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Abstract

It is widely believed that one’s peers influence product adoption behaviors. This relation-

ship has been linked to the number of signals a decision-maker receives in a social net-

work. But it is unclear if these same principles hold when the “pattern” by which it receives

these signals vary and when peer influence is directed towards choices which are not opti-

mal. To investigate that, we manipulate social signal exposure in an online controlled

experiment using a game with human participants. Each participant in the game decides

among choices with differing utilities. We observe the following: (1) even in the presence of

monetary risks and previously acquired knowledge of the choices, decision-makers tend to

deviate from the obvious optimal decision when their peers make a similar decision which

we call the influence decision, (2) when the quantity of social signals vary over time, the

forwarding probability of the influence decision and therefore being responsive to social

influence does not necessarily correlate proportionally to the absolute quantity of signals.

To better understand how these rules of peer influence could be used in modeling applica-

tions of real world diffusion and in networked environments, we use our behavioral findings

to simulate spreading dynamics in real world case studies. We specifically try to see how

cumulative influence plays out in the presence of user uncertainty and measure its out-

come on rumor diffusion, which we model as an example of sub-optimal choice diffusion.

Together, our simulation results indicate that sequential peer effects from the influence

decision overcomes individual uncertainty to guide faster rumor diffusion over time. How-

ever, when the rate of diffusion is slow in the beginning, user uncertainty can have a sub-

stantial role compared to peer influence in deciding the adoption trajectory of a piece of

questionable information.
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1 Introduction

The connections and interactions of individuals that comprise social networks are generally

believed to impact decision-making in many domains including product selection and deci-

sion making in uncertain environments [1, 2]. While there is general theoretical consensus

that social influence, the phenomenon by which an individual’s opinions, behaviors, and deci-

sions are influenced by other people [3], facilitates product selection, the empirical literature is

actually quite torn. According to individual utility models, people adopt technologies when

their benefits exceed their costs [4]. Because comparing every option can be cognitively costly

and time consuming, individuals employ cognitive strategies and shortcuts that reduce the

number of alternatives until one superior option is left [5]. Social signals factor into the strate-

gies because they provide a cost-efficient means of acquiring information.

Some find that social information predicts selection decisions [6] and others have reported

interactions between a decision-maker’s experience and/or knowledge of the product and

their general susceptibility to social influence [7]. It is critical that research agendas pursue

understanding of these nuances because as technologies become more sophisticated, widely

used, and powerful, so does their potential to be used for harm. The recent slew of worldwide

cyber-attacks is a potent example of how the selection of cyber-defense venders will affect bil-

lions of people [8]; if cyber-defense ‘shoppers’ are subject to ‘sub-optimal’ social influence,

how will their decisions be affected? The choice to follow the herd may not be the best strategy

when the herd chooses ‘wrong’. Similarly. the widespread rise in misinformation has detri-

mental impacts in society and where social influence has known to be adversely impacting the

decision making process leading to undesirable contagion [9, 10]. In both these situations, the

choice to follow the herd may not be the obvious optimal choice and social influence can play

a detrimental role. In this paper, we investigate the role of patterns of influence (PoI) or the

manner in which an individual is repeatedly subject to the same piece of information over

time by being embodied in a connected environment with other individuals, on behavior dif-

fusion. We extend our recent work on understanding the role of PoI towards individual deci-

sion-making using a controlled experimental setup [11, 12].

We developed two sets of studies in this paper. First, we started off by developing an online

controlled framework to question the longstanding notions of the magnitude of peer signals as

a reliable predictive factor of behavior diffusion. To this end, we developed an experimental

framework to characterize the exposure effect under multiple signals—but when the pattern of

influence or PoI could be controlled (we show an example of what a “pattern” is in Fig 1)—the

experimental framework allows us to measure social influence while avoiding confounding

effects. It allows us to analyze how the signal proportion, when paired with its temporal treat-

ment, impacts the selection choices of users in environments where the influence decision is

not the best choice. The first study was designed to avoid network effects as confounders in

our understanding of peer influence effect on behavior diffusion. Following this, in a separate

second study, we attempted to test some of the rules obtained from our behavioral findings in

the controlled experiment on sub-optimal choice selections in networked environments in the

real world. We specifically try to measure the role of peer signals in networked environments

and in the presence of user uncertainty on the diffusion of information with questionable

veracity. The objective of this second work is to understand the extent to which our behavioral

findings from the experimental data can be applied to observational data—to this end we sim-

ulate spreading on real networks.

For our first work, we used Amazon Mechanical Turk (AMT) to run an online, controlled

decision-making game and recruited participants for the game conducted over several time

steps. At each time step, participants selected one technology among six choices with differing
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utilities (only one among them was the optimal technology)—we modulated the latter part of

the game by subjecting participants to peer signals directed towards a technology which was

not optimal. We focused on understanding the effects of PoI on the choices made by individu-

als in such a setting. While the first study relies on experimental data, in our second work we

adopted a data-driven approach to simulate diffusion using multi-agent models but the agents

are mapped to real world users. The diffusion model incorporated the rules of peer influence

observed from the experimental setup.

Our work has been influenced from existing studies on peer exposures and behavior diffu-

sion [13, 14], however to the best of our knowledge, the extant work does not examine the

effect of signal exposure when the signals promote sub-optimal choices. In an observational

study on the impact of repeated exposures on information spreading [15], the authors showed

that an overwhelming majority of message samples are more probable to be forwarded under

repeated exposures, compared to those under only a single exposure. However what is often

understudied or left out in these research studies is the sequential exposure mechanism or

what we refer to as PoI in the paper. Additionally, observing and mapping these PoI in the real

world to analyze the cause and effect synopsis is not straightforward because of the opacity

problem [16].

Similarly, the experiment conducted in [17] reported that individual adoption is much

more likely when participants receive social reinforcement from multiple neighbors in the

social network relative to a single exposure, however it did not differentiate the effects of net-

work structure from the sequential exposure mechanism or what we refer to as a pattern of

influence. One of the main results from [17] shows that the influence monotonically increases,

although the increased likelihood of influence from k signals compared to k − 1 signals peaks

when k = 2. Our results, as summarized below, have the following observations:

• We clustered participants in the online experiment into five groups—two control groups

and three treatment groups differing by the PoI or the pattern of information cascade

induced among the neighbors. Upon analyzing the selections made by participants aggre-

gated over the lifecycle of the game, we observed the following—compared to participants

who were treated to a single controlled sub-optimal peer signal (reflecting the influence deci-

sion) over all time steps, the probability of selecting that influence decision was significantly

higher for participants who were treated early to a large quantity of such controlled sub-opti-

mal peer signals.

Fig 1. This illustration demonstrates a pattern of influence. At the first time step, one among six neighbors of a user

shared a message, in the following time step, another user shared the same message and in the final step, two additional

users. The user is thus exposed to a “pattern” of social signals we represent as A = {1, 2, 4} for that message.

https://doi.org/10.1371/journal.pone.0234875.g001
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• Through multiple analyses on the effect of sequential peer exposures, we observed that the

number of exposures alone does not explain successful social influence contrasting conclu-

sions from several previous studies. Surprisingly, a delayed stimulus in the form of a sudden

increase in peer signals is a more effective influence strategy for later stages than peer signals

administered through a uniform build up when comparing the same time stage.

• Finally, as a step towards understanding how the rules from the behavioral findings play out

in real world diffusion, we develop data-driven agent-based models that simulate rumor dif-

fusion. We use data to learn agent specific parameters and evaluate the spreading dynamics

of a group of questionable information in Twitter networks. We found that while social

influence based on sequential exposures can result in faster diffusion compared to the factor

of simply the number of peer exposures, individual behavior uncertainty can also play an

important role that can impact the influence factor itself.

The rest of the paper is organized as follows: we first discuss the related literature underpin-

ning this study in Section 2 and the hypotheses that we will investigate in Section 3. We present

the experimental setup and methods designed for measuring social influence in Section 4. We

analyze the controlled experiment results in Section 5. Finally, we develop an agent-based

model drawing upon the conclusions of the controlled experimental results and evaluate its

results with real world data in Section 6.

2 Related work

Informational social influence, the tendency to accept information from others as evidence

about reality, tends to affect financial decision-making and product selection more than other

forms of social influence [18–20]. We are more often swayed by others’ decisions and behavior

when we lack knowledge about the object of our decision, such as when we must choose a

product that we do not know much about, is not well-described, or that we have little experi-

ence with [21]. This is because the information we seek can be more cheaply acquired by

observing others than by seeking it ourselves. Conventional studies suggest that as the consen-

sus of entities in a social network increases—more signalers make the same signal—we assume

that the information peers are conveying is valid and we are more likely to adopt the signaled

behavior or decision [19, 22]. The literature documents several influences on the adoption of

behaviors including network structure—who is connected to who and the properties associ-

ated with these connections [17]—an individual’s information parsing processes, their percep-

tions of product utility, and the number of signals they receive.

Number of signals

The relationship between the number of signals an individual receives in its network, social

influence, and the likelihood that said individual will adopt the behavior indicated by the sig-

nals is closely related to the linear threshold model in which an actor adopts a behavior after

the signal count reaches an optimal threshold [23]. What, though, is the impact of repeated sig-

nals on the decision-making process, and more specifically how many signals are required to

reliably influence an individual’s decision-making? There are mixed findings regarding the

benefit of multiple exposures on the diffusion of information necessary to reach this threshold

[24]. People may prefer multiple confirmations from their peers to reassure themselves before

making a decision [15, 25]. Experimental human studies using games from behavioral eco-

nomics like the Prisoner’s Dilemma tend to find that the impact of zero to three signalers

increases behavioral and decision-adoption in a linear fashion, and that a key threshold for

maximum social influence exists between four and five signalers. This means that two signalers
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exert more influence than one, three exert more than two, and four to five exert more influence

than three. There is not much difference between the impact of five and six or more. However,

debate still exists—some have found the threshold to be two signalers [26] while others report

it at three [17, 27]. Still, others have found the reverse trend. In one study, repeated exposure

to online signals in a social networking site slowed the subsequent spread of information. This

might affect decision-making and behavioral adoption by inhibiting social influence [24, 28].

Network structure

A network structure’s describes characteristics of the network as a whole. This can include

properties like clustering/decentralization (to what degree actors form ties), modularity (how

densely connected nodes are within clusters), homophily/heterophily (similarity or dissimilar-

ity of actors predicts tie-forming), and centralization (how connected are actors). For instance,

the density of a decision-maker’s social network can influence the choices they make because

signalers’ intentions are more ambiguous in densely connected networks [29]. Similarly, the

choices that individuals make and the contribution of social influence have also been attrib-

uted to the network communities they belong to, while studies related to patterns of subgraphs

that result out of such individual interactions have been popular [30]. The dynamism, or how

easily entities can move in and out of networks, also influences decision-making. Social deci-

sion-making modelers have found that the more dynamic and mobile a network, the greater

concurrence of their decisions in behavioral economics games [31, 32]. Because the present

studies are primarily interested in the effects of a) the number of signals and b) the pattern by

which they are received, we attempt to control for the effects of network structure by holding

the structure constant throughout all experimental conditions in both studies. Please see the

Methods sections for further details.

