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Transcriptional states of
CAR-T infusion relate to
neurotoxicity – lessons from
high-resolution single-cell
SOM expression portraying

Henry Loeffler-Wirth1*, Michael Rade2, Arsen Arakelyan3,4,
Markus Kreuz2, Markus Loeffler1,5, Ulrike Koehl2,
Kristin Reiche2 and Hans Binder1,3

1Interdisciplinary Centre for Bioinformatics (IZBI), Interdisciplinary Centre for Bioinformatics, Leipzig
University, Leipzig, Germany, 2Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), Leipzig, Germany, 3Armenian Bioinformatics Institute (ABI),
Yerevan, Armenia, 4Research Group of Bioinformatics, Institute of Molecular Biology of the National
Academy of Sciences of the Republic of Armenia, Yerevan, Armenia, 5Institute for Medical
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Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for

patients with B cell lymphomas, however it copes with partly severe adverse

effects like neurotoxicity. Single-cell resolved molecular data sets in

combination with clinical parametrization allow for comprehensive

characterization of cellular subpopulations, their transcriptomic states, and

their relation to the adverse effects. We here present a re-analysis of single-cell

RNA sequencing data of 24 patients comprising more than 130,000 cells with

focus on cellular states and their association to immune cell related

neurotoxicity. For this, we developed a single-cell data portraying workflow

to disentangle the transcriptional state space with single-cell resolution and its

analysis in terms of modularly-composed cellular programs. We demonstrated

capabilities of single-cell data portraying to disentangle transcriptional states

using intuitive visualization, functional mining, molecular cell stratification, and

variability analyses. Our analysis revealed that the T cell composition of the

patient’s infusion product as well as the spectrum of their transcriptional states

of cells derived from patients with low ICANS grade do not markedly differ from

those of cells from high ICANS patients, while the relative abundancies,

particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR

positive cells, vary. Our study provides molecular details of the transcriptomic

landscape with possible impact to overcome neurotoxicity.

KEYWORDS

single-cell transcriptomics, CAR-T cell immunotherapy, data portraying,
transcriptional states, bioinformatics workflow
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Introduction
Chimeric Antigen Receptor (CAR)-T cell therapy is a

promising treatment option for patients with B cell

lymphomas. It belongs to the family of immunotherapies

which share the concept of directing the patients’ immune

system against the tumor by releasing breaks of immune

regulation and suppression (immune checkpoint inhibition),

by boosting an immune response using signaling molecules

(cytokine therapy), or by infusion of adapted immune cells to

optimally target and dispose the malignant cells (cellular

immunotherapy, tumor-infiltrating lymphocytes, and cancer

vaccine therapy) (1). Specialized T cells with CAR have proven

efficacy in therapy of diverse hematopoietic and lymphatic

malignancies such as leukemia (2, 3), myelomas (4, 5) and

lymphomas (6–8). CAR-T cells are characterized by receptor

proteins that have been engineered to target binding partners as

specific as possible for a particular disease, for example CD19 for

therapy of B cell lymphoma. Until now, three generations of

receptor proteins have been developed, incrementally

optimizing the signaling domain of the receptor construct

(9, 10).

However, with increasing efficacy of the therapies, immune

responses unleashed by immunotherapies cause a series of adverse

outcome effects, particularly the cytokine release syndrome (CRS)

and neurotoxicity (immune effector cell-associated neurotoxicity

syndrome - ICANS) often accompany CAR-T cell therapies (10),

rendering risk estimation prior to therapy, safety monitoring and

adjunctive treatments indispensable for a save cancer therapy (11).

As part of the project imSAVAR (Immune Safety Avatar:

nonclinical mimicking of the immune system effects of

immunomodulatory therapies; www.imsavar.eu), we aim at

identification of potential markers, understanding underlying

mechanisms and, in perspective, at providing prediction models

for adverse effects of immunomodulatory therapeutics.

Recent studies applied single-cell RNA sequencing to

analyses the transcriptome of the infusion products and/or

blood samples of patients undergoing anti-CD19 CAR-T cell

therapy (12–14). The data set published by Deng et al., 2020 (14)

contains 24 infusion product transcriptomes along with

information about adverse effects. Their results suggest that

heterogeneity in the cellular and molecular features of CAR-T

cell infusion products contributes to variation in efficacy and

toxicity after therapy of lymphomas. In our re-analysis of this

data, we extend the original analyses by an in-detail

characterization of the expression landscapes with single-cell

resolution and with special focus on T cell subpopulation

composition, their transcriptional states, and their relation to

neurotoxic side effects. For this, we developed the so-called

single-cell data portraying approach by adapting and

extending our previous work on self-organizing maps (SOM)

portraying of transcriptome, methylome and genome data in
Frontiers in Immunology 02
bulk settings (15, 16), and its application in the context of cancer

(17–20), inflammatory diseases (21–23), and health research (24,

25). The method is based on SOM machine learning (26, 27),

and supplements it with extensive analysis and visualization

options including pseudo-temporal ordering (28, 29), combined

omics studies (30), and proof-of-principle applications in single-

cell experiments (31, 32). It is available as R-package ‘oposSOM’

on Bioconductor and GitHub repositories (16), and part of the

results of the previous studies are available in an interactive data

and results browsing tool (33).

In this publication, we present comprehensive data

portraying of the infusion products of CAR-T cell

immunotherapy in order to decipher transcriptomic

landscapes in terms of defined activation patterns related to

the different T cell subpopulations, cellular functions, variations

as a function of the CAR construct, and neurotoxicity

complications. We will demonstrate capabilities of the single-

cell data portraying to disentangle complex co-expression

relations of the genes as well as the broad similarity and

variability continuum of more than hundred thousand cells.

Our analysis revealed that the transcriptional states of cells

derived from patients with low ICANS grade do not differ

from those of cells from high ICANS patients. On the other

hand, their relative abundancies vary markedly thus making

relative frequencies of distinct cell states a potential indicator for

adverse effects.
Materials and methods

Pre-processing of scRNA-Seq data

Single-cell RNA sequencing data of the infusion product of

24 patients undergoing anti-CD19 CAR-T cell therapy was

obtained from Gene Expression Omnibus, accession number

GSE150992 [(14), see Table S1 for patient characteristics]. We

used the Seurat R-package (34) to process gene counts into

expression values. Parameters for quality control and data

filtering were adopted from Deng et al. (14). Subsequently,

standard Seurat processing workflow was utilized for data

integration, normalization and scaling, detection of variable

features, t-SNE computation and cell clustering. Please refer to

the Supplementary Material and (14, 35, 36) for details.

