPK3, miR-

637, and STAT3 mRNA was confirmed by biotinylated RNA pull-down, luciferase reporter, and western blot

assays.

Findings: In the pilot study, increased circHIPK3 expression was observed in chemoresistant CRC pa-

tients. Functional assays showed that circHIPK3 promoted oxaliplatin resistance, which was dependent

on inhibition of autophagy. Mechanistically, circHIPK3 sponged miR-637 to promote STAT3 expression,

thereby activating the downstream Bcl-2/beclin1 signalling pathway. A clinical cohort study showed that

circHIPK3 was upregulated in tissues from recurrent CRC patients and correlated with tumour size, re-

gional lymph node metastasis, distant metastasis, and survival.

Interpretation: circHIPK3 functions as a chemoresistant gene in CRC cells by targeting the miR-

637/STAT3/Bcl-2/beclin1 axis and might be a prognostic predictor for CRC patients who receive

oxaliplatin-based chemotherapy.
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Evidence before this study

Most colorectal cancer (CRC) patients respond poorly
to oxaliplatin (OXA)-based chemotherapy regimen, but the
molecular mechanisms underlying chemoresistance remain
unclear. Recent studies have demonstrated that autophagy
regulates the effects of anticancer drugs, indicating a new
mechanism of chemoresistance. Recently, it has been re-
ported that circular RNA, circHIPK3, plays a critical role in
the development and progression of various cancers. This
under the CC BY-NC-ND license.

https://doi.org/10.1016/j.ebiom.2019.09.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2019.09.051&domain=pdf
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014103
https://doi.org/10.13039/501100007129
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xinzhang@sdu.edu.cn
https://doi.org/10.1016/j.ebiom.2019.09.051
http://creativecommons.org/licenses/by-nc-nd/4.0/


278 Y. Zhang, C. Li and X. Liu et al. / EBioMedicine 48 (2019) 277–288

C

[

c

i

a

c

n

t

s

c

a

[

t

c

s

t

s

m

t

l

[

p

c

t

w

u

j

t

c

o

o

m

[

u

c

m

w

a

m

n

T

a

c

c

2

2

P

a

2

o

O

H

c

m

p

study aims to clarify the underlying mechanisms regarding
the association of circHIPK3 and autophagy, and to assess the
potential of circHIPK3 as a biomarker for the prediction of
chemotherapeutic efficacy of CRC.

Added value of this study

In this study, we showed for the first time that increased
circHIPK3 expression accompanied OXA chemoresistance in
human CRC patients. The functional investigation demon-
strated that circHIPK3 promoted OXA resistance, dependent
on inhibition of autophagy-related cell death. Mechanistically,
circHIPK3 functioned as a ceRNA to activate the STAT3/Bcl-
2/beclin1 signalling pathway by sponging miR-637 during
cellular autophagy regulation. A clinical cohort study showed
that increased circHIPK3 expression could predict recurrence
and poor survival in CRC patients who received OXA-based
chemotherapy.

Implications of all the available evidence

This study provides evidence that circHIPK3 contributes
to chemoresistance through inhibiting autophagy, and it can
serve as a promising prognostic predictor and therapeutic tar-
get for CRC patients treated with OXA-based chemotherapy.

1. Introduction

Colorectal cancer (CRC) is the most common gastrointestinal

malignant tumour, and is the second cause of cancer-related mor-

tality worldwide [1]. Surgical resection combined with standard

adjuvant chemotherapy strategies, such as FOLFOX (folinic acid, flu-

orouracil, and oxaliplatin), remain the most popular treatment of

choice for CRC patients and have significantly improved disease-

free survival (DFS) and overall survival (OS) [2]. However, only

50% of patients respond to chemotherapy regimen, and ultimately

develop recurrent disease [2,3]. Moreover, a subgroup of patients

might only experience drug toxicity without achieving chemother-

apeutic benefit, and the prognosis is poor, with a median survival

of 19•5 months [3,4]. Therefore, it is of utmost importance to fur-

ther understand the molecular mechanisms underlying chemore-

sistance and identify molecules to predict chemotherapy efficacy,

which might improve clinical outcomes in CRC patients.

Autophagy is an evolutionarily conserved intracellular process

that can degrade dysfunctional cellular organelles and provide en-

ergy and biological components, thus maintaining cellular home-

ostasis [5]. Several autophagy-related genes (ATGs), which were

first identified in yeast, are known to be involved in the progres-

sion of CRC. LC3 (microtubule-associated protein 1 light chain 3)

is the mammalian homolog of ATG8, encoding 3 isoforms, LC3A,

LC3B, and LC3C. During autophagy, LC3B is cleaved into the solu-

ble protein LC3B-I, is conjugated to phosphatidylethanolamine to

form LC3B-II, which accumulates on the surface of neonatal au-

tophagosomes, and is one of the reliable markers of autophagy flux

[6]. Wu et al. [7] showed that LC3B-II expression was significantly

increased in CRC patients, especially in those with metastasis, sug-

gesting that high levels of autophagy might improve the survival

and invasiveness of tumour cells. p62 is an adaptor protein that

recognises ubiquitinated proteins, interacts with LC3, and is subse-

quently degraded upon fusion with lysosomes [8]. Therefore, p62

can also be used as a marker for autophagy. Kim et al. [9] found

that the levels of p62 decreased and the levels of LC3B-II increased

in tumour cells along with the accumulation of a large number

of isolated autophagosomes, in relapsed CRC patients. Cytoplasmic

p62 expression predicted a favourable tumour-specific survival of
RC patients, particularly those with the KRAS-mutated subtype

10]. BECN1, the mammalian homologue of ATG6, encodes the be-

lin1 protein that regulates autophagosome formation [11]. Beclin1

s a component of the class III PI3K complex and is involved in

utophagosome formation, thereby promoting autophagy, while it

an also bind to Bcl-2 to inhibit autophagy [12]. In colorectal ade-

ocarcinoma, the expression level of beclin1 is increased by more

han 50%, while its decreased expression is associated with aggres-

ive clinical behaviour [13].