Information parsing

The manner in which individuals search for information affects their decision-making. Indi-

viduals employ search strategies to reduce the number of choices [5]. This includes revising

their initial opinions by processing and averaging the different influences acting on them [33]

and social information provides one mechanism through which this is achieved. These man-

ners of decision making have also been linked to the concept of dual process theory, the notion

that two different systems of thought co-exist; a quick, automatic, associative, and affective-

based form of reasoning and a slow, thoughtful, deliberative process [34]. Fast thinking

involves conditions of “cognitive ease” and so social influence factors into this process of slow-

ing down the decision making system by presenting alternating evidences for reconsideration.

When social signals point towards a specific outcome or opinion, individuals will often adopt

the opinions and behaviors of signalers [22, 35], however while adopting behaviors based off

social influence can be cost effective, it does not always lead to the most effective or efficient

decision. Individuals must trade-off between trusting their own knowledge and trusting oth-

er’s opinions [13]. Biased social signals can influence individuals to choose wrong or less effec-

tive answers in a variety of domains, particularly if multiple peers back the behavior or

decision [15, 22, 35].

Product utility

When making product decisions, outcomes related to the quality and need for a product

change its utility or perceived value and therefore the risk of the selection. For instance, when

decision-makers were asked to purchase songs in an online market where they could see the

decisions of other purchasers, the perceived quality of the songs predicted their choices even
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when they witnessed peers purchasing songs of poor quality. Songs of medium quality were

most subject to the effects of social influence [36]. The need for a quality product also influ-

ences selection decisions. Kraut and colleagues found that when deciding between different

video-teleconferencing technologies, people with the most communication intensive work—

those who relied on video-teleconferencing the most—placed greater value on the product’s

ability than those with less need [4]. The perceived value of a product predicts how much an

individual will search for information to inform their selection [21], and consumers and deci-

sion-makers are more likely to engage in information search, including social information—

when purchasing products is risky—such as when the costs of making a sub-optimal choice

are high, and when they lack prior knowledge about the technology [21]. When we feel that

we know enough about a product, we believe that we already have enough information stored

in our memory to make the best decision, and therefore additional social information is

unnecessary.

3 The present research

We performed an online controlled experiment that manipulated the number of social signals

and the signal pattern over time. We hypothesized that successful social influence requires

more than just receiving signals or exposures to information from peers, as both the utility of

the technology and informational influences are at play. In our experiment, any decision made

produces varying degrees of monetary gain based on utility. So, we speculate that successful

social influence should be reflective of the mechanism through which information diffuses and

that ultimately instigates individuals to change their beliefs and therefore their adoption

behavior. We present the following two hypotheses in this paper that were tested with regard

to the objective mentioned above.

HYPOTHESIS H1. Individuals will be more likely to choose a sub-optimal cyber-defense pro-
vider when they observe peers choosing the sub-optimal provider.

Through our first hypothesis, we try to examine the aggregated results of the cascading

exposure arising from varying temporal patterns of influence on the outcome of interest—

whether users follow the decision made by their peers. In this hypothesis, time takes a backseat

and we tried to measure the extent to which early, uniform or delayed exposure to peer influ-

ence successfully achieves our desired outcome in situations of sequential decision making

when aggregated over all time steps of the experiment. Subsequently, the hypothesis attempts

to examine findings in Centola’s experiment [17] which show that behaviors spread to a larger

portion of the population in a clustered network, indicating that additional social signals have

significant effect on influence. However, the results on behavior diffusion reported by this

paper are heavily associated with the clustered network organization that dictates the exposure

to social influence and, as such, the sequential nature of exposures and its effect were largely

ignored in the study. Following this, in another study on empirical data from Twitter [37], the

authors show that the number of active neighbors is a positive indicator of influence, which is

a similar finding reported by [13, 17]. In both studies, the authors did not segregate varying

temporal influence patterns that might force users to revise their beliefs over time in different

manners. We built on these experiments to test the aggregated effect of the peer signals and

the extent to which the manner of signal dissemination among peers can act as an impetus

towards coercing users to change their decisions, especially when users weigh their own pri-

vate information against external influence.

HYPOTHESIS H2. The cascading pattern of peer signals or the temporal patterns of influence
will impact the adoption behavior of individuals more than just the quantity of signals.
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In this hypothesis, our goal was to understand whether the same quantity of peer signals

have different outcomes when individuals are subjected to them through different cascading

patterns. We again note that the authors in [17] concluded that the likelihood of a user adopt-

ing a behavior at k signals compared to k − 1 signals was the maximum when k = 3. The author

attributed this to the clustered network organization that allowed users to receive multiple sig-

nals before they chose to adopt a behavior. What we instead posit is that “time” has an impor-

tant role to play in the revised beliefs and opinions of individuals i.e.—an early exposure to

peer influence can result in a substantially higher dynamics of adoption than situations where

influence is delayed. We deliberately downplay the role of networks to be able to control and

study the nature of cascading and we consider that all peers of an individual are homogeneous

with respect to the influence they can exert on it. This allows us to control the pattern of influ-

ence, i.e. the number of signals sent over each time step to an individual.

As we will show later, a successful social influence constitutes situations where individuals

not only deviate from the optimal decision but they also select the option that majority of their

peers choose. We describe the experimental setups and the formaldiscussions of our methods

and conclusions in the following sections for which wesummarize the notations in Table 1.

4 Methods

The following protocol was approved by the Human Studies Board at Sandia National Labora-

tories. The consent was obtained in writing from the board. Subjects provide informed consent

through written means. The “documentation of informed consent” was waived since this was

an online experiment that had no more than minimal risk of harm to subjects. To test our

hypotheses, we ran an online, controlled decision-making game in which participants took on

the role of a security officer at a bank. Participants were told that they and several of their peers

at different banks were being asked to invest in a cyber-defense technology provider once a

month for 18 time steps. We separated participants into five groups based on pattern of social

signal exposure which is described in details in the Design subsection following this. At each

time step, participants were able to choose from six different technology providers—among

which only one was optimal, preventing 7 attacks. The remaining five providers prevented five

Table 1. Table of symbols.

Symbol Description

u a user or an agent

Cu influence decision for u
Nu number of times user u has adopted the influence decision Cu in Ttreat
Au(t) number of peers of user u who have adopted Cu at time t
di technology choice/decision i, i 2 [1, 6] for the controlled experiment

Du(t) decision or technology adopted by user u at time step t
n number of individuals in a group in the controlled experiment

Ttreat treatment phase of controlled experiment, time steps 13 to 18 in our setting

G = (V, E) a network G consisting of nodes V and edges E, VðGÞ denotes subset of vertices relevant to network G.

pu(t) probability of user u adopting a sub-optimal decision at time t
μu(t) utility obtained by user u upon choosing the optimal decision at time t
zu(t) utility obtained by user u upon choosing the influence decision Cu at time t
zu(t) binary variable that assumes value 1 if user u chooses Cu at time t, else zero

ηu, βu Agent specific parameters in the ABM model

q, Vq information cascade and the users/nodes participating in q
DFq[t] Diffusion node set for cascade q obtained at time step t from our ABM simulation

https://doi.org/10.1371/journal.pone.0234875.t001
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attacks each (from that perspective, all sub-optimal technologies had the same utility). For

every attack they prevented in any time step, participants received $0.02 (so, a participant

could receive a maximum $1.14 in each time step). Thus, they were incentivized to avoid more

attacks and earn more money. This information about the optimal and sub-optimal providers

is not available to the participants at the beginning of the game. Additionally, all participants

could view brief descriptions of provider capabilities, e.g. one of them being “Secure.com uti-

lizes algorithmic computer threat detection to keep systems safe. It prides itself on its efficiency

and success rate in warding against attacks”.

4.1 Design

Participants were randomly assigned to five groups with each group having unique members

not involved in decision making as part of other groups. The entire game was partitioned into

two phases. For the first phase comprising 12 time steps, no other information except a short

excerpt about six potential providers was given. After the participants made their selection for

a given time step, they saw the number of attacks their provider had prevented in that step. As

mentioned earlier, in the absence of the knowledge of the utilities of the technology providers

(or the number of attacks it prevents), the first 12 time steps allow for individual decision mak-

ing and exploration.

In the second phase of the experiment which started at Time Step 13, we introduced inter-

ventions by allowing participants access to extra information from six other individuals who

are supposedly their peers (but are really bots controlled by us). After participants make their

choice at a time step, they can view the selections made by their peers in the previous time

step. Each participant in all groups bar one are subjected to six peers—We call the decisions of

these peers which the participant views in the second phase as peer signals in this work. Fig 2

shows the screen of a participant from time steps 13 to 18 when they were able to view the deci-

sion of their peers. The platform was hosted by the Controlled Large Online Social Experimen-

tation (CLOSE) platform and developed at Sandia National Laboratories [38]. While the

participant is able to view the technology selections of all their peers at each time step, we con-

trol social influence by administering a randomly selected sub-optimal technology Cu (among

the five providers) through the peers of the participant u—so using our nomenclature, Cu is

the influence decision for u. For each u, this technology Cu was selected as the choice that is dis-

proportionately signaled by its peers over time (this pattern of influence or PoI was manipu-

lated by us). The motivation behind this deliberate selection of sub-optimal Cu (controlled by

us) as the influence decision was to investigate whether participants would be tempted to select

this technology Cu in the presence of its peer feedback. Note that we attempted to avoid net-

work effects by randomizing this technology or the influence decision Cu specific to the user

u—this allows us to avoid any deliberate collisions among peer choices of different users that

could be representative of network effects in the real world.

We denote by Au(t) the number of peers of the participant u, who we administer the sub-

optimal technology/influence decision Cu at time step t (so Au(t)� 6). We now describe the

pattern of influence A dropping the subscripts to generalize for all users or PoI as we denote it,

for the five groups (the first two being the control groups for comparison with the next three

treatment groups) (Fig 3 shows the signal patterns for the groups):

1. NoMessage (NM): Participants receive no message from the peers, so the last six time steps

are exactly the same for the participants as the first 12.

2. UniformMessage (UM): Here we send C using one peer of a participant at each time step.

So A = {1, 1, 1, 1, 1, 1} denotes uniform influence.
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Fig 2. Example screen in the cyber-defense provider selection task. Participants in the Uniform Messages (UM) condition of the study have access to a screen

that resembled this one. The Feedback section displays the number of attacks the participant prevented after each time step. TheDecisions section displays the

six provider choices that it has. Finally, theMessages section is displayed after Time Step 12, where the participants can view what their peers selected in the

previous time step.

https://doi.org/10.1371/journal.pone.0234875.g002

Fig 3. The signal vs time step plots for the 4 patterns—Note that for the NM group (not shown here), no peer signal in the form of pre-selected sub-optimal

technologies were sent to the participants at any time step.

https://doi.org/10.1371/journal.pone.0234875.g003
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3. Linear Cascade (LC): Here we incrementally activate one peer with the technology C at each

time step. So A = {1, 2, 3, 4, 5, 6} denotes uniformly increasingly influence as shown in

Fig 4.