Eventually, we obtained data on 20,649 genes in 133,405 cells,

which are distributed over 30 clusters.
T cell subpopulation and calling of cell
cycle phases

We applied a set of consensus markers to assign

subpopulations of cells derived from the infusion products.

CD3 was used as marker gene for T cells, which were
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subsequently divided into major cell types using CD4 and

CD8A/B markers, respectively, and further into naïve, effector,

and memory T cells. An overview of all subpopulation markers

can be found in the Supplementary Material. CAR-positive T

cells were defined using the CAR-specific FMC63-CD19scFV

marker (14) (see Supplementary Figure S4A for fractions of

CAR-positive cells in the infusion product samples).

To assign cell cycle status to each cell, we utilized two

established gene sets for S phase and for G2M phase,

respectively (37), as input for the Seurat cell cycle scoring

functionality (34). In result, cell cycle status is obtained for

each single cell in terms of G1, G2M, or S phase assignment.
Down sampling to meta-cells

Self-organizing map (SOM) machine learning was applied

for gene clustering, dimension reduction, and multidimensional

scaling based on single-cell expression data (16, 31). For this,

downsampling was applied to reduce runtime and computer

memory requirements of the SOM training. It consists of three

steps: The first step is based on unsupervised cell clustering as

provided by Seurat. Each of these clusters is then divided into

patient-specific sub-clusters in a second step. In the last step,

each of these patient-specific clusters is again subdivided by a

refinement k-means clustering, where each cluster centroid

forms a so-called meta-cell as a proxy for all single cells in the

cluster (see Figure 1 and Supplementary Material for details of

the downsampling approach).

Downsampling reduces the number of single cells, and thus

the runtime and memory usage of the SOM training by a factor

of about 100. Importantly, all relevant expression patterns of the
Frontiers in Immunology 03
single cells are preserved in the meta-cell data after

downsampling allowing for single-cell resolved downstream

analyses. For example, myeloid cells make up only 0.2% of all

cells, but their signature genes form a distinctive module as

shown below.
Self-organizing map and portraying of
expression landscapes

SOM machine learning was then applied to meta-cells using

mean expression values averaged over the single cells of each

meta-cell, respectively. The SOM algorithm realizes two main

tasks (26): Dimension of the single gene expression profiles was

reduced into a set of meta-gene profiles by clustering similar

gene profiles, followed by multi-dimensional scaling by mapping

of each gene into the two-dimensional SOM grid. We used a

parallelized SOM training algorithm implemented in

Bioconductor R-package ‘oposSOM’ (16). Further information

about the SOM training can be found in the Supplementary

Material and the references therein.

Processing of expression data using the SOM method allows

for comprehensive structuring and intuitive visualization of

transcriptome landscapes (15). It translates meta-gene

expression data into so-called expression portraits by aligning

the meta-genes in a square grid according to the SOM’s topology

and appropriate color-coding: We use a color gradient from dark

red (meta-genes over-expressed in the respective sample(s)) to

green (non-differential) to blue colors (under-expressed

meta-genes).

These portraits serve as fingerprint of transcriptional activity

of a meta-cell, a single cell or a subpopulation of cells (see
BA

FIGURE 1

Overview of the downsampling and upscaling processes: (A) In short: Single-cell RNA sequencing data is reduced to meta-cell data. After self-
organizing map (SOM) training using these meta-cells, data is upscaled to single-cell resolution. (B) In detail: scRNAseq data of 133,405 cells
was used to generate tSNE and cell clusters using standard Seurat preprocessing workflow. The resulting clusters were then further divided in a
refinement clustering step, resulting in 1,486 meta-cells. Expression data of these meta-cells were used for SOM training followed by definition
of eleven expression modules A–K Finally, analysis is upscaled to single-cell level by calculating module expression data for each single cell, and
stratification of the data by patterns of module activation (PATs).
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below). Notably, expression information of all individual genes

in the data set is represented in the portraits due to dimension

reduction. Different expression portraits can be directly

compared as the mapping of the genes to the meta-genes is

fixed at the same position in all portraits.
Expression modules and
functional annotation

SOM machine learning arranges meta-genes with similar

expression profiles in neighboring positions in the two-

dimensional grid, dissimilar ones are located more distantly.

In consequence, the expression portraits show smooth color

textures with red and blue spot-like regions of correlated meta-

genes concertedly over- and under-expressed, respectively.

These clusters of meta-genes, in turn, are associated to genes

differentially co-expressed in different cell types and states.

Data modularization is realized by clustering of meta-genes

into disjoint modules which combine into patterns of activated

modules (see below). Several modularization algorithms are

implemented in oposSOM (15, 16, 38). In this publication we

use the over-expression metric to define the expression modules:

Accordingly, meta-genes exceeding a given expression threshold

(here: 90% of maximum expression) were selected in each of the

portraits. Then, spot module clusters were extracted as adjacent

areas of the selected meta-genes. This approach ensures robust

extraction of differentially co-expressed gene clusters (15, 17–20,

24, 31, 39). The modules encompass potential marker genes for

the cell types showing specific overexpression of the respective

spot module. Importantly, the algorithm determines the

modules in an unsupervised fashion: Their number and co-

expression combinatorics are an intrinsic measure of the

complexity of expression patterns observed in the data.

The genes assigned to a particular expression module are

assumed to share a common functional background (40). For

functional annotation, we applied gene set enrichment analysis

based on a collection of more than 8,000 gene sets derived from

GeneOntology (41), GSEA (42), and KEGG (43) databases.

Right-tailed Fisher’s exact test was used in each module to

determine over-representation of set genes (38). Resulting top-

enriched gene sets provide a data-driven view on the functional

context of each of the modules.

As an option for hypothesis-driven functional mining,

functional gene sets such as the T cell subpopulation markers

are mapped into the SOM grid. Their localization in or near a

spot module may imply functional association.
Upscaling of meta-cell to single-cell data

Due to the vast number of single cells in the data set, a

downsampling and refinement clustering were necessary prior to
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the SOM training. The obtained meta-gene expression data

refers to the meta-cells instead of the single cells. For back-

transformation into the higher granular single-cell level we

applied support-vector machine- (SVM-) based prediction

model to generate meta-gene expression values from the

associated genes [see (44) and Supplementary Material]. This

transfer learning predicts the 1,600 meta-gene expression values

of each single cell in order to generate their expression portraits

without the necessity to re-run the SOM algorithm. Module data

is calculated for each single cell as the mean expression averaged

over all corresponding module genes.
Module activation patterns

Analysis of single-cell data provides eleven spot modules

labelled with letters A- K. The most frequent modules are B and

C, activated in 38% and 20% of all cells, respectively (see below).