Recently, mounting evidence demonstrates that autophagy

an regulate the effects of anticancer drugs, which might be

new mechanism for chemoresistance [14]. O’Donovan et al.

15] showed that lithium upregulated autophagy and improved

he efficacy of chemotherapeutic drugs in apoptosis deficient can-

er cells. The autophagy inducer rapamycin, enhanced the tumour-

uppressing ability of chemotherapeutic agents through the au-

ophagy/p62/Nrf2 pathway [16]. In addition, miRNA-125b expres-

ion causes oxaliplatin (OXA) resistance by down-regulating EVA1A-

ediated autophagy [17]. However, in some cellular conditions, au-

ophagy can remove or mitigate harmful cytotoxic stimuli and de-

ay CRC cell death, leading to therapeutic resistance [18]. Pan et al.

19] found that TRIM65 knockdown attenuated autophagy and im-

roved cisplatin-induced apoptosis in non-small-cell lung cancer

ell by regulating miR-138–5p. Till date, the mechanisms of au-

ophagy involved in regulating CRC chemoresistance have not been

ell-documented.

Circular RNAs (circRNAs) are a novel class of non-coding reg-

latory RNAs, with covalently closed loop structures through the

oining of 3′ and 5′ terminals. With the development of high-

hroughput sequencing technology and bioinformatics, several new

ircRNAs have been identified that participate in the pathology

f disease, including cancer [20]. Among them, circHIPK3 is one

f the most well-known circRNAs that functions as a cell growth

odulator not only in endothelial cells but also in tumour cells

21,22]. Recently, Zeng et al. [23] found that circHIPK3 was upreg-

lated in CRC tissues and correlated with metastasis and advanced

linical stage, while knockdown of its expression in vitro or in vivo

arkedly inhibited CRC growth and metastasis, indicating that it

as involved in the development of CRC. Until now, little is known

bout the potential role of circHIPK3 in CRC chemotherapy, and its

olecular mechanisms in chemoresistance also remain unclear.

In our pilot study, expression levels of circHIPK3 showed sig-

ificant association with the efficacy of OXA-based chemotherapy.

o verify this hypothesis, the biological role of circHIPK3-mediated

utophagy in CRC chemoresistance was explored. In addition, the

linical role of circHIPK3 in CRC patients who received OXA-based

hemotherapy was further investigated.

. Materials and methods

.1. Ethics statement

This study was approved by the Ethics Committee of Shandong

rovincial Third Hospital and Qilu Hospital of Shandong University,

nd written informed consent was obtained from each patient.

.2. Clinical samples

In the pilot study, 49 samples of primary tumour tissues were

btained from CRC patients who received 5-fluorouracil (5FU) and

XA-based first-line chemotherapy in Shandong Provincial Third

ospital between January 2017 and May 2018. These patients were

lassified according to Response Evaluation Criteria in Solid Tu-

ours (RECIST) criteria, wherein 31 were responders with com-

lete response (19 cases) and partial response (12 cases), and
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4

8 were non-responders with stable disease (13 cases) and pro-

ressive disease (5 cases). In another independent cohort study

f CRC patients, 179 of them, who received postoperative OXA-

ased adjuvant chemotherapy, were enrolled from Qilu Hospital of

handong University between January 2010 and December 2012.

ll CRC patients underwent pathological diagnosis by two expe-

ienced pathologists and were followed up regularly for up to

years. The detailed clinical information is shown in Table S1.

elapsers were defined as patients who had either recurrence

r metastasis during the follow-up, and patients with DFS more

han 5 years were defined as non-relapsers. DFS or OS was de-

ned as the interval between the date of radical surgery and the

ate of recurrence or death censoring at the time of last contact

ith the survivors. All tissues were stored at −150 °C until RNA

xtraction.

.3. Cell lines and culture

The human CRC cell lines (HT29 and HCT116), and HEK293T

ere purchased from American Type Culture Collection (Manassas,

A, USA). The 5FU-resistant and OXA-resistant CRC cell lines were

reviously established in our lab by exposing cells sequentially to

ncreasing drug concentrations [24,25]. The cells were maintained

n RPMI 1640 or MEM (Thermo Fisher Scientific, Wilmington, DE,

SA) supplemented with 10% foetal bovine serum (Sigma-Aldrich,

t. Louis, MO, USA) and cultured in a humidified environment of

% CO2 at 37 °C.

.4. Vector construction and transfections

For circHIPK3 overexpression, the full-length sequence of

ircHIPK3 was synthesised and cloned into the pcDNA3.1-CMV-

ircRNA vector (Hanbio Biotechnology, Shanghai, China). siRNA

pecifically targeting the circHIPK3 junction site, siRNA control,

iR-637 mimic, and mimic control were all synthesised by Ribo-

io (Guangzhou, China). Lipofectamine 2000 (Invitrogen, Eugene,

R, USA) was used for transfection according to the manufacturer’s

rotocol.

