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Cellular membrane alterations are commonly observed in many diseases, including

Alzheimer’s disease (AD). Membrane biophysical properties, such as membrane

molecular order, membrane fluidity, organization of lipid rafts, and adhesion between

membrane and cytoskeleton, play an important role in various cellular activities and

functions. While membrane biophysics impacts a broad range of cellular pathways, this

review addresses the role of membrane biophysics in amyloid-β peptide aggregation,

Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral

endothelial functions in AD. Understanding the mechanism(s) underlying the effects of

cell membrane properties on cellular processes should shed light on the development of

new preventive and therapeutic strategies for this devastating disease.

Keywords: amyloid-β peptide, amyloid precursor protein, membrane molecular order, membrane fluidity, cerebral

endothelium

Introduction

Alzheimer’s disease will claim 13.2 million Americans by 2050 if no preventive treatments are
found. The increasing number of AD victims puts a heavy economic and emotional burden on
society, and thus AD has become an urgent national health and research priority. AD is complicated
and multi-factorial involving numerous etiopathogenic mechanisms. Therefore, it is unlikely that
any one single intervention well be efficacious to delay, prevent, or cure it. Many mechanisms
involved in the pathogenesis and pathophysiology of AD have yet to be elucidated. In fact, recent
studies provide strong evidence that cell membrane composition and cell biophysics play an
important role in a number of pathophysiological events in AD (Hicks et al., 2012).

Cellular membrane lipid composition is dynamically changing and correlated with the
progression of AD (Frisardi et al., 2011). In addition, alterations of membrane cytoskeleton may
change the mechanical properties of cells and cell membranes, leading to eventual changes of
cell functions, such as adhesion. Although, recent research findings show that the influences of
membrane lipids and properties have been proven in many cellular pathways and processing
implicated in AD, the role of altered lipid composition and membrane properties in the disease
has yet to be fully elucidated.

Another important area of research investigates which aggregated forms of amyloid-β peptide
(Aβ) are involved in the pathogenesis of AD. In fact, recent studies provide evidence showing
that Aβ oligomers trigger many downstream oxidative pathways and neuro-inflammation
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(Salminen et al., 2009; Hodgson et al., 2013; Meraz-Rios
et al., 2014). In this review, we address Aβ-related cellular
processes in their relation to the physical properties of the cell
membranes. Specifically, we summarize the role of biophysical
factors in Aβ aggregation and the effects of oxidative stress
and Aβ on membrane biophysics, membrane biophysics on
amyloid precursor protein (APP) processing, and membrane
mechanics in altered endothelial functions and blood brain
barrier (BBB).

The Biophysics of Aβ Aggregation

Amyloidogenic processing of the APP by β- and γ-secretase
leads to the production of Aβ monomers of different lengths,
of which the Aβ1−40 is the major species and the Aβ1−42

is the most fibrillogenic and predominant component in AD
plaques (Bernstein et al., 2005). Aβ1−40 and Aβ1−42 consist of
hydrophilic N-terminal regions (residues 1–28) and hydrophobic
C-terminal regions (residues 29–40 or 29–42), which is originally
the part of a transmembrane α-helix of APP (Figure 1). In
vitro studies have demonstrated that Aβ monomers can exist
in three major conformation forms: α-helix, β-sheet or random
coil (Liu et al., 2006). Since the fibrils mostly consist of β-sheets,
while the original hydrophobic part of Aβ is an α-helix, the
conformational transition of Aβ from α-helix to β-sheet probably
is the very first step in fibril formation, and there is evidence that
conformational transitions of Aβ monomers depend on physical
and chemical parameters of the environment. For example, in
aqueous solution Aβ exists as a mixture of all three conformation
forms; in fluorinated alcohols, as well as at pH 1-4 and 7-10,
Aβ exists in a form of α-helix, while β-sheet favored at pH 4-
7 (Liu et al., 2006). In turn, the hydrophobic and positively
charged self-assembled lipid monolayers (SAM) induce more
Aβ adsorption, faster β-sheet formation, and stronger binding
affinity than the hydrophilic and the negatively charged SAM. All
of them accelerate Aβ aggregation and promote the structural
conversion from an unstructured conformation to a β-sheet-
containing structures compared to neutral solutions (Wang et al.,
2011).

The next step in a process of Aβ aggregation is forming
hydrogen bonds between the amide and the carbonyl
(check spell) groups of anti-parallel oriented β-sheets with
further aggregation into higher order structures (Poduslo
and Howell, 2015). The aggregation of Aβ into fibrils is a
complicated multi-step process that occurs through a number
of intermediate structural forms and can be described as a
sequential process consisting of several phases: monomers →

misfolded monomers → soluble oligomers (clusters of small
numbers of peptide molecules without a fibrillar structure) →
protofibrils (aggregates of isolated or clustered spherical beads
made up of ∼20 molecules with β-sheet structure) → mature
fibrils (Sengupta et al., 2014) (Figure 1).

There is evidence that the formation of Aβ fibrils is a
nucleation-depended process. The conversion of a peptide into
a fibril includes a lag phase that reflects the thermodynamic
barrier to the formation of a nucleus followed by a rapid growth
phase involving the sequential incorporation of Aβ peptides,

FIGURE 1 | The aggregation of Aβ.

producing rigid structures consisting of several layers of cross-
β sheets. Several studies indicated that monomer, dimer, trimer,
and tetramer species of Aβ exist in a rapid equilibrium, while
pentameric or hexameric aggregates form a critical nucleus for
higher order assembly (Figure 1) (Mclaurin et al., 2000; Chiti and
Dobson, 2006).