4. Delayed Cascade (DC): Here we send only one signal for the first three time steps and send

four, five and six signals at the last three time steps in order. So A = {1, 1, 1, 4, 5, 6}. The

objective is to see whether the sudden change in the number of signals acts as a catalyst for

successful influence at the later stages of the experiment.

5. Early Cascade (EC): In this setup, we send a higher magnitude of signals from the beginning

setting A = {4, 5, 6, 6, 6, 6}. This pattern allows us to ask if an early trigger is able to sustain

the levels of influence, or whether participants will return to the optimal choice at the later

stages.

Accordingly, Au(t) would be different for users in each group, for e.g. for a u in LC group,

Au(t = 1) = 1, Au(t = 2) = 2 while for EC group, Au(t = 1) = 4, Au(t = 2) = 5 and so on. An exam-

ple of the linear cascade setting is shown in Fig 4, where a participant receives social signals

from its six neighbors—our influence decision C uniformly cascades through the peers of the

participant.

At Time Step 13 (start of the second phase), a signaler u selects a sub-optimal provider Cu,
and over the next five time steps, the remaining peers adopt the same influence decision one

after another. Note that although we program only selected peers (bots) of a subject to admin-

ister Cu over time, the subjects are able to view all of their peers’ decisions in their dashboard

for the last six time steps. The rest of the non-controlled peers at a time step show random

technologies to the participant. Also, note that in all conditions, users can switch back to any

choice in the next time step after having selected an option in the current time step. We con-

sidered the NM and UM groups as our baseline groups and LC, EC, DC groups as our treat-

ments groups of interest.

For both the hypothesesH1 andH2, the outcomes of interest are the decisions made by par-

ticipants in the last six time steps, in the presence of social signals from peers. We explore

whether decision-makers will be more likely to choose cyber-defense providers which are not

Fig 4. Illustration of the linear cascade diffusion. The technology Cu chosen by us as the sub-optimal technology

(influence decision for user u (in dots) cascades through the peers of u over the six time steps. Colored nodes denote the

activated peers with respect to Cu (manually preprogrammed by us) at each time step. Note that although at time steps

starting at 13 and ending at 18, there are subjects (uncolored) among peers who have not adopted Cu, their selections

(which may not be Cu) are visible to u. However, which users among the peers have been preprogrammed manually is

by default unknown to the target subject u.

https://doi.org/10.1371/journal.pone.0234875.g004
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the optimal choice when they have knowledge about the utilities and when they observe peers

opting for choices which are not optimal. We note that people get feedback about their choice

on the very next screen, and so choosing a technology during an intermediate time step is

more of a data-gathering exploration rather than their final choice. In order to allow for this

initial bandwidth for exploration, we keep the first 12 time steps (time steps) the same for all

subjects devoid of any interference This helps in overcoming bias related to an individual’s

own knowledge about the utilities in the second phase of the experiment when they are treated

to social signals.

4.2 Participants

We recruited a total of 357 participants for this study to play the same cyber-defense provider

game. Based on the responses provided by the participants regarding their demographics in

the form of a survey response 1 Some participants declined to provide a response regarding

their demographics, we have 151 females and 190 males in the study. Most of our participants

are between the age group of 26-35 years and full details regarding their age groups have been

provided in Tables 1, 2 and 3 in Appendix A in S1 Appendix. Additionally, majority of the par-

ticipants in our experiment had a Bachelor’s degree (See Appendix for more details). Partici-

pants were paid $2 with the opportunity to earn up to $4.52 since as mentioned before, they

received a bonus of $0.02 for every attack they prevented. Thus, the participants might have

motivation to prevent more attacks in order to earn more money. Some of the participants did

not complete the full length of the game and so we observed slight discrepancies among the

group sample sizes for the statistical tests.

5 Analysis

5.1 Distribution of attacks prevented

Table 2 shows the distribution of attacks prevented by subjects in each group. We observe that,

on average subjects in the EC and LC groups prevent less attacks compared to others. However

based on two sampled t-tests, we did not find any statistically significant differences between

the groups based on the means of the distributions. Based on a survey analysis, we found that

none of the traits like computer anxiety, computer confidence, computer liking, intuition or

neuroticism were correlated to the number of attacks prevented in all groups. The details of

the survey analysis are presented in Appendix A in S1 Appendix.

5.2 Distributions of decisions by individuals

As a first step towards investigating hypothesis H1, we analyze the kinds of social signals or the

cyber security technologies (which were not the optimal technology) chosen by the peers

of each participant and whether they are uniform across all the groups. To simplify nomencla-

ture hereon, we denote the six available technology choices as decision di, i 2 [1, 6]. In our

Table 2. Average number of attacks prevented by subjects in each group. The lower attack numbers suggest partici-

pants deviated more from the optimal decision responding to social influence.

Group # participants Average number of attacks prevented (std. deviation)

NM 55 104.77 (10.99)

UM 71 106.44 (9.46)

LC 79 103.87 (9.91)

DC 81 104.87 (8.39)

EC 71 103.50 (8.38)

https://doi.org/10.1371/journal.pone.0234875.t002
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experimental setup and for this work throughout, we would refer to d1 as the influence deci-

sion—It is the optimal choice preventing seven attacks, while the rest of the technologies pre-

vented five attacks and are termed as sub-optimal choices. As mentioned in Section 4.1, the

influence decision Cu 2 [d2, d6] is randomized for each u, so we first observe the distribution of

the sub-optimal decisions as the choices for Cu. For each group, we define PðdiÞ ¼
jfu j Cu¼digj

juj

as the proportion of users in the group who were administered technology or decision di, i 2
[2, 6] as the influence decision in the second phase. From Fig 5, we observe that the random

selection of Cu introduces some disproportionate values of P(di) among the groups. For the

UM group, around 25% of users were administered d4 as the influence decision Cu (this pro-

portion P(d4) for UM is the highest among all other decisions) while 29% of users in the EC

group were sent d5 (P(d5) being the highest for EC) as their infuence decisions Cu and 28% of

users in the DC were sent d5 (P(d5) being the highest for DC). However, we see that for the LC

group, P(di) was similar for all decisions di that could be selected as Cu.
Having observed that there was not one pre-programmed peer choice Cu as the strategical

obvious sub-optimal choice across all groups, we proceeded with investigating H1. In order to

detect any implicit occurrence of a selection bias over the participants, we analyzed whether

there is any significant difference in the groups with respect to choices made in the first 12

time steps. To accomplish that, we plotted the probability that an individual makes each deci-

sion when aggregated over the first 12 time steps. We found that there is clearly no evidence of

differences in the mean statistics of the distributions of all choices between the treatments

groups (LC, DC, EC) and the control groups (UM, NM) (Refer to Fig 1 in Appendix B in S1

Appendix). Before we conducted pairwise t-tests to check for differences between the control

and treatment groups for the decision distributions made by the participants in the second

phase, we conducted three one-way ANOVA tests considering the sample means of the two

control groups and each treatment group, one at a time. We conducted these three tests for

each decision from d1 to d6. The null hypothesis for each test constituted the situation where

the means of the number of times a decision was chosen by the participants belonging to the

Fig 5. P(di)—Proportion of users in each group who were administered technology or decision di as the influence
decision. Note that only the decisions that are not optimal are sent as prospective influence decisions/social signals in

the second phase of the experiment.

https://doi.org/10.1371/journal.pone.0234875.g005
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two control groups and one of the treatment groups, are the same for the technology or deci-

sion in consideration. We find the following significant results: for the LC group, we find that

for d4, the null hypothesis is rejected (F(2, 203) = 3.7, p = .03). Similarly for the DC group, we

reject the null hypothesis for d4 as well (F(2, 205) = 3.01, p = .04) and for the EC group, we find

differences approaching statistical significance for d5 (F(2, 195) = 2.99, p = .05). We will come

back to this case of EC group shortly while discussing the differences. These tests shed light on

the differences in adoptions between the control and treatment groups that occurred in the

second phase of the experiment in the presence of social signals.

Following this, we conducted two sampled t-tests to measure the differences in the distribu-

tions of decisions adopted by users between pairs of control and treatment groups. We con-

ducted two sets of tests for the two phases of the experiments. The null hypothesis constituted

the situation where the means of the decision selection distributions of the two groups being

tested for, are not different. The results (p-values for each treatment group with respect to the

control groups) in Tables 4, 5 and 6 in Appendix C in S1 Appendix suggest no significant dif-

ference in the distributions among the groups. This rules out any bias among the participants

themselves in the absence of externalities. However, in the second phase of the experiment

(time steps 13 to 18 aggregated), we find differences in the selection patterns among the deci-

sion-makers in their respective groups. We find the following observations from Fig 6(a) and

6(b) for our treatment groups (see tables in Appendix C in S1 Appendix):

1. LC: With respect to the NM group, there are no statistically significant differences in the

decisions taken by the participants in LC. We carried out a similar statistical test comparing

the group pairwise means as done for the first 12 steps. On the other hand, we find that

there is a statistically significant difference for the LC group participants (M = 3, SD = 2.4)

in the means of the distributions compared to the UM group participants (M = 3.8,

SD = 2.53) for the optimal decision or d1 (t(149) = 1.9, p = .04) at α = 0.05. The difference

shows that a significantly reduced number of participants are tempted to choose the opti-

mal technology provider in the presence of linear cascading signal pattern than when a sin-

gle signal is sent across all time steps.

2. DC: When considering the number of times participants choose d4, we find that the partici-

pants in the DC group (M = 0.58, SD = 1.08), differ from the UM group (M = 0.30,

SD = 0.61) and this difference is statistically significant (t(155) = −2.02, p = .04). However,

with respect to NM group or UM group participants, we observe that the users do not differ

in their selections when it comes to choosing the optimal provider. Also it does not differ

with respect to the most common choice among the peers for DC group—the Decision 6

shown in Fig 5.

3. EC: When we considered the choice of d5, the technology that was administered to the

majority of the EC group participants, the users in this group (M = .79, S = 1.08) differ from

the NM group (M = 0.38, SD = 0.66) in their selection and the difference is significant

(t(128) = −2.7, p = .007). We found similar significant results from our ANOVA tests prior

to this analysis and this is a successful case of social influence when considering the macro-

adoption process for the group as the users not only steered away from the optimal choice,

but they also steered towards the decision of their peers.

This suggests that while the social signal to some extent influences an individual in the LC

group to deviate from the optimal choice, it does not always translate to the influence decision

that was chosen for the corresponding individual. It rather gears the user towards more explo-

ration. However, an early burst of signals in the EC successfully translates towards social influ-

ence wherein on aggregate majority of the users sway towards the influence decision more. As
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a side experiment to measure the degree of drift away from optimal decision, we also analyze

the fraction of users who shift away from d1 (the optimal) at each time step similar to what has

been shown in Fig 7. However, we do not find any clear distinctions among the groups in

terms of the fraction of subjects who move away from the optimal decision d1 when aggregated

over all the six time steps in the second phase. Just the fact that all users eventually move away

from the optimal decision when exposed to social signals does not contribute much in distin-

guishing the PoI.