.5. Xenograft experiments

To evaluate the effects of circHIPK3 in vivo, 5-week-old male

ALB/c athymic nude mice were randomly divided into four

roups (n = 5 for each group), and subcutaneously injected with

CT116/HT29 (5 × 106/200 μl PBS) cells stably transfected with

ircHIPK3 overexpression/negative control vector. After 1 week,

he mice were intraperitoneally injected with OXA (3 mg/kg) ev-

ry week, and sacrificed on Day 28. Tumour volume was esti-

ated every 3 days, and calculated by the formula: tumour vol-

me = 0•5 × (length × width2). All animal experiments were per-

ormed in compliance with the guidelines of Animal Ethics Com-

ittee of Qilu Hospital of Shandong University.

.6. RNA extraction and reverse transcription quantitative real-time

CR (RT-qPCR)

Total RNA was isolated from tissues and cells using the stan-

ard TRIzol method (Invitrogen, Carlsbad, CA, USA). For detection

f circRNAs and mRNA, cDNA was synthesised using High Capacity

DNA Reverse Transcription Kit (Takara, Dalian, China), and qPCR

as performed using SYBR Premix Ex TaqTM (Tli RNaseH Plus)

Takara) with GAPDH as an internal control. The primers were syn-

hesised by BioSune Biotechnology (Shanghai, China) and are listed

n Table S2. For miRNAs, SYBR PrimeScript miRNA RT-qPCR kit
Takara) was used as described previously, with U6 snRNA as an in-

ernal control. The miDETECT TrackTM miRNA/U6 Forward Primers

ere provided by RiboBio Biotechnology (Guangzhou, China). Each

xperiment was performed in triplicates on CFX-96 Real-Time PCR

etection System (Bio-Rad, Hercules, CA, USA), and the relative ex-

ression levels were calculated using 2−�CT method.

.7. Cell viability assay

Cell viability was analysed by Cell Counting Kit (CCK)−8 assay

Dojindo Laboratories, Kumamoto, Japan). After 24 h of transfection,

ells (5000 cells per well) were seeded in 96-well plates in tripli-

ates, and then treated under the indicated conditions. Next, 10 μl

f CCK-8 solution was added at the end of the treatment and incu-

ated for another 2 h at 37 °C. Finally, the absorbance was mea-

ured at 450 nm using Multiskan FC microplate reader (Thermo

isher Scientific, Waltham, MA, USA).

.8. Cell apoptosis assay

Cell apoptosis was assessed using Annexin V-FITC/PI staining

it (BD Bioscience, San Diego, CA, USA). After 24 h of transfec-

ion, 1 × 104 cells were incubated with 3 μM OXA for 48 h. Then,

ells were collected and stained with Annexin V–fluorescein isoth-

ocyanate (FITC) for 15 min and propidium iodide (PI) for 5 min.

he percentage of apoptotic cells was measured using FACSCanto

I flow cytometer (BD, Bedford, MA, USA).

.9. Cell autophagy assay

HCT116oxR cells, stably transfected with lentiviral vector mRFP-

FP-LC3B (Hanbio) were used to detect autophagic flux at 3 μM

XA. Cells were treated at the indicated conditions, and then fixed

ith 4% paraformaldehyde. The autophagosomes (yellow dots) and

utolysosomes (red dots) were counted using Olympus FSX100

icroscope (Olympus, Tokyo, Japan), and the images were cap-

ured using a Leica SP5 confocal microscope (Leica Micosystems,

annheim, Germany).

.10. Biotinylated RNA pull-down assay

The biotinylated RNA pull-down assay was performed as de-

cribed previously [26]. To obtain probe-coated beads, circHIPK3

robe/oligo probe (RiboBio, Guangzhou, China) was incubated with

-1 magnetic beads (Life Technologies, Carlsbad, CA, USA) at 25 °C
or 2 h. Then, the coated beads were incubated with sonicated

CT116 and HT29 cells at 4 °C overnight. For pull-down assay with

iotinylated miR-637, 20 nM biotinylated miR-637 mimic or con-

rol RNA (RiboBio) was transfected into HCT116 and HT29 cells

or 48 h, and then cells were lysed, sonicated, and incubated with

treptavidin-coated magnetic beads (Life Technologies, Carlsbad,

A, USA). The bound RNA complexes were eluted from beads and

urified using RNeasy Mini Kit (Qiagen, Valencia, CA, USA). The

bundance of transcripts (circHIPK3 and miR-637) was evaluated

y RT-qPCR analysis.