Several studies have indicated that the size and the shape
of Aβ aggregates, as well as the kinetics of their formation,
depend on the physicochemical nature of the surface. For
example, on hydrophilic surface (mica) Aβ formed particulate,
pseudomicellar aggregates, while on hydrophobic surface Aβ

formed uniform, elongated sheets with the dimensions consistent
of β-sheets (Kowalewski and Holtzman, 1999). These studies
suggest that Aβ fibril formation may be driven by interactions at
the interface of aqueous solutions and hydrophobic substrates,
as occurs in membranes and lipoprotein particles in vivo
(Kowalewski and Holtzman, 1999; Ban et al., 2006; Wang et al.,
2011). In turn, metal ions have been shown to play a role
in Aβ aggregation. Some studies have indicated that very low
levels of copper and zinc initiate seeding and oligomerization
of Aβ and accelerate fibril formation by unfolding the helical
structure in Aβ peptide and stabilizing the formation of vital
salt-bridges within and between Aβ peptides (Mclaurin et al.,
2000; Pan and Patterson, 2013). Calcium has been also shown to
accelerate both the formation of protofibrils and its conversion to
fibrills (Isaacs et al., 2006). On the other hand, there is evidence
that many membrane associated proteins and glycolipids can
regulate Aβ conformation and aggregation in both enhancement
and inhibition manner as well (Mclaurin et al., 2000). For
example, the binding of Aβ to the membrane sialoglycolipid
GM1 ganglioside can lead to a conformational change in Aβ

and seeding of aggregation (Manna and Mukhopadhyay, 2013).
Aβ interactions with phospholipids can also induce a structural
transition from random coil to β-sheet in Aβ40/42 and Aβ25-
35, increase the local peptide concentration (in a vesicular
environment) and accelerate fibril formation (Yuyama et al.,
2008).
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Thus, aggregation of Aβ is a multistep process which
can be modulated by physical and chemical factors such as
conformation of Aβ, pH, electrical charge, hydrophilicity, or
hydrophobicity of the environment, and interaction with other
elements that either promote or inhibit Aβ aggregation (Mclaurin
et al., 2000). Identification of these factors and understanding
the driving forces behind these interactions will help to reveal
new therapeutic targets for prevention of amyloid formation and
its associated toxicity (Mckoy et al., 2012; Luo et al., 2014; Yang
et al., 2014). Since aggregation of Aβ occurs mainly at the surface
of the cell membranes in next chapter the influence of the cell
membrane’s composition and biophysics on Aβ aggregation will
be discussed.

Aggregation of Aβ Peptide is Influenced by
the Membrane’s Composition and
Biophysics

The cellular membrane is known to be a highly dynamic structure
with different lateral phases, which are mostly dependent upon
membrane composition, but also temperature and pH if a
deviation from physiological condition is present (Heberle and
Feigenson, 2011). One of these phases, commonly referred to as
the lipid raft, has a high molecular order which is more tightly
packed than non-raft domains due to intermolecular hydrogen
bonding involving sphingolipids and cholesterol (Barenholz,
2004; Fantini and Yahi, 2010). They are also known to be the
platform for the assembly of many signaling molecules.

The formation of these microdomains is attributed to the
protein-protein and protein-lipid synergy, which induces the
observed high molecular order (Pike, 2006). For example,
cholesterol, found in substantial concentrations in lipid rafts, is
known to decrease lateral lipid diffusion, while increasing the
surface hydrophobicity (Yu and Zheng, 2012). In the bilayer
membrane and vesiclemodels, lipid rafts are found to coexist with
fluid lipid regions, which are composed mainly of homogenous
phosphatidylcholine (PC) and cholesterol (Dietrich et al., 2001).

In the pathology of AD, lipid rafts are known to be the main
location for the interaction of Aβ with the cellular membrane
(Kim et al., 2006; Choucair et al., 2007; Williamson et al.,
2008; Cecchi et al., 2009; Ogawa et al., 2011; Mazargui et al.,
2012). Two of the components of lipid rafts, cholesterol and
the ganglioside called monosialotetrahexosylganglioside (GM1),
have been given most of the spotlight in this interplay. Due
to shingolipids having saturated fatty acids as side chains and
cholesterol being able to pack closely with them, lipid rafts are of
a higher order and have less fluid in the hydrophobic region than
the surrounding domains (Thakur et al., 2011). Cholesterol then,
in turn, is important in regulating the formation and function of
lipid rafts and in increasing the concentration of GM1 in these
microdomains (Cecchi et al., 2009).

When the cholesterol concentration is manipulated, a
noticeable difference in the cellular membrane’s influence on Aβ

occurs. The concentration of cholesterol in lipid rafts correlates to
the adsorption of Aβ1−42 on a 1-palmitoyl,2-oleoyl-sn-glycero-
3-phosphocholine bilayer, while having little affect in a

dipalmitoylphosphatidylglycerol bilayer model (Thakur et al.,
2011). Any change in the cholesterol of the cellular membrane in
human neuroblastoma cells results in causing Aβ1−42 oligomers
to react differently with the bilayer (Williamson et al., 2008). In
fact, it has been reported that a higher cholesterol content in
the bilayer leads to increased membrane rigidity, which is more
favorable for Aβ-membrane interactions, and a concomitant
increase in the accumulation of Aβ1−42 (Yip et al., 2002).

When Aβ adsorbs or inserts into the membrane bilayer,
the peptide-lipid interactions make the secondary and tertiary
structure change to a more energetically favorable configuration
(Zhao et al., 2011). Aβ was also observed to accumulate in size
from monomer to hexamer and beyond, with the majority of the
aggregates’ size in the dimer to tetramer range. In comparison
of the size of aggregate created in and not in the presence of
cellular membrane, the larger aggregates are formed when the cell
membrane is involved (Johnson et al., 2011). In neutral solution,
Aβ consists of mostly alpha-helix or random coil. When Aβ

is incubated with lipid rafts acquired from rat neuronal cells,
cholesterol affects the conversion of the α-helix conformation
of Aβ to the β-sheet-rich structure, which is synonymous with
toxicity (Zhao et al., 2011).

