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Abstract: Acute kidney injury (AKI) is a frequent disease encountered in the hospital, with a higher
incidence in intensive care units. Despite progress in renal replacement therapy, AKI is still asso-
ciated with early and late complications, especially cardiovascular events and mortality. The role
of gut-derived protein-bound uremic toxins (PBUTs) in vascular and cardiac dysfunction has been
extensively studied during chronic kidney disease (CKD), in particular, that of indoxyl sulfate (IS),
para-cresyl sulfate (PCS), and indole-3-acetic acid (IAA), resulting in both experimental and clinical
evidence. PBUTs, which accumulate when the excretory function of the kidneys is impaired, have a
deleterious effect on and cause damage to cardiovascular tissues. However, the link between PBUTs
and the cardiovascular complications of AKI and the pathophysiological mechanisms potentially
involved are unclear. This review aims to summarize available data concerning the participation of
PBUTs in the early and late cardiovascular complications of AKI.

Keywords: acute kidney injury; uremic toxins; cardiovascular dysfunction; indoxyl sulfate;
para-cresyl sulfate; indole-3-acetic acid

Key Contribution: The role of PBUTs in the cardiovascular consequences of AKI is not well defined.
This review summarizes the experimental and clinical evidence of the deleterious cardiovascular
effects of PBUTs observed in AKI.

1. Introduction

Acute kidney injury (AKI) is defined as the sudden loss of the kidney’s excretory
function, characterized by an increase in serum creatinine concentrations and/or a decrease
in urine output. The Kidney Disease Improving Global Outcomes (KDIGO) criteria clas-
sify AKI severity in three stages based on changes in serum creatinine levels and urine
output [1]. The prevalence of AKI is in constant progression, particularly in intensive care
units (ICU) [2–4]. Recent studies estimated that AKI affects approximately one in five
hospitalized adults and one half of those admitted to the ICU [5,6], in particular, the elderly
and patients with comorbidities, such as chronic kidney disease (CKD), diabetes mellitus,
and cardiovascular disease. AKI is associated with a poor outcome, with estimated hospital
mortality of 20% in high-income countries, which increases with AKI severity [5,7]. AKI is
frequently associated with remote organ dysfunction, particularly, in critically ill patients,
with a mortality rate that increases with the number of failing organs [8]. The impact of one
episode of AKI, even short-lived, has been associated in several studies with a high risk of
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developing CKD and mortality [9–11]. Indeed, AKI generates an acute uremic state that
results in not only electrolyte derangement and the disruption of volume homeostasis but
also the accumulation of metabolic waste, which can induce cell and tissue damage [12].
Gut-derived protein-bound uremic toxins (PBUTs), especially indoxyl sulfate (IS), para-
cresyl sulfate (PCS), and indole-3-acetic acid (IAA), are gut–microbiota metabolites that
accumulate in the blood when the excretory function of the kidneys decreases and are not
efficiently cleared following renal replacement therapy. Simultaneously, the accumulation
of gut-derived PBUTs may be enhanced by kidney disease-associated dysbiosis [13]. PBUTs
and their role in the cardiovascular complications of CKD have been extensively stud-
ied [14]. However, PBUTs may also generate early tissue damage and thus have deleterious
effects on the cardiovascular system during AKI. The purpose of this review article is to
summarize the available literature related to the cardiovascular complications of AKI and
the potential role of PBUTs.