Rarest modules are F and K activated in 0.1% and 1.1% of the

cells only (see Supplementary Table S2). Each cell can show

either a single activated spot module, or combinations of them

defining the particular module activation pattern (PAT) of the

respective cell (17, 24). PATs are labelled using letters assigning

the activated modules. For example, PAT ‘B C E’ denotes a cell

with modules B, C, and E activated. In these labels, the module

letters are ordered according to overall activation frequency of

the modules across all cells, with the first letters referring to more

abundant modules and the later le t ters to rare ly

activated modules.

The activation state of a module is determined by its

expression value in a particular cell in comparison to the

standard deviation of all module expression value in all cells.

To generate PAT labels also for cells with less pronounced

differential expression, we define so-called major and minor

PATs, depending on the threshold applied: A cell assigned to a

major PAT shows expression values of all activated modules

exceeding one standard deviation of all module expression

values. A minor PAT implies that all activated modules exceed

a threshold of 0.5 x standard deviation with however at least one

of the modules falling below one standard deviation.

PATs found in less than 0.5% of all cells (=667 cells) were

rejected from further analysis to focus on recurrent patterns.

A cell with no activated expression modules is assigned to ‘none’

PAT. In total, 46,010 cells (34%) were classified into 39 major

PATs, another 73,777 cells (55%) into the corresponding

minor PATs, and 13,618 cells (10%) remain unclassified

(‘none’ PAT).

Hence, a PAT subsumes a group of cells showing a similar

expression pattern, which, in turn, can distribute over different

cell populations. Enrichment of PATs in the different cell

subtypes (e.g., T cell subpopulations, ICANS groups) was

calculated using Fisher’s exact test based on the PAT

frequencies among the cells in the sets. By comparing the PAT
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frequencies of two cell subpopulations, we extracted a virtual ‘PAT

flow’. The algorithm iteratively balances over-represented PATs in

one part of the cells and most similar under-represented PATs in

the other, and uses the differential frequencies to create a flow

graph. An example is given in the Supplementary Material.
Results

Decomposition of cells into
functional subpopulations

The infusion product of anti-CD19 CAR-T cell therapy

comprises a variety of different T cell subpopulations,

alongside a relatively small fraction of myeloid cells (14, 45).

According to our classification scheme, T cells are defined as

CD3 expressing (CD3+) cells and make up 99% of the total

number of 133,405 cells (Figure 2A). Of those, only less than

0.5% are in a naïve state (Supplementary Table S3). About 0.2%

of all cells are assigned as myeloid cells, expressing CD33 or

CD11B instead of CD3, another 0.8% of the cells do not express
Frontiers in Immunology 05
any of the common immune cell markers CD3, CD19, or CD33.

These results are in line with the targeted infusion quality (46),

and serves as an option of molecular monitoring for

quality assurance.

T cells are subdivided into CD4+ and CD8+ subpopulations,

and further into the functional states naïve, memory, regulatory,

helper, and cytotoxic T cells (Figure 2A). Th1, CD4+ Treg and

CD8+ Tc cells thereby constitute the most frequent states

and will be addressed in subsequent analysis steps. Naïve and

memory cell subpopulations not shown in Figure 2A comprise

less than 5% of all cells (see Supplementary Table S3).

Next, we investigated the number of CAR-positive (CAR+)

cells as defined by the expression of the FMC63-CD19scFV

marker (14). We found an overall proportion of about 24% of all

cells (Figure 2B), which is in line with previous results (14). This

percentage differs slightly between the CD4+ and CD8+ cells

(34% and 21%, respectively), reflecting varying efficiency of the

CAR gene transfer in these subpopulations (46, 47). About 8,000

cells (≙6%) are found to be double-positive CD4+CD8+. In

total, 29,215 cells are either CAR+ CD4+ or CAR+ CD8+

(Figure 2C and Supplementary Figure S6).
B C

A

FIGURE 2

Cellular identity decomposition using consensus markers: (A) Assignment of T cell subpopulations and t-SNE projection. Percentages refer to
total number of cells in the data. (B) CAR positive cells decompose into CAR+ CD4 and CD8 cells, respectively. A small population of ICANS-
associated cells (IAC) with myeloid characteristics (14) segregate in a separate cluster as indicated. (C) CAR expression as a function of CD8
expression in CD3+ T cells reveals that double positive cells express both markers, while single positive and negative populations distribute
along the y- and x-axis, respectively. Proportions given in the figure relate to the total number of 132,236 CD3+ T cells in the data set.
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Data portraying and modularization of
the single-cell transcriptomes

We adapted our data portraying workflow developed for

bulk transcriptomics to single-cell RNAseq data, which enables

application of a series of downstream analysis tasks such as gene

clustering and mapping into SOM space, visualization options,

data modularization, function mining, and diversity analyses

(15, 16, 27, 38). We supplemented the workflow with

downsampling and upscaling steps to handle the large number

of cells (Figure 3A). Their expression landscape portraits serve as

fingerprint of the transcriptional state of the respective cell types

which, in turn, are characterized by clusters of concertedly

upregulated genes seen as colored spot-like areas (Figure 3B;

red-to-blue refers to high-to-low expression, respectively): For

example, CD4+ Treg and Th1 share common over-expression of

genes located in the top-right and bottom-right corners of the

portraits, with Th1 cells additionally showing over-expression of

genes in the top-left corner. Notably, these genes are also over-

expressed in the CD8+ Tc cells, together with CD8 specific genes

located at the bottom edge of the map. Please note that here and

in subsequent analyses the three subpopulations are restricted to

mono-functional cells, i.e. cells that are assigned to only one

functional state as defined by the marker genes. The

characteristic spot-like patterns of the expression portraits

segment into prominent regions of co-over-expressed (red

spots) and co-under-expressed genes (blue spots). Such genes
Frontiers in Immunology 06
sharing a common mode of expression embody the so-called

expression modules, clusters of co-regulated genes with coherent

functional background (38, 48). The number of expression

modules observed in the portraits characterizes the intrinsic

diversity of the underlying transcriptional state space (15). The

module map summarizes the global spot patterns, showing 11

modules labelled with capital letters A – K (Figure 3C). The

functional context of spots A- C located in the left upper corner

associates with cell cycle and proliferative activity including

mitotic organization, DNA replication, cell division and

biogenesis of cellular components (Figure 3C; top-5 enriched

biological processes are shown for each module). Modules G – K,

located on the bottom edge, enrich genes related to immune

response, mainly responsible for adaptive immunity,

inflammation, leucocyte proliferation and chemotaxis. Note

that each single gene (as represented by individual Ensembl-

IDs) can be assigned to only one module. Overlapping functions

shared by multiple modules consequently refer to subsets of the

utilized gene ontology signature (41), showing distinct modes of

differential expression.
Expression modules characterize specific
functions of T cells