Molecular dynamics (MD) simulations uncovered another
vindication for the confirmation change of Aβ1−40 and Aβ1−42.
The presence of GM1 amplifies the conversion of the α-helix
to principally β-sheets through the formation of beta-hairpins
at the C-terminal (Ogawa et al., 2011). This dependence on
GM1was confirmed when 5µMAβ1−42 preferentially aggregates
in vicinity to GM1-liposomes. On the other hand, 5µM
Aβ1−40 did not aggregate under these conditions, showing that
Aβ1−40 and Aβ1−42 interact dissimilarly with cellular membrane
(Ogawa et al., 2011). In fact, Aβ1−42 accumulates more than
Aβ1−40 in mice brains (Abramowski et al., 2012; Manna and
Mukhopadhyay, 2013). Furthermore, in lipid rafts with no GM1,
only a portion versus all of the membrane-associated Aβ obtains
the beta-sheet folds (Lemkul and Bevan, 2011).

GM1 has also undergone similar scrutiny as cholesterol
in its capacity to induce Aβ binding to the cell membrane.
Gangliosides, such as GM1, have the ability to host the location
for Aβ to seed (Kakio et al., 2002; Mazargui et al., 2012)
and are even required for oligomerization to occur, while lipid
and cholesterol is not necessary (Kim et al., 2006). In mice
neuronal cells, Aβwas found to colocalize with GM1 (Williamson
et al., 2008; Hong et al., 2014), which in fact can be partially
inhibited by cholesterol (Williamson et al., 2008). Aggregation
of Aβ1−40 occurs during the co-incubation of Aβ1−40 with raft-
like liposomes containing GM1, cholesterol, and sphingomyelin.
Additionally, aggregation is not elicited during the incubation
of non-raft-like structures, such as GM1 with PC, but is when
raft-like structures, such as cholesterol with GM1 and PC, are
involved, further proving that Aβ depends upon an environment
such as the lipid raft to cumulate (Okada et al., 2008).

Other factors in relation to the direct composition of the
cellular membrane are investigated to determine their influence
on Aβ adsorption and intercalation, such as the cell membrane’s
surface charge. Anionic areas in human neuroblastoma cellular
membrane promote the interactions of Aβ1−40(Johnson et al.,
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2011), while aggregation is inhibited in the presence of vesicles
with negatively charged surfaces. Adsorption of Aβ1−40 is more
likely to occur on a negatively charged surface, and with neutral
membranes experiencemostly insertion (Sabaté et al., 2012). This
suggests that dynamic interactions mediate this, and it is not only
dependent upon the negative charge of the membrane as shown
in vesicle-model studies.

The cellular membrane’s biophysics are central in the actions
that Aβ undergoes, which can be explained by Aβ being
an amphipathic molecule that will adsorb non-specifically at
an air and water interface and penetrate into uncompressed
monolayers formed by zwitterionic and anionic phospholipids
(Relini et al., 2009). The influence of the biophysical parameters
and cell membrane’s composition on Aβ conformational state
and aggregation is summarized in the Table 1. However, this
is not a one-way interaction; Aβ also influences the cellular
membrane’s biophysics, which will be discussed in the following
chapter.

The Membrane’s Composition and
Biophysics is Influenced by Aβ Peptide and
Oxidative Stress

All of the aspects, which evoke the aggregation of Aβ, of the
cell membrane’s biophysics mentioned in the previous section
can also be impacted due to Aβ interacting with the cellular
membrane. Aβ has been observed to alter the fluidity and
molecular order of the cellular membrane, along with acting in
a functional manner by having the ability to create a pore when
insertion occurs. Other features are also affected that were not
discussed, such as the conductance of the cell membrane and the
orientation of the lipid tails and cholesterol.

When Aβ integrates into the cellular membrane, an
invagination causes voids, which fill with excess water and
protein, engendering the cell membrane to become more
molecularly disordered (Chang et al., 2010). In one scenario,
Aβ1−42 causes an increase in the amount of water in the
hydrophobic region of the bilayer in neuronal cells (Hicks
et al., 2008). This alteration of the molecular order has been
proposed to be the mechanism to explain the decrease in
thickness of the lipid bilayer in the companionship of Aβ.
By using MD simulations of Aβ insertion into the membrane
bilayer to observe the molecular effects, the electrostatic forces
cause the most thermodynamically stable orientation for the
lipids and cholesterol to be different. The adjacent cholesterol
tilts, which is not observed in cholesterol that is far from Aβ

(Zhao et al., 2011). The orientation of the lipid tails is also
altered (Chang et al., 2010; Tofoleanu and Buchete, 2012)—
they significantly point away from the region during protofibril
interaction (Tofoleanu and Buchete, 2012). This equates to the
area per lipid and cholesterol increasing (Qiu et al., 2011). In
human brains afflicted with AD compared to normal brains no
alteration in the content of lipid rafts are observed (Martín et al.,
2010). Even though the composition is not altered, the changes on
the molecular level have a more important effect on the cellular
membrane.

TABLE 1 | The influence of the cell membrane’s composition and

biophysics on Aβ conformational state and aggregation.