2. Cardiovascular Complications in AKI Patients
2.1. Cardiovascular Complications during an AKI Episode

Early systemic complications of AKI generally include volume overload and electrolyte
and acid-base disturbances, particularly hyponatremia, hyperkalemia, and metabolic aci-
dosis. These AKI complications may directly or indirectly alter the vascular and cardiac
function and induce tissue damage, such as myocardial injury, by neuroendocrine, inflam-
matory, or hemodynamic mechanisms [15,16]. It is often difficult, however, to differentiate
complications related to AKI per se from those related to the underlying cause of AKI.
Indeed, a cardiorenal syndrome (CRS) with a complex pathological interplay between
the kidneys and the cardiovascular system can occur during AKI. CRS type 3 comprises
situations in which AKI precipitates and/or contributes to the development of acute car-
diac injury and/or dysfunction, such as acute decompensated heart failure (ADHF), acute
myocardial infarction (MI), and cardiac arrhythmias [17]. Although CRS type 3 is well
characterized, there is a paucity of data on its incidence and prevalence, provided that
most published studies have primarily focused on the late cardiovascular complications
of AKI after hospital discharge or have considered AKI as a complication in selected
cardiovascular settings, such as MI [18,19], ADHF [20], coronary angiography [21], or
stroke [22]. Nevertheless, AKI is becoming increasingly common worldwide, affecting one
in four patients hospitalized for cardiac disease, and appears to be a major contributor
to morbi-mortality [16]. Mechanisms linking AKI and cardiovascular complications have
been proposed [23], although the course of the pathophysiological events is still poorly
understood. The uremic state includes the release of pro-inflammatory cytokines that
impair the viability of endothelial and cardiac cells and induce leukocyte infiltration [24,25].
Activation of the renin-angiotensin-aldosterone system induces acute pressure overload
and promotes vascular and cardiac remodeling and the development of fibrosis [26,27]. A
role for galectin-3, a β-galactoside-binding lectin that plays an important role in cell sur-
vival, has also been described in cardiac diastolic dysfunction, inflammation, and fibrosis
after AKI [28]. However, the complex interaction between the kidneys and cardiovascular
system, in which they interact with each other and share common pathophysiological
mechanisms, makes it difficult to establish how an acute uremic state can contribute to
cardiovascular dysfunction. Further studies focusing on subsequent early cardiovascular
complications during AKI are required to verify this hypothesis.

2.2. Cardiovascular Complications after an AKI Episode

The risk of cardiovascular complications and mortality is well established in CKD
patients and attributed to the usual (high blood pressure, diabetes, etc.) and less common
risk factors (inflammation, PBUTs, etc.) [29,30]. Several clinical studies have also shown
a greater risk of late cardiovascular complications after an AKI episode. In a prospective
cohort of patients developing AKI within 30 days of cardiac surgery, postoperative AKI
was found to be associated with an increased five-year risk of myocardial infarction and
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heart failure, as well as increased all-cause mortality [31]. Moreover, in a prospective
study of 968 patients undergoing cardiac surgery, AKI stage and duration were linked
to cardiovascular events during the five years of follow-up [32]. AKI was also shown
to be associated with a risk of readmission for heart failure within the first two years of
hospital discharge for patients who had experienced an AKI episode, independently of
cardiovascular risk factors and a history of heart failure [33–35]. Patients who recovered
from dialysis-requiring AKI also had a higher long-term risk of global coronary events,
major adverse cardiovascular events (MACE) (nonfatal myocardial infarction (MI), cardiac
revascularization, and acute ischemic stroke events), and cardiovascular mortality, regard-
less of subsequent progression to CKD [36,37]. In a meta-analysis that included 254,408
patients, AKI was shown to be associated with a risk of severe cardiovascular events, such
as acute myocardial infarction and stroke, and the association was independent of CKD
development [38]. Silver et al. also explored the causes of death within the first year of
hospital discharge after an AKI episode [39]. Among the 43,422 (28%) patients who died,
28% died from cardiovascular events. Additionally, in 2016, Hsu et al. explored the link
between AKI and blood pressure in a cohort of 43,611 patients hospitalized in conventional
or intensive care units [40]. They showed that the AKI group was more likely to develop
high blood pressure than the non-AKI group. AKI thus appears to have contributed to
long-term cardiovascular risk, independently from progression to CKD in these studies.
On the contrary, Ikizler et al. studied the association of AKI with cardiovascular events,
taking into account the kidney function of patients before and after the episode of AKI [41].
They found that AKI was associated with heart failure and death irrespective of preexisting
CKD. However, this association was no longer significant after adjustment for the recovery
of kidney function and proteinuria three months after discharge. Similarly, in a cohort of
11,538 patients who developed hospital-acquired AKI, the risk of long-term MACE among
patients who fully recovered from AKI was lower than that of patients who did not fully
recover [42]. Compared to other studies, the risk of cardiovascular events appeared to be
dependent on kidney recovery after AKI in these cohorts.