The modules differ strongly in their absolute expression levels

averaged over all T cells (Supplementary Figure S8) and in their
B C

D

E

A

FIGURE 3

Expression landscape of T cells: (A) Flow chart of single-cell data portraying workflow (see Supplementary Figure S5 for more details).
(B) Expression portraits of most abundant subpopulations. Red and blue pixels represent meta-genes over- and under-expressed in the
respective subpopulation, respectively, meta-genes colored in green show no differential expression. (C) Module definition and functional
annotation. (D) Mean module differential expression averaged over all cells in the three main subpopulations, and grouped by subpopulation and
by cell cycle phase, respectively. (E) Mapping of T cell and immune cell subpopulation makers.
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differential expression level between the three main subpopulations

(Figure 3D): Overexpression of modules B and J is observed in Th1

cells (module B) and in CD8+ Tc cells (B and J). Module D shows

by far highest overall expression level in all T cells, which can be

therefore considered as T cell housekeeping module (see

Supplementary Figure S8). The Tc specific spot module J is

characteristic for CD8+ cells while CD4+ Treg and Th1 show

similar patterns of modules C – I. The cell cycle associated module

B is, on average, over-expressed in Th1 and Tc cells, which is mainly

caused by a higher fraction of cycling cells among them (see below).

This result is supported by the differential module expression

grouped by cell cycle phases (Figure 3D, right part). It clearly

shows activation of module B in the G2M and S phases. Modules A

and C can be seen as a weaker signature of cycling cells in G2M

(both modules) and S phases (module C only), while module H is

over-expressed in G1 phase resting cells.

Complementary to the functional enrichment analysis, we

projected common immune cell markers into the map

(Figure 3E). Genes coding for CD69 and the CD3 delta, epsilon

and gamma chains are contained in module H altogether,

characterizing baseline T cell functionality. CD25, a common T

cell activation marker, is located in module C, which is therefore

considered as a co-signature of cell cycling together with module B.

Markers of CD8 alpha and beta are found in module J together with

IFNg, PRF1, GZMA, and GZMB, which makes it the signature
Frontiers in Immunology 07
module for all CD8+ T cells. In general, we find a marked

asymmetry of the distribution of these markers over the map:

Only three of them are located in the top-left region of the map

referring to cell cycle activity, while the other markers mainly

distribute in the right lower region in or near the modules F – K,

referring to different immune response mechanisms. Immune

checkpoint inhibitors such as LAG3 and CTL4 associating with T

cell exhaustion and ICANS are found in modules J and G,

respectively (see below). CD8 T cell exhaustion was previously

found to associate with poor treatment response and high ICANS in

immune therapies of lymphomas (49). Genes of another ICANS-

related signature (ICANS associated cells, ‘IAC’ (14)) locate in

module F (IL1B) and K (SIRPA, LILRB4, CD68).

In summary, SOM portraying characterizes the transcriptomic

states of the different T cells in terms of functionalmodules (Table 1).

They can be understood as combinatorial building blocks of cellular

functions including cell cycle and immune response potentially

related to ICANS.

Combinatorial activation of expression
modules deciphers T cell heterogeneity

The expression landscape of T cell subpopulations as shown

in Figure 3A can be understood as a superposition of expression

patterns originating in the composition of the corresponding
TABLE 1 Characterization of the expression modules.

Module Major characteristics Cell cycle Cell type a Key genes in/near module

A Cycling T cell signature cycling cells
(G2M & S
phases)

CD4+ & CD8+ effector cells (≈20-25%) CCNE2, CDC23

B Main cycling T cell signature cycling cells
(G2M & S
phases)

CD4+ & CD8+ effector cells (≈30-35%) CD25, CD103
CCNA2, CCNB1, CCNB2, CDK1, CDK4

C Cycling T cell signature (S phase) cycling cells
(S phase)

CD4+ & CD8+ effector cells (≈20-30%) CCNH, MYC

D High expression T cell housekeeper
module

cycling cells
(S phase)

CD4+ effector cells:
Treg (≈20%), Th1 (≈20%), Th2 (≈40%), Th17 (≈55%),
Th9 (≈80%)

SKP1, PSMA1, PSMB10, PSMD8, PSME1,
FKBP1A

E Co-activated with D, mainly in CD4+
cells

unspecific CD4+ & CD8+ Treg (≈25%)
Th1, Th2, Th9 & Th17 (≈25-35%)

CCND3, CDKN2A

F Myeloid cell signature (rare) unspecific Myeloid cells
(≈85%)

CD33, CD11C, CD163
CCNA1, CCND1

G Treg & Th signature module resting cells
(G1 phase)

CD4+ & CD8+ Treg (≈40-45%)
Th1 (≈30%), Th2 (≈40%)

CD4, FOXP1, CTLA4

H Baseline signature of G1 and resting
CC cells

resting cells
(G1 phase)

All T cells
(≈15-20%)

CD3, CD44, CD62L, CD69
CDC25B, CDKN1B

I G1 & G2M signature unspecific CD4+ & CD8+ Treg & Th1
(≈15-20%)

CCND2, CDK6

J CD8 signature module unspecific CD8+ Tem & Tc (≈45%)
CD8+ Treg (≈20%)

CD8, LAG3, TIM3, IFNg, CCR5,
PRF1, GZMA, GZMB

K Myeloid cell signature (rare) unspecific Myeloid cells
(≈85%)

CCR7, BTLA, PDCD1
aPercentages refer to the fraction of the cell type in relation to all cells expressing the module.
Major characteristics and genes are highlighted in bold font.
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cells. Next, we aimed at decomposing T cell populations

according to their cell cycle phase (i.e. cells in G2M or S;

Figure 4A): About 55% of CD4+ Treg cells are assigned to G1

phase, meaning that the majority of this population are either

cells with resting cell cycle or cycling cells momentarily in this

phase. Note that the signatures utilized for cell cycle assignment

do not distinguish between the G0 and G1 phases (37).