5.3 Degree of influence

This first analysis of H1 does not shed any light on the temporal variations in the decision

making process exhibited by users in different groups. It shows some statistically significant

Fig 6. Probability of decisions made in time steps 13 to 18. (a) Probability of making the optimal decision. (b)

Probability of making the sub-optimal (other 5) decision. The error bars denote standard error over the distributions.

https://doi.org/10.1371/journal.pone.0234875.g006
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differences in the choices made for specific decisions (or technology providers) over the entire

second phase. While it did show that not all cascade patterns successfully influenced users

towards deviating from “decision1” or the optimal provider, it brings up the question that is

posed for hypothesis H2: what constitutes successful influence and does the manner in which

the signals are sent determine successful influence?

To this end, we analyze how the proportion of users who switch to the influence decision
ignoring the optimal choice, evolves over the times steps. We note that for each user u, the

influence decision Cu is randomly selected before the second phase starts. Fig 7 shows the frac-

tion of users in each group adopting the influence decision from time steps 13 to 18, when the

experimental participants observe their peers’ decisions. From the observations regardingH1,

we find that the probability of successful influence for participants in EC has the strongest

effects on decision-making in the early stages of the second phase. Participants in EC are most

likely to deviate from selecting the optimal provider as shown in Fig 6—for the first three time

steps in the second phase, participants in the EC group exhibit the maximum adoption com-

pared to other groups denoted by a higher fraction of adopted participants. Additionally, for

the EC group, Time Step 15 had the maximum retention where 35% of users adopted their

peer behavior, and when participants were exposed to all six of their peers selecting the same

technology Cu. This may be due to new users adopting the influence decision or due to cumula-

tive build-up from previous time steps who do not switch back. We will explore this in the fol-

lowing sections.

The participants in the DC group exhibit successful response towards the sudden increase

in signals at Time Step 16 which is shown by a 65% increase in user adoption of the influence
decision compared to the previous step. These results become close to the 25% of users making

influence decision selection at Time Step 16 and which is also the maximum among all groups

surpassing the early cascade adoption ratio. However, there is no substantial increase in the

adoption fraction for the users in the linear cascade group—we do note that the adoption

Fig 7. Fraction of users in each group adopting the influence decision chosen by their peers.

https://doi.org/10.1371/journal.pone.0234875.g007
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peaks at Time Step 15 for the linear cascade users before it drops again. These observations

from Figs 6 and 7 suggest that while an early burst of social signals successfully persuades users

in EC to adopt the influence decision, causing an aggregated overall maximum selection of the

influence decision, a sudden impulse in the quantity of social influence also successfully steers

users towards the influence decision in the later stages.

5.4 Measuring the effect of quantity of signals

In this section, we investigate whether the quantity of signals alone stand out as the sole factor

of influence. Before going into the analysis, we define a few notations: we denote a subject in

this study as u where u can belong to any group. We denote the decision taken by a subject u
at time t, t 2 [1, 18] by Du(t). We define Ttreat as the sequence of time points during which

the subjects receive signals from their peers i.e. Ttreat = [13, 18]. Following this, we denote the

time step t, t 2 Ttreat when an individual u first switches to Cu as tfu. For each signal quantity s,
we measure the proportion of individuals (in each group) who made their first switch to

their influence decision only after they were exposed to s signals. Formally, for any

t 2 Ttreat, RðsÞ ¼
jfu j DuðtÞ¼Cu

V
AuðtÞ¼s

V
t¼tfugj

jfugj (R(1) in the LC group denotes the proportion

of individuals in LC group who made their first switch to their peer influence decision after

being exposed to just one signal. Similarly, R(6) in the EC group denotes the proportion of

individuals in EC group who made their first switch to their peer influence decision only after

being exposed to six signals, so this can happen in any of the last four time steps in EC). The

denominator in the formula here denotes the number of individuals in the group.

We bin the values from R(s) based on s and take the mean for each group, since for some

groups, there can be multiple time steps with the same number of exposures or signals. From

Fig 8(a), we observe that for the EC group, *30% of users under the influence of four signal-

ers, for DC,*18% of users at four signalers and for LC, *15% of users at three signalers (all

these being the maximum ratio) made their first switch to the influence decisions in the sec-

ond phase of the experiment. However, on close observation, we find that the number of

Fig 8. Plots of adoption under the influence of s exposures. (a) For each signal quantity s, the proportion of individuals who made their first switch to their

influence decision after being exposed to s signals, (b) The proportion of individuals who adopt their influence decision after being exposed to signals from s
influence signals.

https://doi.org/10.1371/journal.pone.0234875.g008
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exposures alone does not explain the adoption behavior. When we compare the EC partici-

pants with those in the DC group, we find that with four exposures in Ttreat (at Time Step 13

for EC and at Time Step 16 for DC), the proportion of adopters in EC making their first influ-

ence decision switch (30% of users) is higher than the proportion in DC (18% of users),

although the same four quantity of signals are delivered at different time steps for the two

groups. However, while there is a constant decrease in the number of adopters making first

switches in the EC group going from four to six exposures denoted by the corresponding

mean R(s), we see that the same quantity for the DC group does not decrease the same way for

four to five to six exposures. This suggests that the sudden stimulus from the delayed exposure

somehow succeeds in influencing more users to make their first switch to the influence deci-

sion compared to the EC group (note that all the users under the quantity R(s) for each s are

unique since we measure their first switch). On the other hand, for the linear cascade group we

do not find one quantity that is most effective in the influence. In the LC setup, there is no one

exposure that impacts the adoption behavior the most in terms of successful influence. In addi-

tion, we measure the cumulative adoption ratio for each group defined as: for any t 2 Ttreat,

ZðsÞ ¼
jfu j DuðtÞ¼Cu

V
AuðtÞ¼sgj

jfugj . In simple terms, it measures the number of individuals in a

group who adopt the influence decision under s exposures irrespective of whether it is the first

switch. This is demonstrated in Fig 8(b). When we combine the results obtained in Fig 8(a)

with Fig 8(b), we find an interesting observation for the LC group. The linear cascade pattern

is able to retain most of the users even after first switch at Time Step 13 as the cumulative ratio

increases up to three exposures (which occurs at Time Step 15). This suggests that the LC pat-

tern is effective in terms of retention in the early stages of the cascade.

5.5 Quantitative analysis using growth modeling

To understand the patterns of change over time by incorporating the heterogeneity among

individuals in each group and among the groups, we resorted to the widely used statistical tool

of growth modeling through random coefficient models [39]. Briefly, the technique of growth

modeling allowed us to test the longitudinal effects of the peer signals on the users and test any

source of heterogeneity in decision making among individuals that lead to the observed out-

comes. One of the advantages of growth modeling comes from treating time as a predictor of

influence outcome in the absence and presence of the peer signals. The error-covariance

matrix from these models informed us about the variations among the individuals in the pres-

ence and absence of peer signals over the phases of the experiment.

We utilized four regression models where the outcome of interest denotes whether an indi-

vidual selected the influence decision Cu(t) at time t in the second phase of the experiment. Let

the linear predictor, η be the combination of the fixed and random effects excluding the resid-

uals. Considering a linear mixed effects model LMEM y = X β + Uχ + �, where y 2 Rk, (and

k = n � [t]) denotes the outcome response of individuals over all time points t 2 [1, [t]] − k thus

denotes the number of instances in the model. In this work, we have [t] = [Ttreat] = 6. X 2 Rk�f

denotes the design matrix of endogenous variables, f being the number of predictors, U 2
Rk�w denotes the matrix with random effects (the random complement to the fixed X), w
being the number of predictors with random effects, � denotes the residuals, and β and χ are

the parameters of interest corresponding to the fixed effects and the random effects in the

model. Since the outcome in our work is binary, we used Generalized Linear Mixed Effects

models (GLMEM) [40] in this work. In a GLMEM model, we used the same equation as

LMEM but with a linear predictor η such that η = X β + Uχ + � where g(E[y]) = η, g(.) being

the link function. To accommodate for the binary outcomes, we used the logit link function.
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To quantify the effects using growth modeling, for each individual, we used the following

regression models for modeling the growth functions:

M0 � FE : Zi ¼ ½b00 þ b10ðTimeiÞ� þ �i ð1Þ

M1 � RE : Zij ¼ ½b00 þ b10ðTimeij� þ w0j þ �ij ð2Þ

M2 � RE : Zij ¼ ½b00 þ b10ðTimeij� þ ½w0j þ w1jðTimeijÞ� þ �ij ð3Þ

M3 � RE : Zij ¼ ½b00 þ b10ðTimeiÞ þ b20ðSignalsiÞ� þ ½w0j þ w1jðTimeiÞ� þ �ij ð4Þ

where the indices i denote the observation instance number (or the row number in a table of

data) and j denotes the individual in the group of all users. So, M0-FE represents the fixed

effects model where the only independent variable is the time. Intuitively, this model tests how

individual responses to peer signals evolve over time, when time itself is the only factor in con-

sideration. From the results in Table 3, we find that among the three treatment groups, the

probability of outcome is most positively correlated with time for the Delayed Cascade group.

This simple regression model ignores the fact that the observations are nested within individu-

als and accordingly, the next step in growth modeling is to add a component of random inter-

cept to the model—this is denoted by M1-RE. Note that in this model, the random intercept

χ0j is specific to each individual j. On comparing the parameter estimates, we find that the

time coefficient β10 remains similar for both models even after incorporating between-person

differences for all the groups. This shows that time is significantly correlated to the outcome in

the absence of the knowledge of peer signal treatment.

Next, we added the “Time” variable to the random components, so that time could ran-

domly vary among the users. This is denoted by the model M2-RE given by Eq 3. The correla-

tion between the slope and intercept for this model for the LC, DC and EC groups are

respectively 0.7, 0.7 and 0.4 respectively. The positive correlation indicates that individuals

who have a high propensity to move towards the influence decision in the beginning tend to

have strong slopes—this weakly suggests that individuals with some degree of uncertainty

towards the optimal decision at the beginning tend to be more susceptible to influence over

time. Next, we explored the idea that “Signals” have a role to play on the outcome of the indi-

viduals. We added to M2-RE, the fixed effects from Signals shown in M3-FE. From the results

in Table 3, we found that for all the three groups, the number of signals is positively correlated

with the outcome while the time factor is negatively correlated for the groups. Among all the

groups we found that for the DC group, the Signals factor has the highest coefficient suggesting

the strong correlation between the treatment with signals and the outcome. These results sug-

gest a positive correlation of the treatment of signals on the outcome when time has an impor-

tant role to play. The interaction between time and signals are important here given that the

correlation of time changes once the effect of signals is considered.