Concerning these study results, the causal effect of AKI on the occurrence of late
cardiovascular complications is still a subject of debate. Notably, patients presenting with
AKI are generally older and present predisposing chronic conditions, such as diabetes
mellitus, which may, even after adjustment for confounding factors, contribute to the
observed greater risk of cardiovascular complications. In addition, a large proportion of the
studies focused on selected patients presenting with AKI in a cardiovascular disease setting.
These results also highlight the potential influence of the duration and severity of the AKI
episode and suggest an impact of the progression from AKI to CKD on the occurrence of
late cardiovascular complications after AKI. In this context, the accumulation of PBUTs,
particularly in severe and prolonged AKI, may contribute to the observed increased risk of
cardiovascular complications through induced endothelial, cardiac, and tubular injury.

3. Gut-Derived, Protein-Bound Uremic Toxins and Cardiovascular Dysfunction in
Experimental AKI Models

The formation and metabolism of IS, PCS, and IAA, from their precursors (indole for
IS and IAA and p-cresol for PCS), produced by gut microbiota, to their kidney excretion
through organic anion transporters (OATs) and the mechanisms that lead to their accumu-
lation in kidney disease, have been well described in recent reviews [14,43]. A number
of experimental studies have explored the relationship between gut microbiota and the
kidney in acute and chronic models, highlighting inter-organ crosstalk [44–46]. Kidney
failure is indeed responsible for the disturbance of the gut microbiota, and dysbiosis is
linked to the progression of kidney failure [13]. However, factors that may influence PBUT
accumulation in the gut–kidney axis appear to be different between CKD and AKI. In
CKD, external factors associated with a specific diet (low fiber intake), longterm antibiotic
treatment, phosphate binder treatment, and iron supplementation, and the internal factor
of high urea levels modify the gut microbiota and intestinal barrier permeability [47–50].
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Although AKI and CKD may share common factors, such as a specific diet or the use of
antibiotics [51], a reduction in short-chain fatty acid levels in AKI may play a specific role
in the formation of PBUTs by favoring an inflammatory state associated with intestinal
barrier disruption [13,46,52–55]. The following sections will focus on the cardiovascular
consequences of the main gut-derived PBUTs studied in experimental models of AKI.