In Th1 and CD8+ Tc cells, the proportion of G1 cells is

smaller (39% and 34%, respectively), which explains the

observation that the main cell cycle signature (module B)

is over-expressed in Th1 and CD8+ Tc cells in comparison to

CD4+ Treg cells (Figure 3B, D). The expression profile of

module B expression is virtually identical in all three T cell
Frontiers in Immunology 08
subpopulations indicating their similar distribution over the cell

cycle phases (see Figure 4B and the corresponding portraits in

Figure 4C). Alike, the baseline G1 module H shows consistent

expression patterns in the subpopulations. The distribution of

module B expression supports the observation of its concerted

over- and under-expression depending on the cell cycle status:

The density plot of module B expression shows a bimodal

distribution (Figure 4D), reflecting the split into cells currently

in G1 phase (left peak) and cells in G2M or S phase (right peak,

p<10-16 in Fisher’s exact test).

The expression patterns analyzed so far refer to mean values

averaged over subpopulations of cells. To further decipher

heterogeneity of single-cell states with finer granularity, we
B C D

E

F

A

FIGURE 4

Segregation of Treg, Th1 and Tc subpopulations according to cell cycle phase: (A) Relative amounts of cells in G1, G2M and S phase,
respectively. (B) Module expression grouped by subpopulations and cell cycle phase. Blue dots represent under-expressed modules, red dots
over-expressed ones. (C) Corresponding expression portraits. (D) Distribution of module B expression in all cells shows bimodal character
according to resting (G1-phase) and cycling (S- & G2M-phase) cells, respectively. (E) Module localizations in the map and hierarchical clustering
of the PATs. * denotes that the PATs are not yet split into major and minor PATs. (F) The overview heatmap shows combinations of activated
modules (PATs; major and minor PATs are summarized in this plot). Rows represent the subpopulations and cell cycle phases, columns
represent the PATs clustered according to similarity of their average module expression. The numbers in the map show –log10 p-values derived
from Fisher’s exact test. CD8+ cells show activation of module J related to LAG3-mediated T cell exhaustion partly together with cell cycle
module B.
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decomposed them into module activation patterns (PATs),

which are defined by the combinatorial activation of modules

on single-cell level. For example, PAT ‘B J’ denotes a cell with

activated modules B and J (see Materials and methods section).

A total number of 40 PATs can be distinguished (see

dendrogram in Figure 4E). Enrichment analysis of the PATs

reveal that CD8+ Tc cells associate to activated module J as a

general feature (Figure 4F), which however splits into co-

activations either with modules A, B and E, or with D, and H,

depending on the cell cycle status. Cycling CD4+ cells reveal very

similar enrichment of module B, A, and E related PATs, which

however lack activation of J in contrast to the CD8+ Tc cells. G1

phase and resting CD4+ Treg cells differ from Th1 cells mainly

by stronger enrichment of PATs containing modules G and H

(see top-right part of the map in Figure 4F). PATs including

modules G and J are found in resting CD4+ and CD8+ Tc cells,

respectively, where activated modules J and G associate with

immune cell exhaustion mediated by immune checkpoints

CTLA4 (module G), and LAG3 and TIM1 (module J). These

results demonstrate that PAT analysis disentangles the

heterogeneity of cells of the same subpopulation into

functional sub-states.
Frontiers in Immunology 09
The landscape of module
activation patterns

Activation of the modules show diverse subpopulation

specific patterns. For a more detailed view, the 39 PATs

(excluding the ‘none’ PAT) were further split into major and

minor PATs according to a higher and lower stringency of the

activation threshold applied, respectively. The example portraits

in Figure 5A illustrate that the major PATs ‘B’ and ‘B D’ strongly

express the respective modules, while minor PAT ‘b d’ resembles

‘B D’ however with module D on lower activation level. The

major PATs comprise 34% of all single cells, minor PATs 55%,

and another 10% remain unclassified (‘none’-PATs). The

number of cells thereby varies over two orders of magnitude

from several thousand cells in the most abundant PATs to few

dozens in the infrequent ones (Figure 5A).

The t-SNE projection (36) visualizes similarity relations

between the PATs and relates them to the respective cell types

(Figure 5B). PATs, differing in only one or two modules, such as

‘H G’, ‘H E G’, and ‘D H G’, are located closely in the map as

expected (central left part). Also, major and minor PATs of the

same spot composition occupy close positions. The major/minor
B

C D E

A

FIGURE 5

Module activation patterns (PATs) of activated expression modules reveal modular combinatorics: (A) Frequency of the module combinations
detected in the cells. Major PATs collect samples with all modules exceeding the 1s expression threshold, minor PATs those with all modules >0.5s,
but some <1s (see also example portraits). (B) The PAT map is generated using t-SNE on PATs’ average expression values. PATs enriched in the
three major T cell subpopulations and cell cycle phases are highlighted (see panels (C–E). Red and blue areas include cycling (B-type) and LAG3-
exhausted (J-type) PATs, respectively. (C–E) t-SNE map of PATs enriched in all CD4+ Treg, Th1 and CD8+ Tc, respectively. Size of the dots scales
with enrichment (–log10 p-value in Fisher’s exact test, data is given as Supplementary File 2).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.994885
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Loeffler-Wirth et al. 10.3389/fimmu.2022.994885
pair ‘B C E’/’b c e’ deviates from this rule owing to the

enrichment of Th1 cells only in ‘b c e’ (p-value < 10-5 in

Fisher’s exact test) in contrast to ‘B C E’ (p-value = 0.31),

indicating different cellular origins of the respective

expression patterns.

Interestingly, the PATs group into clusters of different cell

cycle phases which differ for the three T cell subpopulations

(Figures 5C–E). This agrees with our finding that expression of

CD8+ Tc cells is distinct from CD4+ cells, which, in turn, show

similar expression patterns in the Treg and Th1 subpopulations.