Table 3. Results of Fixed Effects (FE) and Random Effects (RE) modeling. “Inter”. denotes intercept in the regression models. Values in brackets denote standard errors.

Linear Cascade Delayed Cascade Early Cascade

Time Signals Inter. Time Signals Inter. Time Signals Inter.

M0-FE 0.08 (0.07) -1.79 (0.28) 0.32 (0.08) -3.08 (0.36) -0.12 (0.06) -0.67 (0.24)

M1-RE 0.07 (0.03) -1.91 (0.12) 0.32 (0.03) -3.23 (0.13) -0.13 (0.03) -0.69 (0.11)

M2-RE 0.05 (.03) -1.83 (.12) 0.29 (.03) -3.15 (.13) -0.15 (.03) -0.63 (.11)

M3-RE -0.02 (.27) 0.29 (.23) -1.87 (.96) -0.37 (.029) 0.44 (.074) -0.23 (.025) -0.23 (0.12) 0.29 (.25) -0.28 (.42)

https://doi.org/10.1371/journal.pone.0234875.t003
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5.6 Interplay between influence and susceptibility

We ended this study with a retrospective analysis to understand the dynamics of adoption

under a slightly relaxed setting. In real-world networks, not all individuals are susceptible to

social change emanating from their neighborhood—some people have stronger beliefs than

others [41]. In an attempt to quantify the effect of the influence on subjects in a more con-

strained setting, we considered only those users u who have been influenced to adopt the

influence decision Cu at least once between time steps 13 to 18 in the second phase. We mea-

sure at every time step, the ratio of individuals who adopted the influence decision at that

time step to the number of individuals in the group they belong to, i.e., who switched to

their influence decision at least once within their lifecycle (Ttreat). Note that this is different

from previous measures in two ways: first we retrospectively filter out users who never

adopted their influence decision (in the real world these are users who would not be suscep-

tible to influence or are immune as such). Second, we analyze this ratio at the end of their

exploration phase, in Time Step 18, when everybody has supposedly settled down. We define

a symbol Nu as the number of time steps for which a user u adopts Cu in Ttreat (this is mea-

sured retrospectively aggregating all time steps beforehand). Formally it is defined as:

Success ratio tð Þ ¼ jfu j DuðtÞ¼Cugj
jfu j Nu�1gj

. The denominator denotes the number of individuals who

have adopted the influence decision at least once from Time Steps 13 to 18. The comparison

shown in Fig 9 among the four groups (the No message group does not have any influence

decision) demonstrates that while the EC group adopts the influence decision more quickly

than other groups, the stimulus in signals quantity at Time Step 16 in the DC group affected

the participants. This is confirmed when the effects of DC strongly outstrip those observed

from EC in the last time step where both groups receive six signals. At the end of the game,

at Time Step 18, we find that the highest number of such susceptible individuals come from

the DC group—these results reinforce some of the conclusions we had from Section 5.3 and

Fig 7 regarding the late retention capabilities of the DC group strategy—however, this mea-

sure makes the differences clearer when we consider individuals who are more prone to

social influence.

6 Data-driven computational models

In this second study, we extend our work on understanding the behavioral aspect of responses

to social influence in sub-optimal choice diffusion settings to real world scenarios where the

distinction between the utilities among choices may not be outright evident. Additionally, as

mentioned in the introduction, it is generally not easy to observe these patterns of influence at

scale and also in networked settings in the real world which makes it difficult to study the

effects it might have on behavior diffusion. The opaque nature of the effect of exposures in the

real world responsible for influence makes it more difficult to analyze the characteristics of

these PoI. The fact that the data about who-exposed-whom in real world information cascades

is rarely available makes studying peer influence more challenging [16]. To this end, we tried

to bridge the gap between experimental hypothesis and real-world scenarios by modeling the

behavior of agents or users when subject to peer influences and by capturing the sequential

nature and bursts in influences towards diffusion. We took the case of rumor diffusion when

the piece of information that propagates as a rumor turned out to be false. In such cases, the

action of resharing by individuals is sub-optimal from the perspective of information sharing.

In such situations, social influence plays an important role in persuading individuals with

benign intent towards resharing when in fact these individuals might otherwise be reluctant to

participate. We observe the trade-off between individual decisions and the influence decision
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through the cascading effect from peers in such environments where resharing a message

would be the wrong choice.

While the growth models in Section 5.5 provided us with evidence about the importance of

signals across time for the three treatment groups, the analysis from Section 5.4 showed that

the compounding effect of influence can lead to different probability outcomes. Specifically,

we found that the number of signals as the proxy for influence can have different effects when

it comes to users adopting the influence decision. We observed the values of R(s) being differ-

ent among the LC and the EC groups for the same s signals despite their being administered at

the same steps of the game. This non-markovian nature of influence calls for developing mod-

els that not only take the effect of the magnitude of peer signals into account but also its effect

relative to what the user has been exposed to across the time steps thus far. However, observing

such influence patterns is not always trivial when it comes to mapping and filtering these

chains of patterns in real world cascades. The challenge was exacerbated when we tried to

weigh the users’ private information against the factor of influence. We did not observe these

private cognitive factors in real world data which makes it more difficult to understand the

real world implications of our experimental conclusions.

Fig 9. Success ratio.

https://doi.org/10.1371/journal.pone.0234875.g009
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To this end, we defined our models of influence taking into account the impact of sequen-

tial exposures and performing simulations of the spread of adoption using an influence based

multi-agent model on real world data. This also helped us measure the extent to which the

observations from our controlled setup can be replicated in real world cases through simula-

tions. Our agent-based model (ABM) differs from the traditional models of diffusion in that

(1) agents as influencers are homogeneous unlike in traditional models, where each influencer

makes its own contribution towards the group influence function and therefore in our case,

pairwise influences between users and their peers were similar for all peers and (2) behavior

diffusion in the simulation was directed towards sub-optimal decision making where the

choice of following peers or the influence decisionmay not be the optimal decision.

6.1 Simulation setup for ABM

There are two ways in which we can model agent behavior to simulate behavior diffusion—the

single agent behavioral model which predicts individual behavior when individuals are

observed in isolation and themulti agent behavioral model that extends the single agent behav-

ioral model to a population level by executing the simulation in a multi-agent environment. In

such scenarios, since the agents influence each other through their own actions over a period

of time, the behavior of individuals can no longer be measured without taking the environ-

mental factors into account. Fig 10(a) shows the agent-based model for a single agent where an

agent makes a decision based on its utilities at every time step. Once the utilities have been

determined, the agent picks a decision corresponding to the maximum utility. Once the agent

has acted, the environment is updated and external factors that might also impact the agent’s

Fig 10. Agent based models for measuring social influence with multiple choices. (a) Single agent behavior model, (b) Multi-agent behavior simulation.

https://doi.org/10.1371/journal.pone.0234875.g010
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decision in the next step is accounted for. Prior to the next time step, the utilities of the choices

are updated based on the previous decision. However in this lifecycle of the decision making

process, the agent is observed in isolation.

In our work, we used this single-agent behavior model as a generative element to simulate

agent behavior but we observed the behavior at a population level especially when the agents

influenced each other by making actions and by virtue of being in a networked environment.

In order to simulate and evaluate the effect of social influence through multiple exposures in

the real world, we chose a specific real world case study to implement the environment. As

shown in Fig 10(b) which represents the multi-agent behavioral model lifecycle, agent behav-

ior is simulated using the single agent behavior model in Fig 10(a) with specific input parame-

ters for the agent which would be learned from the empirical data. We ran the ABM and

evaluated the results from the ABM using different training and test splits but from the same

distribution of the empirical data. The agent specific parameters were learned prior to the start

of the simulation iterations since we mapped the agents to real world users. Although we did

not use feedback from the evaluation obtained from one run of the simulation from the real

world to optimize the simulation environment for future runs, this step can be additionally

performed to obtain monotonically increasing evaluation performance. In our environment,

each agent has a choice to reshare a piece of information in the situation where resharing is

not the optimal choice. The following sections describe the agents and their choices in details.

6.2 Agents

In our multi-agent simulation environment, the agents and the users in the social network of

the real world are one-one mappings and so by default the agents are embodied in a networked

environment where they can share and be exposed to others’ messages. We modeled a social

network as a directed graph N = (V, E), where a node v 2 V represents and individual and the

edge (u, v) 2 E exists if u follows v, in our case v influences u’s decision. So in the context of

this social network, our agents are the nodes in these networks. Each agent can play both the

role of a neighbor influencing a user or a susceptible user who is being influenced. For each

agent u, as mentioned before, we considered the set of agent’s peers to be homogeneous with

respect to the influence they exerted on u. In the context of the ABM, we separately modeled

the probability that each agent was being influenced based on factors that are going to be dis-

cussed in the next section.

6.3 Modeling agent behavior towards sub-optimal decision making

Instead of considering multiple choices for the agent decision stages, we considered a binary

choice model where at each time step, each agent had to make a selection among two choices

which are reciprocal to each other, and the selection is based on the choice that comes with the

higher probability of activation. In the real world case study used for the simulation, the action

of resharing a piece of information is a sub-optimal choice and so the peers of an agent who

reshared the same piece of information exerted influence towards sub-optimal decision

making.

Also, note that this is a simpler version of the online controlled experimental setup where

the user had five choices. One of them was optimal and our setup could be extended to include

multiple choices for a relevant real world case study. Following this, the agent could only be in

two states based on the choice they made, that is they have either reshared a piece of informa-

tion identifying the cascade or they have not. Additionally, as in most real world adoption sce-

narios with a binary choice model, the user cannot transition back to the state it arrived from.

Before delving into the technical details of the components for the agent utilities, agent states
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and the exposure effect based ABM, described in details below is how we quantified the indi-

vidual decision factor and the peer influence through exposures.

6.3.1 Probability of activation. The agent in our model starts with being agnostic about

whether the choice of resharing a message or the activation choice is the optimal choice, how-

ever it is in the interest of a rational actor to make a choice that is optimal in the real world, yet

conform to the general choices made by the population. So in the absence of any external fac-

tors, our model posits that the probability that agent umakes a sub-optimal decision is given

by:

puðtÞ ¼
1

1þ expð� ðzuðtÞ � muðtÞÞÞ
ð5Þ

where μu(t) denotes the negative utility from the agent u’s own decision to select the optimal

choice at time t using its acquired knowledge of the real world event (this quantity represents

the utilities from the knowledge acquired by users in the first phase of the controlled experi-

ment) i.e. it represents the cost from disagreeing with the dominant influence decision which

is not optimal, and zu(t) denotes the utility that comes from selecting the peer choice Cu. An

important point to note here is that while μu(t) denotes the loss from selecting the optimal

decision, the utility zu(t) denotes the utility from adopting the influence decision and we incor-

porated that in the function definition described later. So pu(t) here denotes the probability of

selecting the sub-optimal decision which is key to the way we handled the simulation later.