3.1. Indoxyl Sulfate

Indoxyl sulfate (IS) is a PBUT that strongly contributes to endothelial damage during
CKD. IS is known to have many specific deleterious effects on the vascular wall, in particu-
lar, by decreasing endothelial relaxation, cell viability, and proliferation and by inducing
oxidative stress [56–59]. In addition, it promotes the expression of adhesion molecules,
such as ICAM-1 and MCP-1, which are associated with leukocyte extravasation, and alters
endothelial permeability [60–62]. Moreover, it is responsible for a pro-thrombotic state by
promoting tissue factor production [63,64]. A number of studies have also shown the toxic-
ity of IS for the heart, with cardiac pro-fibrotic, pro-hypertrophic, and pro-inflammatory
effects associated with the induction of oxidative stress [65–70]. However, in the specific
context of AKI, its role in vascular and cardiac dysfunction is poorly understood. A number
of studies have examined the vascular effects of IS in vitro using very short-term exposure,
which may mimic acute exposure to IS during AKI [58,60,64]. Dou et al. exposed endothe-
lial cells for five hours to four different concentrations of IS and showed an increase in
ROS production within one hour of exposure [57]. Moreover, endothelial cells showed
reduced viability and NO production after three hours of exposure to IS [59]. An increase
in tissue factor and ICAM-1 expression by endothelial cells was also found after two and
six hours of IS exposure, respectively [60,63]. Exposure of endothelial progenitor cells
(EPCs) to IS was shown to result in a decrease in EPC viability (less proliferation and
more senescence and autophagy) and the induction of oxidative stress in a dose-dependent
manner. In an animal model of AKI, consisting of a unilateral ischemia-reperfusion model
generated by the ligature of the left renal artery for 40 min, IS attenuated eNOs expression
in the endothelium of the arteries and ischemic kidney and reduced EPC mobilization from
the bone marrow [71]. More recently, two experimental studies highlighted the action of
acute IS exposure on the decrease in vasorelaxation in rat aorta linked to a reduction in
the release of NO [72,73]. Moreover, Savira et al. explored the role of IS in vascular and
cardiac dysfunction [74,75]. They showed that IS induced cardiomyocyte hypertrophy
and decreased vasorelaxation by activation of the ASK1 pathway. Furthermore, Shen et al.
demonstrated the action of IS on the endothelial expression of E-selectin mediated by IL-1β
in an AKI mouse model [76]. E-selectin expression was higher in kidney endothelial cells
from AKI mice than in controls. In vitro, E-selectin expression was directly associated
with the IS concentration in endothelial cells pre-exposed to IL-1β. These effects were
associated with ROS production and higher monocyte adhesion to endothelial cells. As for
E-selectin, ICAM-1 expression was induced by IS in endothelial cells pre-exposed to IL-1β
in a second study [77]. The acute effect of IS on leukocyte adhesion and extravasation was
also confirmed in a rat model exposed to various times of IS infusion [62]. The acute cardiac
toxicity of IS was also explored in vitro [78]. The authors demonstrated a dose-dependent
increase in cardiomyocyte apoptosis after 24 h of IS exposure. These results were con-
firmed by animal studies. Shen et al. highlighted cardiac dysfunction with pathological
changes in echocardiography parameters associated with higher brain natriuretic peptide
(BNP) levels and greater cardiomyocyte apoptosis in AKI mice. In addition, treatment by
AST-120, an oral charcoal adsorbent that decreased IS levels, improved all parameters [77].
Furthermore, they evaluated the cardiac effect of EPC treatment in AKI mice [79]. AKI
mice infused with EPC showed improved cardiac echocardiography parameters, with less
cardiomyocyte apoptosis initially induced by IS and IL-1β. These results were associated
with the inhibition of a pro-apoptotic protein by EPC, probably through the decrease in
IS and IL-1β concentrations. These studies confirmed the direct role of IS on vascular and
cardiac cell toxicity and induction of the pro-inflammatory and oxidative states during
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AKI. However, the association between IS, cardiovascular dysfunction, and cardiovascular
complications can also be explained by the pathological action of IS on kidney disease
progression. Indeed, several experimental studies have highlighted the effect of IS on
the development of renal fibrosis through oxidative stress, the activation of endoplasmic
reticulum stress, and the epithelial-mesenchymal transition [80–85].