It turned out that CD4+ Treg cells distribute over the widest

variety of PATs, with Th1 related PATs as a subset (‘H D/G’

PATs for G1 cells, and ‘B C D A/E’ for cycling cells). This leads

to the assumption that these PATs represent a basic CD4+

characteristic, and that the functional status of the cells

modulates these patterns in agreement with the description of

the individual modules (Table 1). In summary, the PAT map

provides a reference coordinate system for the expression

patterns observed in the different cells and subpopulations,

which enables further analysis of their functional impact and

mutual similarity.
Decreased cell cycle activity relates
to neurotoxicity

As one goal of our analysis we aim at associating the fraction

and functional background of immune effector cells with the
Frontiers in Immunology 10
ICANS status. For this, we investigated the relation between the

degree of neurotoxicity as estimated by the ICANS grade and

cellular characteristics of the infusion product by considering

both the single-cell transcriptome landscapes and the respective

cellular composition. For a first glimpse we calculated the mean

expression portraits of CD8+ cells which were hierarchically

subdivided by their CAR-status (CAR+ or CAR-), cell cycle

activity using module B activation as proxy (module B+ or B-),

and by their origin from low or high ICANS patient (grade 0-2

or 3-4, respectively; grading is shown in Table S1 according to

(14); Figure 6). The portraits are virtually indistinguishable

between the ICANS low and high groups in the different strata

which suggests similar expression properties. The number of

CAR+ cells in the low ICANS group exceeds that in the high

ICANS groups for resting (58% vs. 42%) and especially for

cycling cells (75% vs. 25%). This result suggests an inverse

association between ICANS and the amount of CAR+ cells,

especially of cycling ones. Overall, we see an overlap of low

ICANS and cycling cells, independent of the CAR status (data

not shown). Note also that low ICANS scores associate with

higher fractions of CAR+ cells (58% and 75% in resting and

cycling cells, respectively) compared to CAR- cells (39% and

58%). Overall these results suggest that the composition and cell

states of the CAR-T infusion affects neurotoxicity.

For a more quantitative evaluation, we compared the total

number of cells derived per patient between low (grade 0-2) and

high ICANS (grade 3-4) levels (Figure 7A). We here restrict this

analysis to men only, as there is only one woman in the low
FIGURE 6

Overview of subpopulation expression portraits and relative abundances. CD8+ T cells were hierarchically stratified by CAR-status, by cell cycle
activity as seen by module B expression, and by ICANS group (from top to bottom). Pairwise comparison of the ICANS portraits in the four main
branches reveals virtually identical expression patterns between the low and high ICANS groups in each of the branches. Contrarily, the relative
amounts of cells in the low and high ICANS groups show marked differences especially in cycling CAR-positive cells (right main branch)
meaning that high ICANS associates with a roughly three times reduced fraction cycling CAR+ cells. This difference is reduced in non-cycling
CAR+ and cycling CAR- cells and reverses in non-cycling CAR- cells.
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ICANS group. The total cell count is insignificantly higher in the

low ICANS group (p-value=0.74; Wilcoxon rank-sum test).

Also, the proportions of CD4+ Treg, Th1, and CD8+ Tc cells

are similar when comparing the groups (p-values > 0.5;

Figure 7A). None of the T cell subpopulations studied shows

significant difference, indicating that the cell composition of the

infusion products is virtually indifferent between the ICANS

groups. Also, the total number of T cells sequenced per patient is

not associated to ICANS (p=0.51 in linear model; see

Supplementary Figure S4 for T cell numbers). Please note that

the total number of cells delivered to the individual patients is

not known. Note also in this context, that there is also no

significant difference between the infusion products of female

and male patients in terms of cell number, subpopulations and

proportion of CAR+ cells which implies extension of this result

also to female patients (see Supplementary Figure S10).

Enrichment analysis of low and high ICANS associated

PATs shows a clear difference between these groups in the PAT
Frontiers in Immunology 11
map, namely accumulation of the latter PATs more in the

center and of the former ones closer to the edges of the map,

which suggests differences in cell cycle activity (Figure 7B,

compare with Figures 5C–E). Indeed, the high ICANS related

PATs enrich G1 cells while the low ICANS related PATs

associate with cycling CD4+ Treg and cycling CD8+ Tc cells

in S and G2M phase. This result is supported by frequency

analysis, providing seven differently populated PATs (p-values

< 0.1, Wilcoxon rank-sum test; Figure 7C), all of them more

frequent in the low ICANS group and six of them containing

the cell cycle signature module B. The PATs reflect a dynamic

cell state landscape with mutual transitions between them. The

population flow diagram of PATs between the low and high

ICANS groups further supports the association between

cycling and low ICANS characteristics (Figure 7D): Cells

derived from low ICANS patients mainly accumulate module

B related PATs, which are mainly missing in the high

ICANS group.
B

C D

A

FIGURE 7

T cell subpopulations and expression patterns stratified by neurotoxicity grade: (A) Total cell numbers and relative amount of CD4+ Treg, Th1,
and CD8+ Tc cells observed in male patients with ICANS grade 0-2 and 3-4, respectively. P-values were computed using Wilcoxon rank-sum
test. (B) Maps of enriched PATs in cells grouped by ICANS grade. T cell subpopulations are highlighted according to Figure 5. (C) Fraction of
cells in each male patient classified into the particular PATs (only PATs with p-value <0.1 in Wilcoxon rank-sum test are shown). Bar lengths
represent the mean percentage for the two ICANS groups, the dots represent the individual patients. (D) Virtual PAT flow between ICANS
groups. PATs on the green colored end of the flow are more frequent in ICANS grade 0-2 patient cells, those on the red colored end in ICANS
grade 3-4. Width of the flow bars scale with the virtual flow.
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Decreased CAR T+ content relates
to neurotoxicity

Our results indicated that the cells derived from high grade

ICANS patients show decreased cycling activity as mirrored in the

decreased amount of cycling cells in the respective infusion

product. Next, we ask if the difference in cycling activity between

the ICANS groups associates with the fraction of CAR+ cells in the

subpopulations. It turned out that this fraction markedly differs

between the three main subpopulations (Figure 8A): Almost half of

the CD4+ Treg cells express the CARmarker, however only a third

of the Th1 cells, and less than a quarter of the CD8+ Tc cells. These

different numbers are comparable under the assumption that ‘false’

CAR- cells uniformly distribute over the subpopulations and

indicate differing efficiency of CAR gene transfer as reported

previously (46, 47). When comparing CAR+ and CAR- cells,

over-expression of module B in CAR+ cells is conserved in all

subpopulations, but also co-activation of signature modules A and

C are in line with this trend (all p-values < 10-15, Wilcoxon rank-

sum test; see Figure 8B). In support of this view, CAR+ cells are

over-proportionally found in G2M and S phase (p-value < 10-15,

Fisher’s exact test), indicating that these cells are predominantly in
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a cycling state. The corresponding expression portraits reveal

module B as main distinctive feature, however with subtle

subpopulation-specifics especially around CD8 module J in the

bottom right part of the map, which is related to LAG3-mediated T

cell exhaustion (Figure 8C). Overall, we find that cell cycle activity,

exhaustion of immune checkpoint inhibitors (LAG3), low ICANS,

and CAR+ state are correlated in part of the cells (Supplementary

Figure S11). Hence, the CAR+ cells enrich in PATs associated to

G2M and S phase of the cell cycle (Figure 8D), and in PATs

involving module B and partly also J related to exhaustion in

general (Figure 8E).