.11. Luciferase reporter assay

The circHIPK3/STAT3 sequences with wild type (WT) or mu-

ant (MUT) miR-637 binding sites were inserted between the hRluc

nd the hLuc gene of pmiR-REPORTTM vectors (RiboBio). HEK293T

ells were seeded in 96-well plates at a density of 5000 cells/well,

nd then co-transfected with reporter vectors and miR-637 mim-

cs / negative control using Lipofectamine 2000 (Invitrogen) for

8 h. Firefly and Renilla luciferase activities were detected using
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Fig. 1. circHIPK3 is associated with CRC chemoresistance. (a) circHIPK3 expression was higher in tissues of non-responder group (n = 18) than in responder group (n = 31);

Relative circHIPK3 expression levels were calculated using 2−�CT method and is represented as the median (interquartile range); [Mann–Whitney U test]. (b) ROC curve

for discriminating responders from non-responders based on circHIPK3 expression; AUC = 0•768 (95%CI = 0•625 to 0•876). (c) Expression of circHIPK3 was increased in

oxaliplatin-resistant HT29oxR and HCT116oxR (P < 0•001) cell lines while not in 5-FU resistant cell lines compared to their respective parental cell lines (P > 0•05) [student’s

t-test]. (d) Images of tumour mass of each group (n = 5) on the 28th day. (e and f) The tumour volumes and weights from circHIPK3 overexpression cells were significantly

larger than those from negative control cells. Data are presented as mean ±standard deviation. [student’s t-test].
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the Dual-Luciferase Assay System (Promega, Madison, WI, USA),

and relative luciferase activities were calculated.

2.12. Western blot analysis

Western blotting was performed according to the standard pro-

tocols, using antibodies against human LC3B (#3868, Cell Signaling,

Danvers, MA, USA, 1:1000), p62 (#16177, Cell Signaling, 1:1000),

STAT3 (#ab68153, Abcam, Cambridge, MA, USA 1:1000), phospho-

STAT3(#ab76315, Tyr705; Abcam, 1:1000), beclin1 (#ab207612, Ab-

cam, 1:1000), Bcl-2 (#4223, Cell Signaling, 1:1000), and β-actin

antibody (#4970, Cell Signaling, 1:5000). The bands were visu-

alised using an enhanced chemiluminescence kit (Amersham Phar-

macia Biotech, Piscataway, NJ, USA) on FluorChem E Chemilu-

minescent Western Blot Imaging System (Cell Biosciences, Santa

Clara, CA, USA). Cell Signaling Technology, Inc. (Danvers, MA, USA).

3. Statistical analysis

The circHIPK3 expression in tissue samples was non-normal

distribution and was compared using Mann-Whitney Utest or

Kruskal-Wallis test. Student’s t-test was performed to deter-

mine the significance of results in cell assays represented as

mean ± standard deviation. Differences in group proportions were

determined by Chi-square test. The correlation analysis was anal-

ysed by Spearman test. Survival curves were generated using

Kaplan-Meier method and compared by log-rank test. Independent

prognostic factors were identified by the Cox model. The above

statistical analyses were performed using SPSS software, 22.0 for

Windows (IBM Corporation, Armonk, NY, USA). The power of dif-

ferential diagnosis was evaluated by Receiver operating character-

istic (ROC) curves using MedCalc 9.3.9.0.
. Results

.1. circHIPK3 contributes to OXA chemoresistance in CRC

In the pilot study, we performed RT-qPCR to detect expres-

ion levels of circHIPK3 in CRC tissues. Sanger sequencing showed

he PCR products contained the backsplice junction expecting in

he circHIPK3 (Figure S1). As shown in Fig. 1a, expression lev-

ls of circHIPK3 in the non-responder group were significantly

igher than in the responder group. When responders were in-

luded (n = 31) as the end point for detection compared to non-

esponders (n = 18), circHIPK3 yielded an area under the ROC curve

AUC) of 0•768 (95%CI = 0•625 to 0•876), which was more accu-

ate than guessing for differential diagnosis (P = 0•0003, Fig. 1b).

o determine the effect of circHIPK3 in chemoresistance, we em-

loyed the 5FU and OXA resistant CRC cell lines established in

ur laboratory. The concentration-effect curves were shown Figure

2. The IC50 values of OXA on HCT116oxR and HT29oxR cells was

3•3 μM and 6•0 μM, while 3•4 μM and 3•1 μM on their parental

ells. The IC50 values of 5FU on HT29FuR cell and the parental cell

as 68•2 μM and 15•1 μM, respectively. As shown in Fig. 1c, the

xpression of circHIPK3 was increased in OXA resistant HT29oxR

nd HCT116oxR, but not in 5FU resistant cell lines compared to

heir respective parental cell lines. To assess whether circHIPK3 ex-

rts OXA resistance function in vivo, we established the xenograft

ouse models, and treated with OXA once weekly. As shown in

ig. 1d–f, circHIPK3 overexpression group displayed larger tumour

ize and weight than those of NC group.

To further confirm the role of circHIPK3 in OXA chemoresis-

ance of CRC cells, we transfected HT29oxR and HCT116oxR cells

ith siRNA specifically targeting the circHIPK3 junction site, and

heir respective parental cell lines with overexpression vector.

he transfection effects were confirmed by RT-qPCR (Figure S3).
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Fig. 2. circHIPK3 leads to oxaliplatin resistance in CRC cell lines. (a and b) Cell proliferative ability was assessed by CCK8 assay after circHIPK3 knockdown in HT29oxR (a)

and HCT116oxR (b) cells at the indicated oxaliplatin concentration. (c and d) Cell proliferative ability was assessed by CCK8 assay after circHIPK3 overexpression, in HT29 (c)

and HCT116 (d) cells at the indicated oxaliplatin concentration. (e) Oxaliplatin-induced apoptotic cell death was analysed by flow cytometry after treatment with si-circHIPK3

or overexpression vector in CRC cells. Data are presented as mean ±standard deviation from at least 3 independent experiments. ∗P < 0•05, ∗∗P < 0•01, ∗∗∗P < 0•001 [student’s

t-test].
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CK8 assay demonstrated that knockdown of circHIPK3 sensitised

T29oxR and HCT116oxR cells to OXA (Fig. 2a and b), while ectopic

xpression of circHIPK3 reduced the effect of OXA cytotoxicity in

T29 and HCT116 cells in a dose-dependent manner (Fig. 2c and

). Flow cytometry analysis showed that OXA-induced apoptotic

ells were significantly increased after treatment with si-circHIPK3,

hereas overexpression of circHIPK3 greatly inhibited the apopto-

is of HT29 and HCT116 cells treated with 3 μM OXA (Fig. 2e).