3.2. Para-Cresyl Sulfate

As does IS, para-cresyl sulfate (PCS) shows toxicity towards vascular and cardiac tis-
sues, mainly explored in CKD. It is responsible for endothelial damage, with alterations in
endothelial wall permeability, microparticle release, and leukocyte recruitment [62,86,87]. It
also acts on the migration and proliferation of vascular smooth muscle cells [88]. Addition-
ally, PCS is directly involved in cardiac diastolic dysfunction by increasing cardiomyocyte
apoptosis and ROS production [89]. Similar to IS, it is also responsible for cardiomyocyte
hypertrophy and fibroblast collagen synthesis subsequent to the activation of ASK, a reg-
ulator of the cellular stress response [74]. P-cresol, the precursor of PCS, also has effects
on the endothelium, with a decrease in cell proliferation and the disruption of adherent
junctions [58,90]. Only a few experimental studies investigated the role of PCS on vascular
and cardiac dysfunction during AKI. Two in vitro studies assessed the stimulatory effect of
acute exposure to PCS on leukocytes, showing oxidative burst activity [91,92]. This action
was associated with increased leukocyte adhesion to the vascular wall after a short-term
infusion of PCS in vivo [62]. Moreover, Gross et al. demonstrated its deleterious effect on
vascular reactivity in an ex vivo model of aortic rings exposed to PCS [93]. After short-term
exposure to PCS (30 min), the thoracic aorta showed pathological constriction mediated by
rho-kinase activation. This effect was associated with ROS production by endothelial and
vascular smooth muscle cells in vitro. Moreover, PCS induced higher vascular permeability
in rat vessels after 10 to 60 min of exposure at various concentrations, suggesting that
PCS can induce endothelial barrier dysfunction [94]. Moreover, Huang et al. explored the
effect of various concentrations of PCS on cardiomyoblasts in vitro [95]. After short-term
exposure to low-level PCS, the cardiomyoblasts showed less proliferation and mitochon-
drial hyperfusion. This effect was considered to be a stress-induced response to acute PCS
exposure. P-cresol (the gut precursor of PCS before metabolic sulfatation by the liver) was
also shown to be responsible for altered cardiomyocyte contractility and the disruption
of gap junctions after acute exposure [96]. However, the acute action of PCS in cardiac
dysfunction needs to be evaluated in animal studies. As for IS, PCS is also responsible for
the progression of renal fibrosis subsequent to the induction of oxidative stress leading to
ROS production [85,97–99]. Thus, its action on the AKI to CKD transition should also lead
to CKD-associated cardiovascular complications.

3.3. Indole-3-Acetic Acid

Indole-3-acetic acid (IAA), another PBUT, is also known to have adverse effects on
vascular function during CKD. Its main role is to activate aryl hydrocarbon receptor (AhR)
signaling pathways, similar to IS [63,100]. Thus, it is responsible for ROS production
and pro-inflammatory molecule Cox-2 activation, as well as tissue factor production, in
endothelial cells [63,101]. Three experimental studies explored the effect of very short-
term exposure of endothelial cells to IAA in vitro and highlighted its pro-inflammatory
and pro-apoptotic effect on endothelial cells and their progenitors [63,101,102]. However,
these results need to be completed by in vivo studies. Moreover, the potential deleterious
actions of IAA on the heart are still unknown. Furthermore, its contribution to the possible
transition from AKI to CKD and, thus, to CKD-associated CV complications has not been
specifically studied.
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4. Gut-Derived Protein-Bound Uremic Toxins and Cardiovascular Dysfunctions in
Clinical AKI Studies
4.1. Gut-Derived Protein-Bound Uremic Toxin Accumulation in AKI Patients

Data on PBUT accumulation in AKI patients are limited, and most of the studies
focused on the IS retention profile. The main characteristics of these studies are presented in
Table 1. The relative heterogeneity concerning sample size, population background, clinical
setting, the timing of measurements, and severity of AKI may limit the interpretation of
the data. The kinetics of IS accumulation appear to follow those of serum creatinine [103],
and two studies showed that IS levels increase with the severity of AKI [104,105], the
highest observed among patients presenting with severe AKI and those who needed renal
replacement therapy support. Except for one study reporting a particularly high level [71],
the observed level of total IS remained relatively low compared to that in CKD [106],
ranging from 0.64 to 3.33 µg/mL. Such relative variability of observed levels could be
explained by several factors, notably a change in the composition of the gut microbiota
relative to the patients’ genetic background and clinical setting. Indeed, several factors, such
as systemic inflammation, parenteral nutrition, antibiotics, or intestinal permeability, may
alter the composition of the gut microbiota [51]. On the other hand, systemic inflammation
and fluid accumulation, resulting in a decrease in serum albumin levels, may also reduce
the measured total serum level of IS, particularly in septic AKI. Two studies analysed the
correlation between IS levels and recovery from AKI [104,105], and one study reported an
independent association between total IS levels at AKI diagnosis and 90-day mortality [107].
In addition, the complications of AKI patients may depend on the elimination time course
of PBUTs, reflecting the AKI recovery rate independently from renal replacement therapy.
Indeed, in the study of Veldeman et al., a decrease in IS and PCS concentrations was
observed only in the group of patients with a favorable AKI outcome [104]. As indicated
previously, gut-derived PBUTs may accumulate, resulting not only from a decrease in
kidney excretion but also from kidney-disease-associated dysbiosis. The gut–kidney axis
has been investigated in a number of clinical studies, mostly in CKD [108–111]. In septic
AKI, impaired gut barrier permeability, with the translocation of bacterial and inflammatory
molecules, has also been shown to be associated with the progression of kidney injury and
the AKI to CKD transition [112,113]. However, more clinical data are needed to precisely
explore the gut–kidney axis and both PUBT generation and accumulation in AKI.
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Table 1. Observational studies of the effects of PBUT accumulation in AKI patients.