Note that unlike other propagation models [42–44], we did not consider external effects for

the propagation like infectiousness parameter of the cascade, time of the day as those factors

can be added to our ABM model as well the baselines we use to measure the effect of exposures

as a proxy for influence. The goal of this ABM model based simulation of spread is two fold:

(1) we measured the extent to which the spreading on real world networks based on the expo-

sure effect from our model differs from that of the Bass model and which was the basis of the

controlled experiment in [17] which considers only the number of active individuals (using

the network structure to diffuse signals) at a time as a measure of influence, and (2) how close

the results obtained from the spreading simulation are to real world diffusion. We repeat that

any other external factors that influence adoption can be added to our model to improve the

fit to real world data—however we tested exposure rates for social influence as opposed to just

active neighbors, exclusively through this ABM. Next, several models are described that define

these two probability measures in Eq 5.

6.3.2 Individual decisions. Most of the diffusion models that measure the impact of

behavior are somewhat mechanical and not strategic, meaning that the probability that an

agent adopts a specific behavior is proportional to the infection rate of her/his peers. However,

the controlled experiments showed that social influence based exclusively on the quantity of

peer signals at any time does not always determine the outcome and that individual choices of

rational agents can determine the diffusion process quite significantly. Additionally, each

agent wanted to maximize her/his utility through intentionally selecting behaviors. Intuitively,

considering the stochastic and non-stationary nature of human decision, it is essential to

accommodate uncertainty when users infer utility from interactions. We achieved this individ-

ual decision component through the following latent variable. Let the utilities associated with

the choice of making the optimal decision be given by a latent unobserved variable xu(t) that

determines the individual utility that drives user u’s decision making at time t. Since in most

real world studies, there is no straightforward way to determine the individual intentions

behind resharing a message, we used this variable to capture it. In the context of sub-optimal
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decision making, this utility from an agent’s standpoint towards optimal choices now counts

as a loss towards the net utility for making sub-optimal decisions.

We do note that as mentioned in several existing studies [45], there can be several other fac-

tors like the infectiousness of the current event and other intrinsic factors of the user that con-

tribute to the utility. We repeat that all these factors can be incorporated to make the model

more realistic. The utility that a user gets from making the optimal decision is then

mðtÞ ¼ xuðtÞ þ � ð6Þ

Here � is an i.i.d. random variable drawn from some generating distribution that accounts for

the uncertainty in the behavior of individuals beyond their own utility for a decision. We

started the simulation after already observing the initial set of reshares for a cascade. Following

this, we consider that the utility a user gains from selecting the optimal choice as per its own

knowledge is constant over time after the initial stage.

6.3.3 Utility from influence decision. Social influence phenomenon arising out of indi-

vidual interactions is measured through pairwise influences that result in a complex contagion.

The basic assumption is that the probability of an agent being activated is dependent on the

heterogeneous pairwise probabilities between the agent and its peers. In the simplest case for a

specific individual, when we only measured the number of peers who had already adopted a

particular message as a measure of social influence [46], the probability p0uðtÞ that u is activated

at time t is given by:

p0uðtÞ ¼
1

1þ expð� ½Zu AuðtÞ þ bu�Þ
ð7Þ

where ηu, βu are coefficients to be estimated. Equivalently,

zuðtÞ ¼ ln
p0uðtÞ

1 � p0uðtÞ

� �

¼ Zu AuðtÞ þ bu ð8Þ

where coefficient ηu measures the social influence or social correlation effect for u. Intuitively,

the right hand side of Eq 8 denotes the utility of the agent u obtained from adopting the influ-
ence decision in situations where resharing is not the optimal choice.

One of the key observations from the controlled experiments shown in Fig 8(a) and 8(b) is

that the slow compounding effect on behavior outcome from linear influence cascades may

not be the best in terms of the desired outcome at all time steps. We observe that the sudden

spike in signals at Time Step 4 for the delayed cascade participants (when both LC and DC par-

ticipants had four peer exposures) allows for more users in DC to respond to social influence

compared to the LC group. We introduced a scaling factor for the quantity of peer signals that

capture this spiking effect. To this end, instead of using the number of exposures directly as

the peer effect, we substituted Au(t) with the following:

AuðtÞ ¼ AuðtÞ:esðAuðtÞ� Auðt� 1Þ� 1Þ ð9Þ

The intuition behind the augmented exposures is that the sudden spike makes an amplify-

ing effect on the social influence measure and so should be accounted for. Here σ is the param-

eter that controls the amplifying exponential curve. Note that for the linear cascade pattern,

where there is a single increase in the peer exposure at t with respect to t − 1 at all times, the

amplification is null. The scaling parameter σ is held constant for all agents.

6.3.4 Models of decision making. Using the two components above, we arrive at two

models of activation based on Eq 5 and we used those 2 models to run our simulation

procedure:
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1. Base model (BM): We used Eqs 6 and 7 to arrive at the following probability of activation

puðtÞ ¼
1

1þ expð� ½ðZu AuðtÞ þ buÞ � ðxuðtÞ þ �Þ�Þ
ð10Þ

2. Augmented Exposure model (AEM): We use Eqs 6 and 9 to arrive at the following proba-

bility of activation with the augmented peer exposures

puðtÞ ¼
1

1þ expð� ½ðZu ðAuðtÞ:esðAuðtÞ� Auðt� 1Þ� 1ÞÞ þ buÞ � ðxuðtÞ þ �Þ�Þ
ð11Þ

The two probabilities shown above represent a situation when the agent decides to reshare

the message after weighing the utilities from the two components. Since we adopted a binary

choice model, we did not explicitly model the utilities of the other choice which is to not

reshare the message. The probability of an agent not sharing the message is then just 1 − pu(t).

6.4 Learning model parameters

With the models of activation stated as above, we set the parameters of the model in the simu-

lation procedure. We specifically worked with information cascades representative of real

world diffusion [47] while discussing the dataset. Since we considered rumor diffusion as the

real world study and we calibrated the parameters of the models to this dataset by splitting it

into training and evaluation sets as is prevalent in machine learning setups. Specifically, we

started the behavior diffusion simulation of the agents after observing part of the diffusion cas-

cades till Tthresh. That is, we first observed the cascades from their beginning to a specific time

span Tthresh for learning and left the rest of each cascade after Tthresh to be used for evaluation

of the ABM. This helps us in two ways: first, it allowed us to perform simulation with the

assumption that the agents had the time to form some opinion of their own using the explora-

tion strategy as setup in the controlled experiments. Second, it allowed us to learn the parame-

ters specific to each agent in a data-driven way prior to start of simulation and allows us to

perform evaluation of the ABM based diffusion process after Tthresh.
We treated the latent utility factor xu(t) as a parameter of interest and considered that the

agent’s individual decision utility was fixed. We considered xu(t) = xu for all time steps t 2 [1,

T]. Specifically, the parameters of interest specific to agents are θu = {xu, ηu, βu} and the param-

eter σ which we set to a constant during our evaluation. Since it is not easy to map the con-

trolled experimental environment to situations in observational studies, we did not consider

agent histories, so instead of learning individual agent parameters {xu, ηu, βu}, for each u, we

divided all the agents into L latent groups. This also captured the notion that agents in a con-

nected network belong to a latent block structure or specifically stochastic block models [48].

In a stochastic block model, each agent is assigned to a block and the pattern of influence

between different agents depends only on their block assignment. Following this, the overall

probability that u belongs to class l 2[1, L] is given by pl = P[lu = l] with
PL

l¼1
pl ¼ 1. So all the

individual agent specific parameters {xu, ηu, βu} are now replaced by {xl, ηl, βl}. Let θl = {xl, ηl,
βl} be the parameters specific to the latent class l. Denoting zu(t) = 1 if the agent reshares the

message (sub-optimal decision) and 0 otherwise, Zu = {zu(t)}, 8t 2 [1, T], the likelihood
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contribution of u belonging to latent class l is then given by:

f ðZu; ylÞ ¼
Y

t

puðtÞ
zuðtÞð1 � puðtÞÞ

ð1� zuðtÞÞ
ð12Þ

Denoting the set of parameters Θ = [θ1, . . ., θL], P = [p1, . . ., pL] and Au = {Au(t)}, 8t 2 [1,

T], the likelihood of the model is then given by:

LðY;PjD;AÞ ¼
Y

u

ð
X

l

pl f ðZu; ylÞÞ ð13Þ

So our log-likelihood is:

lðY;PÞ ¼
X

u

log ð
X

l

pl f ðzuðtÞ; ylÞÞ ð14Þ

We attempted to compute the posterior distribution of the parameters given the observa-

tions:

PðYl; pljAu;ZuÞ ¼
plf ðzuðtÞ; ylÞP
lpl f ðzuðtÞ; ylÞ

ð15Þ

DenotingWu = {Au, Zu} for all agents u, we first attempted to compute the posterior distri-

bution of pl,u = P(lu = l|Wu), given the observations. And formally it is given by:

Pðlu ¼ ljWuÞ ¼ ku;l ¼
PðWujlu ¼ lÞPðlu ¼ lÞ

PðWuÞ
¼

pl f ðZu; ylÞP
lpl f ðZu; ylÞ

ð16Þ

The lower bound log-likelihood following Eq 14 takes the form

ll ¼
X

u

logEl�ku;l
plf ðZu; yl
ku;l

" #

�
X

u

X

l

ku;llog
plf ðZu; ylÞ

klu

ð17Þ
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Taking the derivative of ll with respect to xu and keeping other parameters fixed, we get

rxl
ll ¼ rxl

X

u

X

l

ku;llog
plf ðZu; ylÞ

klu

¼ rxl

X

u

X

l

ku;llog
pl
Q

tpuðtÞ
zuðtÞð1 � puðtÞÞ

ð1� zuðtÞÞ
h i

klu

¼ rxl

X

u

X

l

ku;llog
pl
ku;l
þ ku;llog

Y

t

puðtÞ
zuðtÞð1 � puðtÞÞ

ð1� zuðtÞÞ

" #" #

¼ rxl

X

u

X

l

ku;llog
pl
ku;l
þ ku;l

X

t

�

zuðtÞlogpuðtÞ þ ð1 � zuðtÞÞlogð1 � puðtÞÞ
�" #

¼
X

u

X

l

ku;l
X

t

zuðtÞrxl
logpuðtÞ þ ð1 � zuðtÞÞrxl

logð1 � puðtÞÞ
h i

" #

¼
X

u

X

l

ku;l
X

t

zuðtÞ
puðtÞ

rxl
puðtÞ �

1 � zuðtÞ
1 � puðtÞ

� �

rxl
puðtÞ

� �" #

¼
X

u

X

l

ku;l
X

t

zuðtÞ
puðtÞ

�
1 � zuðtÞ
1 � puðtÞ

� �� �

rxl
puðtÞ

" #

ð18Þ

The derivative of pu(t) considering the base model BM with respect to xu keeping other

parameters fixed is

rxl
puðtÞ ¼ rxl

1

1þ expð� ðZu AlðtÞ þ blÞ � ðxlðtÞ þ �Þ½ �Þ

¼
expð� ðZl AlðtÞ þ blÞ � ðxlðtÞ þ �Þ½ �Þ

ð1þ expð� ðZl AlðtÞ þ blÞ � ðxlðtÞ þ �Þ½ �ÞÞ
2
rxl
ð� xlðtÞ � �Þ

¼ �
expð� ðZl AlðtÞ þ blÞ � ðxlðtÞ þ �Þ½ �Þ

ð1þ expð� ðZl AlðtÞ þ blÞ � ðxlðtÞ þ �Þ½ �ÞÞ
2

ð19Þ

Similarly, the gradients with respect to other parameters ηl, βl and pl can also be calculated

and the parameter updates in the M step can be performed via gradient descent using the fol-

lowing procedure. This is a standard finite mixture model where the parameters are estimated

by the Expectation Maximization (EM) framework [49]. The brief steps to obtain the parame-

ter estimates are as follows:

6.5 Dataset

We used the Twitter dataset released publicly by authors in [50] which analyzed how people

orient to and spread rumors in social media. As discussed in that study, adapting the existing

definition to the context of breaking news stories, a rumor is defined as a “circulating story of

questionable veracity, which is apparently credible but hard to verify, and produces sufficient

skepticism and/or anxiety so as to motivate finding out the actual truth”. The tweets from that

study were collected from the streaming API relating to newsworthy events that could poten-

tially prompt the initiation and propagation of rumours. Selected rumours were then captured
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in the form of conversation threads. The authors used Twitter’s streaming API to collect tweets

in two different situations: (1) breaking news that is likely to spark multiple rumours and (2)

specific rumours that are identified a-priori. They collected a total of nine events pertaining to

these situations but we used the threads from three events in this paper. The twitter threads

were related to the following three events:

• Charlie Hebdo Shooting: Two brothers forced their way into the offices of the French satiri-

cal weekly newspaper Charlie Hebdo in Paris, France killing 11 people and wounding 11

more, in January 2015.

• Ferguson unrest: The citizens of Ferguson in Missouri protested after the fatal shooting of an

18-year-old African American, Michael Brown, by a white police officer on August 9, 2014.

• Putin missing: Numerous rumors emerged in March 2015 when Russian president Vladi-

mir Putin did not appear in public for 10 days. He spoke on the 11th day, denying all rumors

that he had been ill or was dead.

Since the publicly released dataset only contained a sample of the threads as compared to

the those used in [50], we picked these three events which had relatively larger proportion of

rumor threads among all the events. The authors in the study curated the annotations for the

threads as to whether they were rumors or not with the help of several journalists. We consid-

ered all the threads for the events which were tagged as rumors such that the stories related to

these threads were later verified as false. Fact checking for these threads were performed by a

group of annotators after these events and while the entire event might have been later

described as true, there were threads related to those events that spread misinformation. The

statistics of the data pertaining to these three events is provided in Table 4. For each of the

events, the dataset provides us with the following segregated information modules:

1. Initialize the parameters Θ, P and evaluate the log likelihood of the model using Eq 14.

2. E-Step: Evaluate the posterior probabilities using the current values of Θ, P, with Eq 16.

3. M-Step: Update the parameters Θ, P with the current values of the posterior using the gra-

dients obtained through maximization of the log likelihood with respect to parameters.

4. Evaluate the log-likelihood with the new parameter estimates. If the log-likelihood has

changed by less than some small �, stop, else reiterate Steps 2 and 3.

Algorithm 1: Simulating the diffusion of cascade q based on social influence and individual

decisions.
Input: Tthresh, Activated Set A (till time Tthresh), Time limit Tsim, Θ,
P, σ, users Vq, G, Model Type MT
Output: Diffusion Node Set DFq[t], 8t 2 [1, Tsim]
activated  A
DFq[0]  {}
for t = 1 to Tsim do
curr_activated  {}

Table 4. Statistics of the data used for simulation relating the 3 events.

Charlie Hebdo Putin Missing Ferguson Unrest

Network Nodes 17426 243 4534

Network Edges 33598 520 12076

# cascades 74 11 53

Avg. in-degree 1.98 2.12 3.04

https://doi.org/10.1371/journal.pone.0234875.t004
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DFq[t]  DFq[t − 1]
for each agent u2 Vq\activated do
lv  argmax l

pl f ðzuðTthreshÞ;ylÞP
l
pl f ðzuðTthreshÞ;ylÞ

/� Calculate individual factor μu(t) �/
� * N ð0; 1Þ
compute μu(t) with Eq 6 using � and xlv
/� Calculate utility from influence ζu(t) �/
if MT == BM then
compute ζu(t) with Eq 8

else
compute Au(t) using G with Eq 9
compute ζu(t) with Eq 8

/� Calculate probability of activation pu(t) �/
pu(t)  1

1þexpð� zuðtÞ� muðtÞ½ �

if pu(t) > 0.5 then
DFq[t]  DFq[t] [ {v}
curr_activated  curr_activated [ {v}

activated  activated [ curr_activated
return DFq

1. Who-follows-who network: This social network is sampled to cater to specific users who par-

ticipated through either replying to tweets or retweeting that specific event. This allowed us

to focus our simulation for each event using this network N instead of using one large social

network common to all events. It helped in part by enabling us in the evaluation to compare

our set of activated individuals at each time step to the actual users who were activated.

2. Retweet cascades: We considered retweet cascades and did not include users who simply

replied to a particular tweet since it is challenging to deduce whether a user agreed to the

agenda of the cascade while replying—the notion that induces a cascade of like minded

individuals. So we restricted users in the cascade to those who only retweeted the source

tweets.

We operationalized our simulation of behavior diffusion described in details in the next

section, for each event separately. We used the follower networks for each event to simulate

the diffusion and used the retweet cascades to learn the agent parameters specific to each

event.

6.6 Simulation algorithm

We now describe the algorithm for operationalizing the simulation of behavior diffusion based

on the influence setup described in Section 6.3. As mentioned before, agents refer to users in

the social network and a one-to-one mapping to the actual network of the events from the

dataset. We used the follower networks relevant to each event, which are directed in its edges

and we refered to such networks as G. The algorithm for the agent-based model for social

influence based diffusion process is described in Algorithm 1.

The diffusion simulation unfolds in discrete time steps and at each step, multiple agents can

change their states (initial state being the state where the user/node has not reshared the mes-

sage)—however, once they transition from non-shared to shared state, they cannot switch

back. We observed the users who participated in the first Tthresh steps of the cascades and used

that to learn the parameters, specifically the latent class l specific parameters θl, pl for all classes

l 2 [1, L]. We then use the activated nodes (which have already reshared the rumor prior to

Tthresh) along with these learned parameters as input to the simulation algorithm. From
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thereon, we ran the algorithm for a span of Tsim discrete time steps. For each t 2 [1, Tsim], the

algorithm outputs the number of agents who reshared the rumor message at time t or were

activated at time t. In each step t, we looped through all the agents in the network that had yet

to reshare the message. Since we projected each agent into a mixture of latent classes L, prior

to the simulation step, we needed to categorize each agent into one of the latent classes in

order to compute pu(t) with the respective parameters of the latent class they belong to. We

observe Du(t), Au(t) of each user u till Tthresh in the real world data and then the latent class can

be decided by the maximum of posterior arg max l ku;l (Eq 16) from the data. Then the proba-

bility of activation is computed based on Eqs 10 and 11 depending on whether the base model

or the augmented exposures model is used (the algorithm mentions the general form of the

equation based on Eq 5). If this calculated probability is higher than 0.5, the agent is activated

and the simulation continues for other agents for that time step.

6.7 Evaluation of ABM

One of the specific goals we had while setting up the ABM was to compare the two models we

proposed—the base model which relies on the magnitude of peer signals as the factor for social

influence and the augmented model which allows for accommodating the sequential changes

in peer signals. To this end, we compare the diffusion trajectory of the cascades from simula-

tions based on each model and the real world data. Note that all the parameters of the models

represented in Eqs 10 and 11 are learned from the data, except for the noise random variable η
that adds uncertainty to the individual utilities. We sampled �� N ð0; 1Þ and following this,

we executed 100 runs of the simulation algorithm for each cascade (thread) for each event in

the data to account for this uncertainty. For learning the parameters as mentioned before, we

observed the cascades for each event till time Tthresh. Since the time span of resharing actions

for each cascade is different and in the absence of any normalization procedure that could be

applied to decide on a single Tthresh for all cascades, we instead observed the first 40% of each

cascade (in terms of total number of reshares in the cascade) in the chronological order of

reshares. This allowed us to keep the Tthresh dynamic for each cascade while allowing the rest of

the cascade to be used for ABM evaluation.

To evaluate the simulation results, for each cascade q, we consider the set of users

Vq 2 VðGÞ for each network G relevant to the event, such that all users in Vq reshared q in the

time span of the cascade. We ran each simulation for Tsim = 20 steps. For each time step t in

our simulation, we computed the following metric for each cascade:
jVq\DFq t½ �j
jVqj

, the number of

actual activated users which are also part of the activated users from the simulation algorithm

at time t. We call this measure the True Diffusion Rate of our simulation algorithm. The metric

does not measure prediction results here since there is no way in which we can precisely map a

time step in our simulation to a numeric time interval in the real world dataset. The metric

allows us to measure recall over the users who reshared the rumors while allowing us to simu-

late the trajectory of the diffusion over time. Fig 12 show the results of the ABM simulation for

the two simulations. For each event, we ran the 2 models as described in Section 6.3. So we

have a total of six models and we learned six sets of parameters and run 100 simulations for

each model that learn the parameters of the ABM.

Fig 12(a), 12(b) and 12(c) show the plots corresponding to the true diffusion rate over time

and it compares the two models: the BM model where the peer influence at time t is character-

ized by the number of neighbors of a user who have reshared the rumor message till t and the

AEM model where the peer influence at time t is characterized by the augmented exposures

till t given in Eq 9. For all the results, we plotted the mean of the True Diffusion Rate at each
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time step taking all cascades for the respective events into account. Below are the results from

the Charlie Hebdo and Putin missing events followed by the Ferguson arrest events:

Charlie Hebdo and Putin missing: For the cascades related to both of these events, the

AEM model which takes into account our notion of augmented exposures, exhibits a faster dif-

fusion rate compared to the BM model. The results are not surprising in this scenario since the

additive factor of influence coming from the spike in neighbor information in the AEM model

augments the utility from social influence resulting in faster diffusion. We also observed that

for the cascades in the Putin Missing events, the diffusion rate for the AEM model is an order

of magnitude higher in the initial stages until seven time steps and the AEM model reaches the

saturation point of the curve faster than the BM model.