.2. Silencing of circHIPK3 sensitises CRC to OXA via autophagy

nduction

Autophagy flux was monitored in OXA resistant CRC cells

ransfected with lentiviral vector mRFP-GFP-LC3B. Since GFP sig-

al was quenched in the acidic environment of lysosomes, only

RFP puncta(red) without GFP fluorescence indicates autolyso-

omes, and yellow puncta with both GFP and mRFP fluorescence

orresponds to autophagosomes. As shown in Fig. 3a and b, si-

encing of circHIPK3 significantly enhanced the formation of au-

ophagosomes and autolysosomes compared to cells transfected

ith control oligonucleotides. Western blotting analysis showed

hat circHIPK3 knockdown increased the ratio of LC3B-II to LC3B-

, and beclin1 expression, and decreased p62 expression (Fig. 3c),

onfirming that downregulation of circHIPK3 induced autophagy.

To confirm whether autophagy was responsible for OXA sensiti-

ation, we treated cells with 5 mM 3-MA (an autophagy inhibitor),

nd found that autophagy induction due to circHIPK3 silencing (as

bserved by the formation of autophagosomes and autolysosomes),

as inhibited (Fig. 3a and b), and the ratio of LC3B-II to LC3B-

, and expressions of p62 and beclin1 were also restored to basal
evels (Fig. 3c). We further showed that the proliferative and anti-

poptotic effects of circHIPK3 were counteracted by inhibition of

utophagy (Figure S4). Taken together, silencing of circHIPK3 might

ensitise the resistant CRC cells to OXA through induction of au-

ophagy.

.3. circHIPK3 sponges miR-637, and reverses the miR-637-induced

romotion of OXA chemosensitivity

It has been reported that circRNAs act as miRNA sponges

27]. As shown in Fig. 4a, miR-637 was found to specifically

arget circHIPK3 as indicated by overlapping prediction results

rom RNAhybrid-2.1.2 (https://bibiserv.cebitec.uni-bielefeld.de/

nahybrid/) and microRNA.org 2010 Release (http://www.microrna.

rg/microrna/getDownloads.do) tools. To verify our prediction,

e designed a biotinylated-circHIPK3 probe and the pull-down

fficiency was confirmed in CRC cells over-expressing circHIPK3

Fig. 4b). We found that miR-637 was abundantly pulled down by

ircHIPK3 probe in both HT29 and HCT116 cells (Fig. 4c). Moreover,

iotinylated miR-637 mimics could capture additional circHIPK3

ompared to control RNA (Fig. 4d). Next, we used the dual-reporter

uciferase assay to test the binding site and found that the lu-

iferase activity was significantly decreased in circHIPK3-wt plus

+) miR-637 group while not in circHIPK3-mut plus (+) miR-637

roup (Fig. 4e). Consistent with the above results, there was also

significant inverse association between circHIPK3 and miR-637

xpression in CRC tissues (r = −0•626, P<0•001; Fig. 4f).

We then determined the role of miR-637 in OXA chemosen-

itivity in CRC cells. Transfection of miR-637 mimics significantly

ncreased the chemosensitivity of OXA (Fig. 5a and b) and in-

https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
http://www.microrna.org/microrna/getDownloads.do
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Fig. 3. Silencing of circHIPK3 induces autophagy and sensitises CRC cells to oxaliplatin. (a) Transfection of mRFP-GFP-LC3B lentiviral vector into HCT116oxR cell line. Red

puncta represent autolysosomes, and yellow puncta represent autophagosomes as visualised by confocal microscopy. Scare bar = 20 μm (b) Quantification of autophagic flux.

Puncta were counted in 100 cells; ∗∗∗P < 0•001 [student’s t-test]. (c) Western blot analysis to determine LC3B- II/I ratio, p62 and, beclin1 expression in HCT116oxR cells.

Fig. 4. circHIPK3 functions as an efficient miR-637 sponge. (a) The putative miR-637 binding site in circHIPK3 and the corresponding mutant motif. (b) The pull-down

efficiency of biotinylated-circHIPK3 probe tested by RT-qPCR in HT29 and HCT116 cells; ∗∗∗P < 0•001 [student’s t-test]. (c) miR-637 pull-down by biotinylated-circHIPK3

probe was tested by RT-qPCR in HT29 and HCT116 cells transfected with circHIPK3 overexpression vector; Oligo probe was used as a control; ∗P<0•05, ∗∗P < 0•01 [student’s

t-test]. (d) circHIPK3 pull -down by biotinylated wild-type/mutant miR-637 was tested by RT-qPCR in CRC cells with circHIPK3 overexpression. Relative levels of circHIPK3

were normalised to input; GAPDH was used as an internal control; ∗∗∗P < 0•001 [student’s t-test]. (e) Relative luciferase activity of wild type or mutant circHIPK3 in miR-637

mimics or controls; ∗∗P < 0•01 [student’s t-test]. (f) Correlation between circHIPK3 and miR-637 expression in CRC tissues; r = −0•626, P < 0•001[Spearman test].