The fractions of CAR+ cells in the low ICANS group (grade

0-2) in the three main subpopulations clearly exceeds that in the

high grade 3-4 group (p-values < 0.05, Wilcoxon rank-sum test;

Figure 8F). This is in line to the previous observation that the

overall percentage of CAR+ cells is higher in low ICANS patients

(14). Note here, that two patients of the high ICANS group show

very few CAR+ cells (<5 Th1 and CD4+ Treg). We extended this

approach to the other T cell subpopulations by using linear

regression to model ICANS grade as a function of CAR+

fractions in the subpopulations separated by the sexes and also

for all patients taken together (Supplementary Table S4). It
B C D E

F G

A

FIGURE 8

Expression patterns and relative abundance of CAR-positive and –negative T cells: (A) Relative amount of CAR+ cells in the subpopulations,
respectively. (B) Module expression values grouped by subpopulations and CAR status. Blue dots represent under-expressed modules, red dots
over-expressed ones. (C) Corresponding expression portraits. (D) Maps of enriched PATs in CAR-positive and –negative subpopulations. (E) PAT
flow between CAR-positive and –negative cells. (F) Fraction of CAR-positive cells in each male patient grouped by T cell subpopulation. Bar
lengths represent the mean percentage for the two ICANS groups, the dots represent the individual patients. p-values were computed using
Wilcoxon rank-sum test. (G) Relative amount of CAR-positive CD8+ T cells in male (left frame) and female patients (right frame) grouped by
ICANS grade. p-values were derived from linear regression model.
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turned out, that the association of higher CAR+ fractions and

lower ICANS grade can be found in several T cell

subpopulations, with strongest effects for CD4+ cells

(especially CD4+ Treg and Th2 cells; p-values < 0.01 for

models including all patients). The relative amount of CD8+

Tc cells in relation to all cells derived from a patient significantly

associates to ICANS grade (Figure 8G). Particularly, it markedly

decays in the highest ICANS grades 3 and 4 in women and men.

These results clearly show that the patients show ICANS-specific

proportions of CAR+ cells. Note that the total cell number

sequenced per patient is not associated with ICANS grade (p-

value = 0.52 in linear regression model).

In summary, the degree of ICANS seems not to be associated

with differing composition of the patient’s infusion product with

regard to the T cell subpopulations studied. Instead, cells derived

from high grade ICANS patients show decreased cycling activity

and contain a decaying amount of CAR+ cells, which both

associate with neurotoxicity.
Discussion

scSOM data portraying deciphers the
diversity of transcriptomic states of CAR-
T infusion products

We analyzed single-cell expression data of the infusion

products of anti-CD19 CAR-T cell therapy provided by Deng

et al. (14) by applying a newly-developed single-cell data

portraying approach based on self-organizing map (SOM)

machine learning (scSOM). The data comprise more than one

hundred thousand individual cells derived from 24 patients,
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which was downscaled by about two orders of magnitude for

effective training of the SOM. Therefore, we generated meta-cells

as representative proxies of transcriptional states, which were

again upscaled after SOM training to cover the whole diversity of

transcriptomic state space with single-cell resolution.

The scSOM data portraying visualizes the whole

transcriptome expression patterns of different cell types and

states for the ICANS-low and ICANS-high groups, thus

providing an intuitive view on differences which possibly

associate with treatment adverse effects (Figure 9). The novel

method identified 11 modules of co-regulated genes in the

single-cell transcriptomes forming combinatorial building

blocks of cellular functions in the different cell populations

with implications to ICANS: Part of the modules relates to cell

cycle activity, another part is T cell subtype specific.

Interestingly, only one T cell subpopulation marker was found

in the cell cycle related modules, namely CD25 (IL2RA),

presumably due to the general role of CD25 in activated T

cells, which also show enhanced proliferative activity. The other

T-cell markers mainly distribute in or near the modules related

to immune response mechanisms in a T cell subtype-specific

fashion, as expected.

Another methodical novelty is the utilization of patterns of

activated modules to stratify the single-cells into so-called PATs,

representing unique states of upregulated transcriptional

programs of the cells. This unsupervised, data driven

clustering of cells provides higher granularity of cellular states

compared to the Seurat clusters often utilized for downstream

analyses. The PAT analysis disentangles the heterogeneity of

cells of the same subpopulation into functional sub-states. PAT

maps provide a reference coordinate system for the expression

patterns observed in the different cells and subpopulations.
FIGURE 9

Portraying of single-cell transcriptome landscapes illustrates that neurotoxicity associates with decreasing cycling activity, amount of CAR+
cells, and expression of modules B (cell cycle genes) and J (exhaustion related genes LAG3 and TIM3). The composition of the infusion product
(IP) regarding different T cell types is virtually invariant. The figure shows mean expression portraits of all single T cells stratified by ICANS group,
cell cycle phase (S & G2M versus G1), CAR status, and expression of modules B and J, respectively.
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Importantly, the expression landscape established here will

be used as a reference system to map independent data, for

example to investigate expression patterns in published single-

cell RNAseq data [e.g. derived from (13) or (50)], to disentangle

cellular identities and transcriptional states of bulk samples, and

to extend the analyses presented here by future studies in terms

of additional patient samples and longitudinal measurements.

scSOM provides two different approaches for this: Firstly, novel

data can be projected into the map, providing expression

portraits, module expression patterns, and PAT assignments

for direct comparison with the results discussed here. Secondly,

the sets of genes, which constitute the modules, can be exploited

in gene set enrichment analyses and for generation of gene set

maps in data portraying analyses of the new data. Such

subsequent knowledge linkage is valuable and helps to

understand transcriptional patterns in the new data, their

functional background and their diversity, but potentially

generates also new insights into the reference data.