Authors (Year)
Country Setting No. of Patients Staging of AKI Measurement Uremic Toxin Level

(µg/mL) Main Results

Wu et al. (2013) [71]
Taiwan Post-cardiac surgery AKI 41

AKIN
Stage 1: 17 (41.4)
Stage 2: 12 (29.3)
Stage 3: 12 (29.3)

tIS at AKI diagnosis tIS mean ± SD
28.78 ± 20.04

Negative correlation between tIS level
above 51.16 µg/mL and the human
endothelial progenitor cell count.

Veldeman et al. (2019) [104]
Belgium

Sepsis in ICU
Septic shock (63%) 194

RIFLE
No AKI: 64 (33.0)

Risk: 40 (20.6)
Injury: 57 (29.4)
Failure: 33 (17.0)

tIS and tPCS at admission
(D0) and Dend (D4 or day

before drop-out)

tIS at D0 median [IQR]
No AKI: 0.258 [0.097–0.610]

AKI: 0.64 [0.252–1.802]
-Risk: 0.377 [0.231–0.908]
-Injury: 0.50 [0.169–1.716]

-Failure: 1.785 [0.762–3.400]

-Correlation between severity of AKI and
tIS level.

-Decrease in tIS in all AKI groups between
D0 and Dend.

-No change in tIS level observed between
D0 and Dend in cases of worsening of

kidney function, but it decreased in cases
of recovery.

Wang et al. (2019) [107]
China Hospital-acquired AKI 262

KDIGO
Stage 1: 119 (45.5)
Stage 2: 63 (24.0)
Stage 3: 80 (30.5)

tIS at baseline, AKI
diagnosis (n = 262) and

7 days after (n = 89)

tIS at AKI diagnosis
mean ± SD

2.7 ± 0.8

tIS > 2.74 µg/mL was associated with an
increased Day 90 mortality rate with an

aHR [95%CI] of 2.92 [1.76–4.86] p < 0.001.

Andre et al. (2020) [103]
France Post-cardiac surgery AKI 8

Time course of tIS, tPCS,
and tIAA serum

concentration according to
that of creatinine

Peak concentration (min–max)
tIS: 1.52 (0.35–2.62)

tPCS: 9.33 (4.30–16.00)
tIAA: 0.97 (0.60–1.80)

Serum creatinine-like accumulation and
elimination profiles

Selim et al. (2021) [105]
Egypt Toxic AKI in ICU 74

RIFLE
Risk: 15 (20.3)

Injury: 28 (37.8)
Failure: 31 (41.9)

tIS and f IS within 48 h after
toxic AKI, then at weeks

1 and 2 (or as ended earlier)

Basal tIS median [range] *
tIS 3.33 [0.00–37.31]

Correlation between AKI severity and
IS level.