Physical and

chemical

factors

Conformational

state of Aβ

Aggregation

of Aβ

References

pH 1-4 β-sheet ↑ Liu et al., 2006;

Bhowmik et al., 2014

pH 7-10 ά-helix ↓ Liu et al., 2006;

Bhowmik et al., 2014

Positive charge β-sheet ↑ Wang et al., 2011

Electrically

neutral

environment

ά-helix ↓ Wang et al., 2011

Hydrophobic

environment

β-sheet ↑ Wang et al., 2011

Hydrophilic

environment

ά-helix ↓ Kowalewski and

Holtzman, 1999; Liu

et al., 2006; Wang

et al., 2011

Membrane

fluidity ↓

NA ↑ Yip et al., 2002

Membrane

fluidity ↑

NA ↓ Yip et al., 2002

Cholesterol β-sheet ↑ Yip et al., 2002;

Schneider et al., 2006;

Zhao et al., 2011

GM1 β-sheet ↑ Kim et al., 2006;

Ogawa et al., 2011;

Manna and

Mukhopadhyay, 2013

Phospholipids β-sheet ↑ Yuyama et al., 2008

Metal ions unfold ά-helix ↑ Mclaurin et al., 2000;

Isaacs et al., 2006; Pan

and Patterson, 2013;

Yang et al., 2014

↑ denotes increase, ↓ denotes decrease, NC denotes no change, NA denotes data not

available.

One of the effects observed is the change in the cell
membrane’s fluidity, which inflates due to Aβ interaction (Hou
et al., 2008; Khalifat et al., 2012; Liguori et al., 2013; Sasahara
et al., 2013). In studies involving mitochondrial membrane
vesicle model and rats, this was especially observed. The inner
membrane of the mitochondria, which is the location of the
final stage of ATP production, has cristae-like folds. These
folds could not form in vitro under the influence of Aβ and
may be due to the decrease in membrane fluidity and changes
in dynamic friction of the cellular membrane (Khalifat et al.,
2012). In vivo studies show similar findings, which reduced
the function of cytochrome C oxidase (Hou et al., 2008).
Finally, analysis of lipid raft microdomains in human AD
brains elucidated that lipid rafts have a reduced unsaturated
index and an increase in saturated fatty acids, resulting in
more of the liquid-ordered phase and an increase in the cell
membrane’s viscosity (Martín et al., 2010). This parallels the
stiffening, or Young’s modulus, of the lipid bilayer, which has
been shown to occur due to Aβ1−42 oligomer (Lulevich et al.,
2010).
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For neuronal cells the ability for the cell to be excited is
important in relation to cognitive function. Aβ1−42 oligomer
can increase the bilayer membrane conductance in both model
and cell membranes (Sokolov et al., 2006; Lioudyno et al.,
2012), specifically shown through the kinetic properties of one
voltage-gated ion channel, the Kv 1.3 channel, being affected
(Lioudyno et al., 2012). Besides directly affecting ion channels, the
membrane itself is altered in Purkinje cells by soluble Aβ1−42 and
thus reduces the intrinsic membrane excitability (Hoxha et al.,
2012). Both Aβ1−40 (Sabaté et al., 2012) and Aβ1−42 (Choucair
et al., 2007) interacting with liposomes cause their membrane to
become leakier. Only the soluble but not the fibrillar form of Aβ

can cause a change in the membrane conductance Sokolov et al.,
2006; Sabaté et al., 2012. It has been proposed that this is due
to a combination of the thinning, Aβ-induced local defects, and
an increase in the dielectric constant of the cellular membrane,
which varied due to the composition of the lipid and not by
cholesterol. Negatively charged lipid reduces the effects that Aβ

has on the membrane conductance, while neutral membrane
has no influence. This was proposed to be due to electrostatic
repulsion since Aβ has a net charge of−3 (Sokolov et al., 2006). A
theory has also been established stating that Aβ can make a pore
in certain conditions upon insertion into the cellular membrane.
Pore formation has been shown to be thermodynamically feasible
with MD simulations, in which a beta-barrel can take form in
the bilayer to potentially increase the leakiness (Sabaté et al.,
2012). This theory is not widely accepted though, but is still under
consideration for potential mechanisms of action to elucidate the
observation of the conductance and excitability changes.

The repercussions of Aβ morph the healthy state of the cell in
ways not limited to this review. The alterations to the membrane’s
biophysics upset the cell’s normal function, which in turn evoke
additional complications. While many of these issues induced
by Aβ have been elucidated, a quandary still exists over the full
understanding of membrane interactions of Aβ in AD.

On the other hand, physical properties of cellular membranes
are most likely altered in AD not only due to direct effects
caused by Aβ, but also via downstream cellular signaling
involving oxidative stress and Aβ-induced oxidant pathways.
Reactive oxygen species (ROS) are generated in response to
various physiologic or pathologic conditions, and is one of the
pathological factors in Alzheimer’s disease (AD). In addition
to ROS produced extrinsically, a cell may produce ROS as a
result of normal metabolism and signaling processes. When
excess ROS are present within the cell, this oxidative stress
may have profound deleterious effects on the cell, including
the direct oxidation of biomolecules (e.g., lipid, protein, and
DNA), indirect alteration in cellular structures and functions,
and the induction of cell death. Direct interaction between
ROS and the cell membrane can lead to the alteration of
membrane biophysical properties, such as membrane molecular
order and membrane fluidity. Our previous data demonstrated
H2O2 made membranes more molecularly-ordered (or gel-like)
in astrocytes and was a combined effect of direct oxidation and
indirect alterations mediated by MAPK pathway (Zhu et al.,
2005). Additional evidence showed that oxidant menadione also
changed plasma membrane molecular order and fluidity, making

it more gel-like (Zhu et al., 2006). Both NADPH oxidase and
phospholipase A2 (PLA2) regulated such alterations in addition
to direct oxidation from ROS.