4

a

d

g

t

d

creased the number of apoptotic cells (Fig. 5c and d). When

HCT116 and HT29 cells were co-transfected with miR-637 mimics

and circHIPK3 vector, OXA chemosensitivity promoted by miR-637

was reversed (Fig. 5a and b). Moreover, miR-637 plus (+) circHIPK3

group showed less cell apoptotic rate compared to miR-637 group

(Fig. 5c and d). These results indicated that circHIPK3 served as a

sponge for miR-637, which promoted OXA chemosensitivity in CRC

cells.
.4. circHIPK3-miR-637-STAT3 is involved in the regulation of

utophagy

We examined the Targetscan and miRanda databases to pre-

ict the probable target gene of miR-637. One of the downstream

enes, Stat3(Fig. 6a), was potentially interesting due to its role in

he regulation of cellular autophagy [28]. To test whether miR-637

irectly targeted STAT3, we performed dual-reporter luciferase as-
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Fig. 5. circHIPK3 reverses miR-637-induced elevation of oxaliplatin chemosensitivity. (a and b) Cell proliferative ability was assessed by CCK8 assay in HT29 (a) and HCT116

(b) cells after transfection with mimic NC, miR-637 mimics, mimic NC plus (+) circHIPK3 overexpression vector, and miR-637 mimics+ circHIPK3 overexpression vector

at the indicated OXA concentration. (c and d) Oxaliplatin-induced apoptotic cell death was analysed by flow cytometry in the above mentioned four groups. ∗∗∗P < 0•001

[student’s t-test].
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c

ay and found that miR-637 decreased the luciferase activity of

TAT3 3′UTR constructs while not affecting mutant 3′UTR con-

tructs (Fig. 6b). Moreover, miR-637 could inhibit the expression

f STAT3 at both RNA and protein levels (Fig. 6c and d). The rela-

ive levels of STAT3 mRNA were negatively related to miR-637 ex-

ression (Fig. 6e), while positively associated with circHIPK3 levels

Fig. 6f). Therefore, we speculated that circHIPK3 might function as

ceRNA to regulate STAT3 by sponging miR-637.

Immunoblotting analysis also showed that transfection of cells

ith miR-637 mimics could inhibit the expression of p-STAT3

nd enhance autophagy by increasing LC3B II / I, beclin1 levels

nd decreasing p62 levels (Fig. 6d). In order to better understand

he molecular mechanism of miR-637 in autophagy, STAT3-Bcl-2-

eclin1 signalling pathway was analysed. As shown in Fig. 6d, Bcl-

expression was decreased and beclin1 expression was increased

fter transfection with miR-637 mimics. Next, we co-transfected

ith circHIPK3 and miR-637 mimics and found that circHIPK3

ould counteract the effect of miR-637 in CRC cells (Fig. 6d). The

ummarised diagram illustrating these results has been shown in

ig. 6g.

.5. Increased circHIPK3 expression predicts recurrence and poor

urvival in CRC patients

A clinical study of 179 patients who received postoperative

XA-based adjuvant chemotherapy showed that levels of circHIPK3
ere closely related to tumour size, regional lymph node metas-

asis and distant metastasis (all values of P<0•05, Figure S5).

ore importantly, CRC patients with recurrence had higher lev-

ls of circHIPK3 than patients with non-recurrence (Fig. 7a). ROC

urve analysis illustrated that it could distinguish patients with

ecurrence from those without recurrence, with AUC of 0•758

95%CI = 0•689 to 0•819) (Fig. 7b), and the optimal cut-off value

as 0•040, providing a sensitivity of 81•4% and a specificity of

4•4%.

Then, CRC patients were divided into high and low circHIPK3

xpression groups based on the optimal cut-off value (0•040).

imilarly, the expression of circHIPK3 was significantly correlated

ith tumour size, regional lymph node metastasis, distant metas-

asis, and recurrence (all values of P < 0•05, Table 1). Kaplan-

eier curves showed that patients in the high circHIPK3 expres-

ion group had significantly worse 5-year DFS and OS rates com-

ared to patients in the low expression group (Fig. 7c and d).

aplan-Meier curves for other clinicopathologic characteristics are

hown in figure S6. Cox model showed that circHIPK3 expression

as an independent factor for both DFS and OS (Fig. 7e and f, Table

3).