Association between basal IS level and
AKI recovery at discharge

No association between IS level and
in-hospital mortality

* estimated according to Figure 3 in reference [105]. aHR: adjusted hazard ratio, IAA: indol-3-acetic acid, IS: indoxyl sulfate, PCS: para-cresyl sulfate, tIS: total IS, fIS: free IS.
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4.2. Association between Gut-Derived Protein-Bound Uremic Toxins and Cardiovascular Outcomes
of AKI Patients

The role of gut-derived PBUTs in AKI complications is as yet underexplored. A
growing body of evidence supports the contribution of altered renal vascular function in
the initiation and extension of tubular injury. For example, in a large cohort of cardiac
surgery patients, Mansour et al. showed that postoperative elevation of the levels of
VEFG and PGF, two proangiogenic markers, was associated with a reduced risk of AKI
and death, whereas an elevation in the level of VEGFR1, an antiangiogenic factor, was
associated with an increased risk of AKI [114]. Furthermore, EPC infusion improved the
ischemic-AKI prognosis in animal models. On the contrary, several clinical studies showed
a decrease in the number and impaired function of EPCs in CKD patients. However, data
regarding the relationship between acute UT accumulation and cardio-vascular dysfunction
are limited to a study involving 41 patients who developed post-cardiac surgery AKI [71].
In this study, Wu et al. showed a negative correlation between IS levels and the number
of circulating EPCs. However, this negative correlation was only observed for an IS
concentration > 51.16 µg/mL, which is up to 10-fold higher than that observed in other
clinical studies in AKI settings, and no data on the clinical outcome were available in
this experimental study. Indeed, most clinical studies have explored the relationship
between IS levels and mortality and/or short-term progression of AKI. As suggested in
animal models, the deleterious tubular effects of acute PBUT accumulation during AKI
may also precipitate the development of or progression to CKD and thus indirectly favor
the occurrence of cardiovascular complications [85]. Clinical studies on the long-term renal
and cardiovascular effects of UT accumulation during AKI are lacking, and this topic merits
further research. Figure 1 summarizes the potential physiopathological link between acute
IS accumulation and cardiovascular complications after AKI.
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Figure 1. Hypothetical pathophysiological link between acute indoxyl sulfate accumulation and car-
diovascular complications after AKI. The serum creatinine and indoxyl sulfate serum concentration-
time curves are drawn from data obtained from a patient who developed AKI after cardiac
surgery [104]. AKI, acute kidney injury; CKD, Chronic kidney disease; DNA, deoxyribonucleic
acid; eNOS, endothelial nitrite oxyde synthase; NO, nitrite oxyde; ROS, reactive oxygen species.
Created with BioRender.com.

5. Conclusions

There is much evidence for the cardiovascular toxicity of PBUTs, and their association
with cardiovascular events and mortality during CKD has been extensively studied. Data
showing that PBUTs can also accumulate in the blood during AKI are now available, al-
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though the levels reported appear to be lower than those observed in CKD. Additionally,
experimental studies strongly suggest that short-term exposure to PBUTs can be sufficient
to produce deleterious vascular and cardiac effects. Among gut-derived PBUTs, IS has
been the most extensively evaluated in AKI, showing structural damage (pro-apoptotic
effect and oxidative stress on endothelial and cardiac cells) and a functional impact (impair-
ment of vasoreactivity and alteration of diastolic cardiac parameters) in vitro and in vivo.
Furthermore, IS toxicity is also related to the release of pro-inflammatory cytokines and
the expression of adhesion molecules, which may contribute to increased susceptibility to
sepsis complications in critically ill patients. Although the pathological effects of PCS have
been less well described, it acts equally on vasoreactivity impairment and endothelial and
cardiac cell viability. In clinical studies, the level of PBUTs, mostly that of IS, appear to cor-
relate with short-term mortality [107], but with several confounding factors, in particular,
in cases of sepsis. Nevertheless, available data concerning the participation of PBUTs in
the early and late cardiovascular complications of AKI are relatively scarce compared to
those on CKD, resulting in the lack of a strong argument, and justifies specific additional
experimental and clinical studies. The use of PBUT kinetics (concentration, amplitude,
and duration) during AKI as a prognostic marker in the management of AKI patients also
requires further exploration. Until the link between PBUT levels and the CV complications
of AKI have been formally established, post-AKI therapeutic management will continue to
be based on the standard recommendations for controlling CV risk, consisting of monitor-
ing, which could be reinforced (or at least considered) independently of the establishment
of CKD [115].
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