Thus, cellular membrane’s biophysics, defined here as the
molecular order, fluidity or viscosity, and the surface charge,
play a critical role in the manipulation of Aβ’s confirmation,
aggregation, and their direct interaction with the cell membrane.
In turn, the residues of Aβ, which are Aβ25−36, Aβ1−40, Aβ1−42,
as well as reactive oxygen species, also affect the CM’s biophysical
properties (Table 2). These events are speculated to be one of
the keys factors in the initiation of the AD cascade, therefore
becoming a target for potential therapeutic strategies (Mckoy
et al., 2012; Lee et al., 2014).

Membrane Biophysics and Composition on
APP Processing

As discussed in the previous section, the physical properties of
cellular membranes can be altered by Aβ interactions and Aβ-
induced cellular pathways. In turn, these membrane alterations
can have an impact on cellular functions, such as amyloid
precursor protein (APP) processing and cerebral endothelial
adhesion and permeability.

Two competing processing pathways are currently known
for APP. In the amyloidogenic pathway, Aβ is derived from
a proteolytic process of amyloid precursor protein (APP), in
which APP is cleaved sequentially by β- and γ-secretases (Haass
et al., 2012). Alternatively, APP can be cleaved by α-secretases
between amino acids 16 and 17 within the Aβ domain to
produce neurotrophic and neuroprotective soluble APP (sAPPα)
in the non-amyloidogenic pathway (Thornton et al., 2006).
The enhancement of APP processing by α-secretases has been
suggested as a potential therapeutic strategy for AD (Cheng et al.,
2007). Since APP, α-, β-, and γ-secretases are membrane proteins,
APP processing is affected by the local membrane environment.
In this section, we review the evidence about the effects of
fatty acids and cholesterol on membrane properties and APP

TABLE 2 | The influence of Aβ on cell membrane’s composition and

biophysics.

Effects of Aβ on cell membrane References

Introduce voids, making membrane

more molecularly disordered

Chang et al., 2010

Increase H2O in membrane, leading

to thinner lipid bilayer

Hicks et al., 2008

Decrease in membrane fluidity Hou et al., 2008; Khalifat et al., 2012;

Liguori et al., 2013; Sasahara et al.,

2013

Increase in membrane viscosity Martín et al., 2010

Increase in membrane stiffness Lulevich et al., 2010

Increase in bilayer membrane

conductance

Sokolov et al., 2006; Lioudyno et al.,

2012

Introduce leakage in membrane Choucair et al., 2007

ROS induced by Aβ make membrane

more gel-like

Zhu et al., 2005, 2006
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processing. Understanding the mechanisms leading to changes
of membranes biophysics and how they result in changes in
APP processing has the potential to provide insights into new
therapeutic strategies for prevention and treatment of AD.

Fatty acids are important ingredients in various dietary
sources and play a central role in the normal development and
function of the brain (Dyall and Michael-Titus, 2008; Schuchardt
et al., 2010). Long-chain ω-6 and ω-3 polyunsaturated fatty acids
(PUFAs), the major polyunsaturated fatty acids in the central
nervous system, are essential for prenatal brain development and
normal brain functions (Uauy et al., 2001; Dyall and Michael-
Titus, 2008). The disturbedmetabolism of fatty acids is associated
with AD. For instance, lower levels of docosahexaenoic acid
(DHA) have been reported in serum samples taken from AD
patients (Tully et al., 2003), while greater consumption of
DHA has significantly reduced the likelihood of developing
AD (Schaefer et al., 2006). In 15-month-old APP/PS1 mice,
DHA supplementation improved spatial memory, decreases
Aβ deposition, and slightly increased relative cerebral blood
volume, indicating that a DHA-enriched diet could diminish
AD-like pathology (Hooijmans et al., 2007). On the other hand,
accumulation of trans fatty acids in the cellular membrane
increased production and oligomerization of Aβ (Grimm et al.,
2011).

PUFAs in neuronal cells can influence cellular functions
through effects on membrane properties (Hibbeln et al., 2000;
Sinclair et al., 2007; Heinrichs, 2010). The ability of fatty acids
to modulate membrane properties and functions depends on
both the saturation degree of the fatty acids and the trans/cis
ratio of the unsaturated fatty acids (Loffhagen et al., 2004; Yang
et al., 2011). For example, diets enriched in unsaturated PUFAs,
DHA, and AA, have been shown to increase membrane fluidity
of neurons and other cells (Mclauren Dorrance et al., 2000;
Horrocks and Farooqui, 2004; Hashimoto et al., 2006; Fukaya
et al., 2007). DHA was capable of counteracting cholesterol-
induced decrease in platelet membrane fluidity and modulating
platelet hyperaggregation (Hashimoto et al., 2006). Similarly,
cis-polyunsaturated linolenic, α-linoleic, and eicosatrienoic fatty
acids increased membrane fluidity (Kitagawa et al., 1990). In
contrast, incorporation of saturated fatty acids into membrane
led to decreased membrane fluidity (Calder et al., 1994).

It has been reported that an increase in membrane fluidity
leads to an increase in non-amyloidogenic cleavage by α-
secretase to produce sAPPα (Kojro et al., 2001; Peters et al.,
2009). Consistently, enrichment of cell membranes with PUFAs
increases membrane fluidity and, subsequently, promotes non-
amyloidogenic processing of APP (Yang et al., 2011). A typical
Western diet (with 40% saturated fatty acids and 1% of
cholesterol) fed to transgenic APP/PS1 mice increased Aβ, while
diets supplemented with DHA decreased Aβ levels (Lim et al.,
2005; Oksman et al., 2006). Similarly, DHA decreased the amount
of vascular Aβ deposition (Hooijmans et al., 2007) and reduced
cortical Aβ burden in the aged Alzheimer mouse model. In this
model, DHA modulated APP processing by decreasing both α-
and β-APP C-terminal fragment products and full-length APP.
DHA stimulated non-amyloidogenic APP processing resulting
in reduced Aβ levels in cellular models of Alzheimer’s disease