Our study is important for quality assurance and control on

the one hand, and for investigation of frequencies and mutual

interactions between the subpopulations. We found an overall

proportion of about 24% CAR positive (CAR+) cells, which is in

the targeted range of transduced cells (46, 51). Cells in the CAR

negative (CAR-) group (i.e. cells with no read found for the CAR

marker FMC63-CD19scFV) potentially express this marker

undetectably due to technical limitations of the sequencing

process (14). Also dynamics of transcriptional regulation may

disturb a clear coincidence of CAR gene transcription and CAR

surface protein presence. An estimation shows that about 20% of

CAR- cells show expression patterns similar to CAR+ cells (14),

thus suggesting that part of CAR- cells are either false negatives

or not distinguishable from CAR+ using transcriptional

patterns, which in consequence weakens effects seen by

analyses related to the nominal CAR- cell frequencies.
Adverse neurotoxicity associates with
increased contents of low-cycling, CAR
negative and LAG3-exhausted cells

We find that neurotoxicity (ICANS) observed in the patients

after CAR-T infusion does not depend on the T cell

composition, but, instead, on differences in their functional

state (Figure 9). Particularly, we did not find differences

between abundances of T cell subpopulations taken from

patients with low (0–2) and high (3-4) ICANS grade,

suggesting that infusion product preparation preserves cellular

composition and is not itself associated to adverse neurotoxicity.

We have shown that the amount of cycling (G2M and S phase)

cells is higher in low ICANS patients (59% vs. 43% in high

ICANS; p-value=0.04). Moreover, the proportion of CAR+

cells is higher in patients with low grade ICANS. In other

words, CAR+ cells associate with proliferative activity by
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unknown reasons (more than 60% of CAR+ cells are in

cycling state, but less than 40% of the CAR- cells). One could

hypothesize that a cellular state of proliferative activity promotes

the CAR gene transfer. Data of the isolated T cells and of the

derived infusion product would be valuable to investigate

proportions of cycling T cells and subsequent CAR positivity

in a series of patients, helping to understand if the physiologic

state of the T cells affects CAR transfer efficiency and to exclude

putative genetic biases. Interestingly, association between

proliferative activity, checkpoint inhibition, long-time

responsiveness to immunotherapy and self-renewal capacity

related to T-cell exhaustion was recently reported suggesting a

complex and only partly understood relation between cell-cycle

and T-cell function (52).

CAR+ and CAR- cells markedly differ in their expression

landscapes (Figure 9). Their relative amount is not only a quality

measure of the infusion products, and increased fraction of

activated CAR+ cells associates to less neurotoxicity: Linear

regression analysis revealed significantly higher CAR+

fractions in lower ICANS grade patients throughout the

different T cell subpopulations, especially in CD4+ cells, but

also an increased relative amount of CAR+ CD8+ Tc cells in

relation to all cells was found.

The expression landscape portraits for different T cell

subsets summarize these findings (Figure 9): Mean portraits

averaged over T cells derived from low ICANS patients clearly

resemble those of cycling and CAR+ cells, as well as those of cells

with activated modules B and J. As major characteristic, one

finds overexpressed spots (red color) on the top edge of the

portraits (modules B, C, and, partly, D). In contrast, portraits of

high ICANS, resting, and CAR- cells, and cells with modules B

and J inactive consistently show overexpression of modules G

and H in the bottom-right corner of the map.

Overall, our results support the view that heterogeneity in

the cellular and molecular features of CAR T cell infusion

products contributes to variation in efficacy and toxicity after

CAR T cell therapy in lymphomas (14). The absence of the

FMC63 epitope in CAR- and/or cell cycle arrested cell states

could potentially serve as quantifiable phenotypes which

associate with neurotoxicity of the infusion product. The

question, if these phenotypes are actionable by depleting them

as undesirable, cellular populations or functional states during

manufacturing, needs further studies.

In agreement with Deng et al. (14), we also find that LAG3-

mediated T cell exhaustion (increased expression of module J

including LAG3 and TIM3 genes) can be found in combination

with cell cycle and CAR+ associated modules B and D especially

in CD8+ Tc cells. Hence, the use of LAG3 and/or TIM3 blockade

after infusion might improve efficacy and/or avoid neurotoxicity

as previously proposed (14, 53). We have shown that the

different subpopulations show very diverse module B vs.

module J expression patterns, and, in particular, that myeloid

cells associate high ICANS with resting and low LAG3-
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exhaustion (Figure S11). However, the exhaustion status of the

immune cells before the CAR-T cell therapy is unknown and

possibly influence these results.

Recently it was reported that mural cells, which surround the

endothelium and which are critical for blood-brain-barrier

integrity, express CD19, making them a possible on-target

mechanism for CD19 CAR-T cell-mediated neurotoxicity,

particularly because the CD19 isoform expressed in the adult

brain contains the FMC63 epitope that is recognized by clinical-

grade CD19 CAR-T cells (54). In this context, one could

hypothesize that lower level of LAG3-mediated exhaustion

associates with higher targeting and resulting neurotoxicity. It

remains however unclear, why interaction of cycling CAR+ T

cells with CD19 on endothelium leads to less severe ICANS than

interaction of resting cells.

In addition to CAR-T cell-intrinsic effects, the clinical

manifestation of severe neurotoxicity is a complex

multifactorial process depending on lymphodepleting or

chemotherapy regiment, scFV specificity and co-localization of

on- and off-target cells [see discussion in (54)]. Also, immune

monitoring will add valuable data to be considered in our

analyses in future studies. Thus, our study can only add

molecular details about the transcriptomic landscape with

single cell resolution without being able to provide causal

relationships usable to overcome neurotoxicity. SOM single

cell portraying provides an option to study further details of

the expression landscapes of the CAR-T infusion product to

address these issues on molecular level.
Conclusions

We provided a comprehensive single cell data portraying

and demonstrated its capabilities to disentangle transcriptional

states using intuitive visualization, functional mining, molecular

cell stratification, and variability analyses. We have shown that

scalable resolution from single-cell- to subpopulation-level

generates novel insights into high-dimensional data sets, and

particularly of CAR-T infusion products which extend the

results reported in the original publication: We find that the

transcriptional states of cells derived from patients with low

ICANS grade do not differ from those of cells from high ICANS

patients, while their relative abundancies with regard to cell cycle

activity, CAR status and T cell exhaustion vary markedly.

Our results indicate that therapies can be improved by

depletion of cell cycle arrested and CAR- cells, however CAR-

T cell immunotherapy optimization needs further studies with

higher number of patients involved to monitor a broader range

of cellular and transcriptional states.
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