. Discussion

Emerging studies have shown that circRNAs are involved in can-

er development and progression and serve as tumour biomark-
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Fig. 6. Identification and verification of circHIPK3/miR-637/STAT3/Bcl-2/beclin1 axis. (a) The putative miR-637 binding site in Stat3, and the corresponding mutant motif. (b)

Relative luciferase activity of wild type or mutant Stat3 in miR-637 mimics or controls; ∗∗P < 0•01 [student’s t-test]. (c) Levels of STAT3 mRNA were significantly down-

regulated in HCT116 cells transfected with miR-637 mimics, compared to cells transfected with mimic NC; ∗∗∗P < 0•001 [student’s t-test]. (d) Western blot analysis of STAT3,

p-STAT3, LC3BII/I, p62, beclin1, Bcl-2 protein expression in HCT116 cells transfected with mimic NC, miR-637 mimics, mimic NC+ circHIPK3 overexpression vector, and miR-

637 mimics plus (+) circHIPK3 overexpression vector. (e) Correlation between STAT3 mRNA and miR-637 expression in CRC tissues; n = 49, r = −0•834, P < 0•001 [Spearman

test]. (f) Correlation between circHIPK3 and STAT3 mRNA expression in CRC tissues; n = 49, r = 0•577, P < 0•001 [Spearman test]. (g) The proposed working model.
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Fig. 7. Expression of circHIPK3 in CRC patients who received oxaliplatin-based chemotherapy after surgery. (a) circHIPK3 expression was higher in tissues of CRC recurrence

group than in non-recurrence group; Data represents the median (interquartile range); P < 0•001 [Mann–Whitney U test]. (b) ROC curve for discriminating CRC patients with

recurrence from those without recurrence based on circHIPK3 expression; AUC = 0•758 (95%CI = 0•689–0•819). (c and d) Kaplan-Meier curves for DFS (c) and OS (d) based

on circHIPK3 expression; CRC patients were classified as high and low circHIPK3 expression according to the optimal cut off value (0•040); P < 0•001 [log-rank test]. (e and

f), Multivariate Cox analysis for DFS (e) and OS (f) of CRC patients.
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rs, such as circHIPK3 [21]. However, the role of circHIPK3 in tu-

ours is still controversial. For instance, Li et al. [26] found that

ircHIPK3 expression was decreased in bladder cancer tissues, and

unctioned as a tumour suppressor gene to inhibit invasion, mi-

ration, and angiogenesis of bladder cancer cells. Down-regulated

xpression of circHIPK3 was also observed in tissues, plasma and

ell lines of osteosarcoma, which correlated with poor prognosis

f patients [29]. Conversely, circHIPK3 was highly expressed in pa-

ients with nasopharyngeal carcinoma, predicting poor prognosis,

hile silencing its expression inhibited cell proliferation and mi-

ration [30]. Similar phenomena were also found in hepatocellu-

ar carcinoma [31] and colorectal cancer [23]. Moreover, the tran-

cription factor c-myb, also known as a protooncogene is closely

ssociated with resistance to chemotherapeutic drugs [32,33], and

ould promote the transcription of circHIPK3 [23]. However, the

unction of circHIPK3 in CRC chemotherapy was still unknown. In

his study, we enrolled 49 CRC patients who received 5FU and

XA-based first-line chemotherapy and found that circHIPK3 ex-

ression was increased in patients with stable or progressive dis-

ase compared to those with complete or partial response. Further,

e observed that circHIPK3 might contribute to the resistance of

XA, but not 5FU. Data from in vivo and vitro experiments showed

verexpression of circHIPK3 promoted resistance to OXA. circHIPK3

as derived from exon2 of the HIPK3 gene, and is formed by di-

ect back-splicing with the help of complementary ALU repeats

34]. Thus, it is interesting to study its relationship with its host

ene. Zheng et al. [21] showed that the circular transcript of HIPK3

ene, and not the linear transcript, promoted human cell prolif-

ration. In lung cancer, circHIPK3 and HIPK3 mRNA have opposite
ffects on autophagy [35]. In this study, we analysed the expres-

ion of HIPK3 mRNA in The Cancer Genome Atlas (TCGA) dataset,

nd found it was significantly decreased in 471 colon adenocarci-

oma samples compared with its expression in 41 normal sam-

les (Figure S7a), suggesting HIPK3 might function as a tumour

uppressor gene. This is different from the cancer-promoting ef-

ect of the circHIPK3 in CRC [23]. Moreover, HIPK3 mRNA expres-

ion has no significant relationship with OS of colon adenocarci-

oma patients (Figure S7b). Yao et al. [36] reported overexpression

f HIPK3 reduced OXA induced CRC cell death, consistent with the

henomenon caused by circHIPK3 in this study. Taken together,

lthough circular and linear transcripts of HIPK3 come from the

ame host gene, they have their respective roles in cancer.

Oncogenic mutations of KRAS, BRAF, and PI3KCA frequently oc-

ur in CRC tissues [37]. In this study, we employed the HCT116

ell line with mutant KRAS and wild type BRAF, and the HT29

ell line with mutant BRAF and wild type KRAS to evaluate

ircHIPK3-mediated autophagy. Several studies have found that

utant KRAS tumour cells have high basal levels of autophagy

nd respond poorly to chemotherapy [38,39]. Suppression of KRAS

lone (RAF → MEK → ERK inhibition) further increased autophagic

ux, and showed no clinical benefit, while concurrent treatment

ith an autophagy inhibitor displayed synergistic anti-proliferative

ffects [40,41]. Similar observations were also reported in BRAF-

utant tumours [41–44]. Of note, both cell lines have mutated

IK3CA that constantly activates that AKT/mTOR signalling path-

ay, which is a well-known autophagy inhibiting pathway [45].

e found that knockdown of circHIPK3 resulted in enhanced au-

ophagy and reversed the resistance of HT29oxR and HCT116oxR
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Table 1

Associations between circHIPK3 levels and clinicopathological

characteristics.