(Sahlin et al., 2007). DHA can decrease cholesterol de novo
synthesis, shift its distribution from raft to non-raft domains,
and decrease β- and γ-secretase activity (Grimm et al., 2011).
Meanwhile, our study of the effects of fatty acids on cell
membrane fluidity and sAPPα secretion in relation to degrees
of unsaturation has suggested that not all unsaturated fatty
acids, but only those with 4 or more double bonds, such as
arachidonic acid (20:4), eicosapentaenoic acid (20:5), and DHA
(22:6), increased membrane fluidity and led to an increase in
sAPPα secretion (Yang et al., 2011). Moreover, another study
indicated that treatment of PSwt-1 CHO cells with oleic acid
and linoleic acid increased γ-secretase activity andAβ production
(Liu et al., 2004). These studies suggest that modulation of PUFAs
content in cellular membrane is essential in regulating sAPPα

production partially due to their effects on membrane fluidity.
As previously mentioned, cholesterol is another essential

component of the cellular membrane, which is mostly condensed
in lipid rafts. Membrane cholesterol levels can be modulated
by specific inhibitors of cellular biosynthesis such as statins,
or it can be selectively extracted from plasma membrane by
methyl-β-cyclodextrin (MβCD). The content of cholesterol in
phospholipid bilayers affects many biophysical parameters of
lipid bilayers, such as thickness, thermo-mechanical properties,
molecular packing, conformational freedom of phospholipid acyl
chains and water, molecular oxygen permeability, membrane
hydrophobicity, membrane excitability in neurons, internal
dipolar potential, and membrane fluidity (Chen et al., 1999;
Dumas et al., 1999; Socaciu et al., 2000; Hao et al., 2004; Arrais
and Martins, 2007; Halling et al., 2008; Fantini and Yahi, 2010;
Wang and Schreurs, 2010).

Intracellular cholesterol homeostasis regulates APP
processing (Burns and Rebeck, 2010). A model of membrane
compartmentalization has been suggested for APP in two cellular
pools, one associated with the cholesterol-enriched lipid rafts,
where Aβ is generated, and the other outside of rafts (i.e., non-raft
domains), where α-cleavage occurs (Ehehalt et al., 2003; Colell
et al., 2009). It was reported that membrane cholesterol depletion
decreased the content of APP in cholesterol and sphingolipid-
enriched membrane microdomains and subsequently inhibited
the amyloidogenic pathway to produce Aβ (Kojro et al., 2001;
Eckert et al., 2003). In contrast, cholesterol accumulation in
the Niemann Pick type C (NPC) model cells has been shown
to shift APP localization to lipid rafts (Kosicek et al., 2010).
Consistent with the membrane compartmentalization model,
cellular cholesterol depletion resulted in increased membrane
fluidity (Kojro et al., 2001; Colell et al., 2003; Luneva et al., 2007;
Rog et al., 2008). In turn, increase in membrane fluidity shifts
APP processing to non-amyloidogenic cleavage by α-secretase
(Galbete et al., 2000; Colell et al., 2003; Abad-Rodriguez et al.,
2004; Xiu et al., 2006; Luneva et al., 2007; Kosicek et al., 2010).
The removal of cholesterol with MβCD or treatment with
lovastatin increased membrane fluidity, which resulted in higher
expression of the α-secretase and impaired internalization of
APP (Kojro et al., 2001). The increased membrane fluidity also
correlated with redistribution of cholesterol, sphingomyelin, and
proteins involved in APP processing between raft and non-raft
domains, and enhanced sAPPα production (Clement et al.,
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2010). At the same time, cholesterol enrichment has been shown
to reduce membrane fluidity (Hashimoto et al., 2006; Buffone
et al., 2009). Exposure of cholesterol to astrocytes, primary
neurons, and glial cultures inhibited the secretion of sAPPα

and reduced cell viability (Racchi et al., 1997; Galbete et al.,
2000; Xiu et al., 2006). Furthermore, some studies showed that
cholesterol levels in the membranes were positively correlated
with β-secretase activity (Liu et al., 2009), while lovastatin
enhanced α-secretase activity (Xiu et al., 2006). Cholesterol
enrichment that impeded membrane fluidity may lower sAPPα

production by hindering the interaction of the substrate with its
proteases (Bodovitz and Klein, 1996). Interestingly, substitution
of cholesterol by the steroid 4-cholesten-3-one induced minor
change in membrane fluidity and reduced sAPPα secretion,
whereas substitution of cholesterol by lanosterol increased
membrane fluidity and sAPPα secretion (Kojro et al., 2001).
These results suggest reversible effects of cholesterol on the
α-secretase activity depending on membrane fluidity.

Many studies support the notion that Aβ production occurs
in endosomes (Kinoshita et al., 2003; Small and Gandy,
2006; Cirrito et al., 2008; Rajendran et al., 2008; Schobel
et al., 2008). APP internalization from the plasma membrane
enhances APP cleavage by β-secretase to increase Aβ levels
(Grbovic et al., 2003). In contrast, APP, lacking its cytoplasmic
internalization motif, accumulates at the plasma membrane and
undergoes cleavage by α-secretase (Haass et al., 1993; Koo and
Squazzo, 1994). Cholesterol increased clathrin-dependent APP
endocytosis in a dose-dependent and linear manner (Cossec
et al., 2010). Moreover, alterations in cholesterol transport
from late endocytotic organelles to the endoplasmic reticulum
had important consequences for both APP processing and the
localization of γ-secretase-associated presenilins (Runz et al.,
2002). An increased cholesterol level in AD has been suggested
to be responsible for the enhanced internalization of clathrin-
dependent endocytosis of APP and the overproduction of Aβ

(Cossec et al., 2010). Alternatively, APP internalization could
be reduced by lowering cholesterol, which led to an increase in
membrane fluidity, APP accumulation on the cell surface, and
increased sAPPα secretion (Kojro et al., 2001).