Parameters

Expression of circHIPK3a

high low P-valueb

Age 0•324

<61 47 43

≥61 (median) 53 36

Gender 0•373

Male 49 44

Female 51 35

Tumor location 0•091

Colon 52 51

Rectum 48 28

Tumor size 0•033

<4cm 54 55

≥4cm 46 24

Differentiation 0•795

Well 29 20

Moderate 52 45

Poor 19 14

Local invasion 0•072

T1-T2 21 26

T3-T4 79 53

Regional lymph nodes metastasis <0•001

No 31 69

Yes 69 10

Distant metastasis <0•001

No 75 75

Yes 25 4

Recurrence <0•001

No 21 61

Yes 79 18

a CRC patients were classified as high or low circHIPK3 based on

the optimal cut off value (0•040).
b P-value was estimated by Chi-square test.
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cells. 3-MA is a classic autophagy inhibitor that inhibits the for-

mation of autophagosomes through suppression of class III PI3K

activity [46]. Since 3-MA might promote autophagic flux under

nutrient-rich conditions for extended periods of time [46], we

treated HCT116 and HT29 cells with 5 mM 3-MA for 1 h in serum-

free media. Upon inhibition of autophagy by 3-MA, apoptosis of

both CRC cells lines was also reduced. These results were in agree-

ment with a previous study [47], which demonstrated that anti-

cancer agents induced autophagy-related cell death (type II pro-

grammed cell death), independent of or in parallel with apoptosis,

thereby enhancing their therapeutic effects. circRNAs have been

proven to function as ceRNAs to protect oncogenes or tumour sup-

pressors through binding to functional miRNAs [27]. In this study,

we also demonstrated that circHIPK3 could bind to miR-637, and a

single miR-637 binding element present in circHIPK3 was found to

be essential for their interaction by both miRanda and RNAhybrid

tools. Moreover, RNA pull down and luciferase assays confirmed

that circHIPK3 could be directly bound by miR-637 in CRC cells.

miR-637 has been reported to inhibit cell proliferation and induce

apoptosis in multiple cancers [48-50]. Wang et al. [51] found that

blockage of miR-637 promoted viability, proliferation, migration

and invasion capacity of CRC cells, suggesting miR-637 played a tu-

mour suppressor role in CRC. Consistently, we found that overex-

pression of miR-637 mimicked the effect of circHIPK3 knockdown

in CRC cell viability and apoptosis. Moreover, the effects caused by

miR-637 also could be counteracted by circHIPK3 overexpression.

Interestingly, miR-7 that found to be sponged by circHIPK3 in CRC

has been reported down-regulated in OXA resistant tumour cells

[23,52]. Since circHIPK3 serves as a sponge for multiple miRNAs,

we speculated it might not cause chemotherapy resistance only

through one miRNA.
It has been well established that miRNAs regulate gene ex-

ression by binding to the complementary sequences in 3′-UTRs

f target genes. Our data revealed that miR-637 was able to di-

ectly target the 3′-UTR of STAT3, resulting in down-regulated ex-

ression of STAT3 at the post-transcriptional level. Moreover, there

as a negative correlation between miR-637 and STAT3 mRNA in

RC tissues. Thus, we hypothesised that STAT3 might be one of

he important targets of miR-637, in agreement with a previous

tudy [53], which reported that miR-637 disrupted the activation

f STAT3 and exhibited growth suppressive and apoptotic effects.

ecently, STAT3 expression has been frequently correlated with au-

ophagy and chemoresistance in CRC [54,55]. In addition to its di-

ect effects, we found that miR-637 also decreased phosphoryla-

ion levels of STAT3, and subsequently repressed the transcriptional

xpression of Bcl-2, which could physically bind to the BH3-only

omain within beclin1, that played a central role in autophagy

56]. In this study, activation of STAT3 was inhibited by miR-637

own-regulated Bcl-2 expression, thereby releasing beclin1 from

he Bcl-2-beclin-1 complex, to induce autophagy, similar to the ef-

ects caused by circHIPK3 silencing. Conversely, these effects in-

uced by miR-637 could also be rescued by circHIPK3 overexpres-

ion. Furthermore, a positive relationship was observed between

ircHIPK3 expression and STAT3 mRNA in CRC tissues. Taken to-

ether, circHIPK3 could function as a ceRNA via sponging miR-637

o activate the STAT3 signalling pathway, thus enhancing Bcl-2 ex-

ression and blocking beclin1 dissociation. These events finally re-

ulted in reduced autophagic cell death, which contributes to the

evelopment of OXA resistance.

To test whether circHIPK3 could be used as a chemotherapy

redictor, a large cohort of CRC patients who received OXA-based

reatment were enrolled. Our results showed that circHIPK3 was

ignificantly increased in patients with recurrent disease, and its

igh expression correlated with poor survival, which was an inde-

endent prognostic factor for these patients. In previous studies,

ircHIPK3 was also found to be an independent predictor of prog-

osis in glioma [57] and epithelial ovarian cancer [58]. Because

here was no suitable method to accurately evaluate the autophagy

evels on human samples [59], the relationship between circHIPK3

xpression and autophagy levels in CRC tissues was unclear.

In summary, our findings suggest that circHIPK3 promotes

XA resistance in CRC by sponging miR-637, which is dependent

n the inhibition of autophagy-related cell death via STAT3/Bcl-

/beclin1 signalling pathway. This study also provides evidence

hat circHIPK3 functions as a chemoresistance gene, and could be a

romising prognostic predictor in CRC patients treated with OXA-

ased chemotherapy.
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