Thus, summarizing findings, discussed in this chapter we
can conclude that increased membrane fluidity favors non-
amyloidogenic processing of APP. In turn, membrane fluidity
can be increased by unsaturated PUFA with for or more double
bonds (DHE, arachidonic, and eicosapentaenoic acid), or by
reduction of membrane cholesterol levels (Table 3).

Membrane Adhesion Properties and
Permeability of the Blood Brain Barrier in
AD

Significant body of evidence indicates that BBB dysfunction
plays critical role in the development and progression of AD
(Snyder et al., 2014; Sweeney et al., 2015). In the early stage
of AD, microvasculature deficiencies, inflammatory reactions,
Aβ surrounding the cerebral vasculature and endothelial
dysfunctions are commonly observed (Borroni et al., 2002;

TABLE 3 | Summary of the different treatments on membrane fluidity,

accumulation of APP at cell surface, and secretion of sAPPα and Aβ.

Treatment Membrane

fluidity

APP

at cell

surface

Secretion

of sAPPα

Aβ References

DHA ↑ NA ↑ ↓ Lim et al., 2005;

Hooijmans et al.,

2007; Sahlin et al.,

2007; Yang et al.,

2011

EPA ↑ NA ↑ NC Yang et al., 2011

AA ↑ ↑ ↑ NC Yang et al., 2010,

2011

MβCD ↑ ↑ ↑ ↓ Kojro et al., 2001

Cholesterol ↓ ↓ ↓ ↑ Galbete et al.,

2000; Colell et al.,

2003; Xiu et al.,

2006; Luneva

et al., 2007; Rog

et al., 2008;

Buffone et al.,

2009; Cossec

et al., 2010;

Marquer et al.,

2011

C6H5OH ↑ NA ↑ ↓ Peters et al., 2009

PF68 ↓ NA ↓ ↑ Peters et al., 2009

Aβ ↓ NA NC ↑ Peters et al., 2009

↑ denotes increase, ↓ denotes decrease, NC denotes no change, NA denotes data

not available. Abbreviations: DHA, docosahexaenoic acid (22:6); EPA, eicosapentaenoic

acid (20:5); arachidonic acid, AA (20:4); ALA, α-linolenic acid (18:3); MβCD, methyl-β-

cyclodextrin; C6H5OH, benzyl alcohol; PF68, pluronic F68.

Montagne et al., 2015). Continuous neurovascular degeneration
and accumulation of Aβ on blood vessels resulting in cerebral
amyloid angiopathy is associated with further progression of the
disease and cognitive decline. One of the features of AD brains is
an accumulation of monocytes in the vessel walls and of activated
microglia cells in the adjacent parenchyma, which has been found
to correlate with increased deposition of Aβ in the cerebral
vasculature (Maat-Schieman et al., 1997; Uchihara et al., 1997).
It has been shown that peripheral monocytes can migrate across
the blood brain barrier (BBB) and differentiate into microglia
within the brain parenchyma (Mezey et al., 2000). In vitro studies
have demonstrated that Aβ deposition at the endothelial cell
layer enhances the transmigration of monocytes (Francisco et al.,
2008). Thus, increased transmigration of monocytes past the BBB
is thought to drive the disease development toward exacerbation
of the oxidative and inflammatory conditions characteristic of the
AD brain.

Transmigration of monocytes is a sequential process having
at least three distinct adhesive events: capture, tethering, and
rolling; firm adhesion and arrest; and crawling on the endothelial
surface to find an intercellular junction for transmigration to
the target tissue. Primary capture to the endothelium and
rolling is a very dynamic process mediated cooperatively by the
adhesive bond between adhesion molecules (mainly P-, E-, and
L-selectins) and their ligand, the shear stress imposed by blood
flow, and the mechanical properties of the endothelial membrane
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(Figure 2) (Alon et al., 1997; Marshall et al., 2003; Girdhar and
Shao, 2004; Sun et al., 2007). The adhesion energy between
selectins and their ligands is characterized by fast binding on and
off rates. If the adhesive bond pulling force is greater than 25 pN,
the off rate of selectin-ligand bond will be increased (slip-bond).
In contrast, if a pulling force is smaller than 25 pN, the off rate
will be decreased (catch-bond) (Marshall et al., 2003). During the
rolling process, the pulling force imposed on the adhesive bond
by the blood flow acts upon on the monocyte and endothelial
cell membrane. If a pulling force greater than 50 pN is imposed
on an endothelial surface, a tether (a cylindrical membrane tube
that is tens of nanometers in diameter) will be extracted from the
plasma membrane surface (Figure 2) (Girdhar and Shao, 2004).
Earlier research has demonstrated that a lower membrane tether
extraction force favors rolling (Girdhar and Shao, 2004; Girdhar
et al., 2007). In this regards, it has been shown that enrichment
of endothelial cells with cholesterol or treatment with Aβ1−42

oligomers reduces the adhesion force for CECs, increases the
expression of cell adhesionmolecules and probability of adhesion
leading to enhanced rate of the monocytes’ transmigration (Sun
et al., 2007; Askarova et al., 2013).

The biomechanical characteristics of the tight junctions is
another important factor, which maintains brain homeostasis
and impermeability of BBB (Vedula et al., 2005, 2009). Tight
junctions are responsible for the separation of an apical and
basolateral domains of cell membrane and cell polarization.
The molecular biology of tight junctions has been found
to be very complex, and, among all, the structure of the
tight junctions in cerebral endothelium is the most elaborate.
Generally, molecular structure of tight junctions is presented by
several classes of transmembrane and submembrane proteins.
The transmembrane proteins are occludin, claudins, junction-
adhesion molecules (JAM), endothelial cell-selective molecule
(ESAM), and coxsackie- and adenovirus receptor (CAR).
Submembrane proteins are presented by adaptor proteins first
or second order. First order adaptors are directly associated
with transmembrane proteins and include ZO-1, ZO-2, and

FIGURE 2 | Primary capture of monocytes to the endothelium and

rolling.

ZO-3. Cingulin and coiled-coil protein are the second order
adaptors which are characterized by indirect connection with
transmembrane tight junction proteins (Wolburg et al., 2009).

In fact, the structure and biophysical characteristics of the
tight junctions are strongly affected in the cerebrovascular cells
of AD patients (Bednarczyk and Lukasiuk, 2011). In an animal
model of AD, a cholesterol-enriched diet down-regulated the
expression of the occluding and ZO-1, which was strongly
correlated with an elevated level of BBB leakage (Chen et al.,
2008). In vitro, treatment of primary rat CECs with Aβ1−42 for 3
days altered the expression of occluding and claudin-1, causing
the relocation of plasma membrane subunits of claudin-5 and
ZO-2 to the cytoplasm. At the same time, the cytoplasmic ZO-1
and ZO-2 where evenly distributed along the plasma membrane
to the points of the cell-cell contacts (Marco and Skaper, 2006).

Apolipoprotein E (apoE), a major apolipoprotein in the brain,
has been shown to be involved in tight junction alteration as
well (Nishitsuji et al., 2011). ApoE is a polymorphic glycoprotein
playing an important role in the transportation of lipids
and lipid acceptors. ApoE exists in three isoforms – ApoE2,
ApoE3, and ApoE4, and among these three isoforms, ApoE4,
is the greatest risk factor for late-onset AD and Aβ-induced
neuroinflammation (Halliday et al., 2015; Tai et al., 2015). In
vitro study has demonstrated that the barrier functions of tight
junctions were impaired when the CECs were reconstituted with
primary astrocytes from apoE4-knock-in mice. In particular, the
phosphorylation of occludin and the activation of protein kinase
C (PKC)η in CECs were attenuated (Nishitsuji et al., 2011).

In turn, cell membrane biophysical properties are highly
dependent on the F-actin network condition and the interacting
membrane and cytoskeleton integrity (Khatibzadeh et al., 2013).
Aβ has been shown to cause formation of actin stress fibers,
induce actin polymerization and increase overall cell stiffness,
but significantly soften the cells in the vicinity of the plasma
membrane (Mendoza-Naranjo et al., 2007; Askarova et al., 2013).
To support the data that Aβ oligomers affect tight junction, at
least partially, via altered integrity of actin network within CECs,
it has been demonstrated that the force needed for separation of
cellular adhesion formed by tight junction proteins significantly
decreases after treating cells both with Aβ and Cytochalasin-D
(the actin disrupting agent) (Vedula et al., 2009). These findings
suggest that the effects of Aβ on actin and tight junction proteins
expression and spatial distribution, cause the alteration of tight
junctions’ biophysics and contribute to the BBB leakage.

Strong evidence exists that cerebral endothelium regulates
clearance of internal Aβ across the BBB and influx of external
Aβ into brain (Deane et al., 2009). Aβ influx into brain from
the apical surface of CEC is regulated by receptor for advanced
glycosylated end products (RAGE), while lipoprotein receptor
related protein (LPR1) at the basolateral surface is responsible
for its efflux. In AD brains there is significant imbalance
between these two processes leading to the elevated level of Aβ

in the brain’s interstitial fluid and parenchyma (Deane et al.,
2004, 2009). It has also been shown that CECs internalize Aβ

differently compared to other cells of the central nervous system
(Kandimalla et al., 2009). For example, neurons internalize Aβ

primarily via non-endocytotic and energy independent pathway,
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while CECs demonstrate energy dependent endocytotic uptake
(Kandimalla et al., 2009). Additionally, kinetics of endocytosis
strongly depends on the biophysical properties of the plasma
membrane: increasing membrane microviscosity slows down
and eventually blocks membrane endocytosis of Aβ in different
cell models (Elguindi et al., 1985; Callaghan et al., 1990). The
data suggest that manipulations of the Aβ binding sites one
the membrane and regulation of the CECs’ plasma membrane
biophysical properties may result in decreased Aβ internalization
and endocytosis (Callaghan et al., 1990).

Thus, investigations of the effects of Aβ, cholesterol and
ApoE isoforms on alterations of CECs’ membrane biophysics,
including imbalance in cell-cell adhesion, tight junctions
integrity, CECs’ endocytosis, and other important aspects of
cell functions, would provide insights into the mechanisms of
neuroinflammation in AD, their correlations with cardiovascular
disorders, and may offer new therapeutic strategies for AD
patients.

Conclusions

Alterations of physical properties and lipid composition of
cellular membranes have been found to impact cellular

pathways and processes in many pathologic events of AD.
In particular, membrane’s biophysical properties play a critical
role in the manipulation of Aβ’s confirmation, aggregation,
and their direct interaction with the cell membrane. In turn,
Aβ species, as well as reactive oxygen species, also affect the
CM’s biophysical properties in different ways. Moreover, these
membrane alterations have an impact on other cellular functions,
such as amyloid precursor protein processing and cerebral
endothelial adhesion and permeability. Yet the involvements
of membrane biophysics in many cellular processes, e.g., Aβ

influx and efflux across the BBB, and NADPH oxidase activations
in AD, are still understudied. The research direction focusing
on the involvements of cellular membranes in AD should
provide insightful information for the development of treatment
strategies against AD.
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