On closer analysis, we found that the network structure in this case has an important role to

play. The degree distribution for the network used for the Putin missing event displayed in Fig

11 shows that there are only a few nodes with high in-degree or the number of potential peer

signals. So the spikes in the adoption curve for the Putin missing event happens when these

few nodes with high in-degree (or higher potential of exposure to peer siganls) are exposed to

the message from multiple peers and they reshare the message. This happens earlier for the

AEM model than the BM model. Consequently, this result shows that faster diffusion in real

world networks can often be attributed to the presence of a few nodes that are more susceptible

to exposure, resulting in faster adoption at a population level. It shows how peer signals in the

initial stages can drive diffusion faster for the rest of the trajectory.

We also observed that in both of these events, the dynamics of adoption do not vary much

in that at no point does the adoption rate induced by the BM model surpass the AEM model.

This also suggests that when population-level adoption is faster shown by the fact that in both

cases, almost 70% of the actual users who reshared the message were activated in our AEM

model by Time Step 7, user uncertainty does not account for much and the peer signals drive

the dynamics.

Ferguson arrest: For the cascades belonging to the Ferguson arrest event, we fund that in

contrast to the results discussed above, the AEM model resulted in slower diffusion than the

base model after time step 4 as shown in Fig 12(c). On closer analysis, the reasons behind this

can be attributed to two key observations: (1) Slow initial diffusion prior to the start of simu-

lation for cascades belonging to the Ferguson arrest event. It took an average of Tthresh = 25

Fig 11. Degree distribution of the follower networks.

https://doi.org/10.1371/journal.pone.0234875.g011
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and 31 hours for the cascades to reach 40% of their final affected population for the Charlie

Hebdo and the Putin missing events respectively, while it took roughly Tthresh = 134 hours to

reach the same 40% of the final size for the cascades in the Ferguson unrest events. This also

led to the models setting high values of μu(t) from the learning procedure prior to start of

simulation i.e. the user uncertainties were learned to be higher at the start of the simulation

resulting in slower diffusion through the simulation given that it took 10 time steps to reach

70% of the population in contrast to seven time steps for the other two events. (2) The slower

diffusion led to many nodes not experiencing any increase in peer signals, resulting in lower

probability of activation over time, since the factor eAu(t)−Au(t−1)−1 could be less than 1

when Au(t) = Au(t − 1) i.e. there was no increase in peer exposures which happens to be the

case in this situation.

Consequently, the social influence factor dropped in AEM model after Time Step 4 com-

pared to the BM model which explains the plot Fig 12(c). This suggests that in networked situ-

ations unlike our experimental environment, slower initial diffusion can result in initial higher

uncertainty which can eventually result in the decay of the influence factor later on. In such

cases delayed stimulus through interventions would be the only way for peer influence to play

a bigger role which of course would be undesirable in such sub-optimal choice diffusion sce-

narios. As mentioned before, one of the limitations of this model lies in the setup that a user

cannot transition back to a state it has explored. This limits us in measuring the retention effect

Fig 12. ABM results for the simulation using Algorithm 1 on three Twitter who-follows-whom network for the events (a) Charlie Hebdo, (b) Putin

missing and (c) Ferguson unrest.

https://doi.org/10.1371/journal.pone.0234875.g012
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concurrent to what we tested for the Early Cascade phenomenon. However we believe that our

binary choice model can be extended to multiple choice data given relevant case studies. Tthis

would then allow for understanding of the retention effect in the real world and whether early

exposures are not an effective tool for retention over the long run as we concluded from our

controlled experiment setup.

7 General discussion

The primary goal of our studies was to examine how individuals’ decisions are influenced by

the decisions of others, particularly when they are exposed to different cascading peer influ-

ence patterns. Through a behavioral experiment and a data-driven agent-based model, we

explored how social influence can play a role in sub-optimal behavior diffusion. Specifically,

we investigated how temporal patterns of influence, by and large, affect decision-makers when

the decisions have utilities. We conducted two sets of studies. In Study 1, we developed a con-

trolled experimental setup that divided participants into five groups based on the manner in

which they were treated to peer signals or the PoI over time. Our first hypothesis, that studied

this effect of PoI on behavior outcome, confirmed that an early exposure to signals commands

the most success in terms of desired outcome when aggregated over all of the time steps of the

game. However, it did not shed much light on the temporal variations between-groups in deci-

sion making. Based on a second hypothesis that attempted to study this aspect, we analyzed

the influence of the quantity of peer signals across the time steps. We found that the effect of

the same quantity of signals could have a substantially different effect based on the Po. While

early exposure to a large peer influence can decay very fast thus failing the retention effect one

would hope would come from early exposures, a delayed stimulus in peer signals proves to be

a successful strategy in resurgence of the desired outcome of influence.

The first study was conducted to focus on the nature of peer influence on sub-optimal

choice diffusion. However, in real world applications, information diffuses through networked

environments. Additionally, the controlled settings implicitly do not allow us to measure the

role of individual uncertainty or private information which is an additional cognitive factor

that remains difficult to be measured. To complement the online controlled study, we con-

ducted a simulation on real world Twitter networks to measure the impact of influence deci-

sions towards rumor diffusion. We find that over a long a period of time, the influence effect

from majority of an individual’s peers were sufficiently large to persuade users to follow their

neighbors despite having to reshare a message of questionable veracity. While that is intuitive,

we found that surprisingly when information diffusion is slow at the beginning of a cascade,

individual uncertainty can play a substantial role as time progresses and can itself impact this

influence effect and thus impacting the trajectory of adoption. Our conclusions deviate from

the existing notions of networks being the main constituents controlling both the probability

of successful social influence and the resharing models. Our conclusions point to adversarial

situations where the network organization can be manipulated to now be used for devising

successful social influence mechanisms. These strategies or patterns of influence can become

the confounding factors behind the outcomes and therefore these deserve to be studied in

more detail.

Such conclusions can have diverse implications in the real world, where strategies to

encourage harmful decisions could be weaponized in adversarial situations. Social influence is

key to technology adoption, and research on the role of persuasion in security technology

adoption indicates that various social influence factors impact a user’s decision when making

decisions to purchase or use a given technology. However, these studies have primarily investi-

gated the role of benign social influence and not how it can be harnessed to harm users, e.g. by
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cyber-adversaries. Specifically, social influence has primarily been studied in the context of it

having a net positive impact on society, especially when considering the utility of the decisions

made through influence. Given the slew of recent events in which cyber warriors exploit social

media with malicious intent, researchers and policy-makers are reconsidering the role of social

influence as a tool for change. Together, these simulations and the behavioral experiment illus-

trate the power of multidisciplinary, complimentary work in the computational social sciences.

Use of modeling and the principles of experimentation allow us to more holistically study the

effect of social influence on decision-making.

Current research thus sheds light on the principled manner in which influence patterns can

be harnessed to achieve a desired outcome that could be harmful in myriad ways. While it is

evident from our growth models, that the role of the magnitude of signals on the decision out-

come is significant across time, we also found that the absolute quantity of peer signals can

command different probabilities of success when disseminated using different mechanisms.

Following this, we see our research being extended into multiple directions: a straightforward

extension would be to test these patterns at scale when the number of peers that a user is sub-

ject to is large and so the duration of the game is also proportionally extended. A second direc-

tion can be extended to situations where the users also stand to lose money for certain

decisions—in the real world these could be factors like costing users their credibility and repu-

tation for the wrong choice and it remains to be seen whether users would still be tempted to

explore or if they would exploit the best option more often. Similarly, the agent-based model

can be extended to multi-armed bandit situations where specific algorithms could be devised

based on regret achieved from a convex combination of utilities derived from social influence

and its own experience.
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23. Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Pro-

ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM; 2003. p. 137–146.

24. Ver Steeg G, Ghosh R, Lerman K. What stops social epidemics? In: ICWSM; 2011.

25. Centola D, Macy M. Complex contagions and the weakness of long ties. American journal of Sociology.

2007; 113(3):702–734.

26. Bao P, Shen HW, Chen W, Cheng XQ. Cumulative effect in information diffusion: empirical study on a

microblogging network. PloS one. 2013; 8(10):e76027. https://doi.org/10.1371/journal.pone.0076027

PMID: 24098422

27. Grujić J, Eke B, Cabrales A, Cuesta JA, Sánchez A. Three is a crowd in iterated prisoner’s dilemmas:

experimental evidence on reciprocal behavior. Scientific reports. 2012; 2: 638.

28. Beck AL, Lakkaraju K, Rai V. Small is big: Interactive trumps passive information in breaking information

barriers and impacting behavioral antecedents. PloS one. 2017; 12(1).

29. Yamagishi T, Yamagishi M. Trust and commitment in the United States and Japan. Motivation and emo-

tion. 1994; 18(2):129–166.

30. Sarkar S, Guo R, Shakarian P. Using network motifs to characterize temporal network evolution leading

to diffusion inhibition. Social Network Analysis and Mining. 2019; 9(1):14.

31. Jordan JJ, Rand DG, Arbesman S, Fowler JH, Christakis NA. Contagion of cooperation in static and

fluid social networks. PloS one. 2013; 8(6):e66199. https://doi.org/10.1371/journal.pone.0066199

PMID: 23840422

32. Rand DG, Arbesman S, Christakis NA. Dynamic social networks promote cooperation in experiments

with humans. Proceedings of the National Academy of Sciences. 2011; 108(48):19193–19198.

33. Muchnik L, Aral S, Taylor SJ. Social influence bias: A randomized experiment. Science. 2013; 341

(6146):647–651. PMID: 23929980

34. Kahneman D, Frederick S. Representativeness revisited: Attribute substitution in intuitive judgment.

Heuristics and biases: The psychology of intuitive judgment. 2002; 49:81.

35. Lorenz J, Rauhut H, Schweitzer F, Helbing D. How social influence can undermine the wisdom of crowd

effect. Proceedings of the National Academy of Sciences. 2011; 108(22):9020–9025.

36. Salganik MJ, Dodds PS, Watts DJ. Experimental study of inequality and unpredictability in an artificial

cultural market. science. 2006; 311(5762):854–856. PMID: 16469928

37. Zhang J, Liu B, Tang J, Chen T, Li J. Social Influence Locality for Modeling Retweeting Behaviors. In:

IJCAI. vol. 13; 2013. p. 2761–2767.

38. Lakkaraju K, Medina B, Rogers AN, Trumbo DM, Speed A, McClain JT. The Controlled, Large Online

Social Experimentation Platform (CLOSE). In: International Conference on Social Computing, Behav-

ioral-Cultural Modeling, and Prediction. Springer; 2015. p. 339–344.

39. Bliese PD, Ployhart RE. Growth modeling using random coefficient models: Model building, testing, and

illustrations. Organizational Research Methods. 2002; 5(4):362–387.

40. McCulloch CE, Neuhaus JM. Generalized linear mixed models. Encyclopedia of biostatistics. 2005; 4.

41. Aral S, Walker D. Identifying influential and susceptible members of social networks. Science. 2012;

337(6092):337–341. PMID: 22722253

42. Matsubara Y, Sakurai Y, Prakash BA, Li L, Faloutsos C. Rise and fall patterns of information diffusion:

model and implications. In: Proceedings of the 18th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM; 2012. p. 6–14.

43. van Maanen PP, van der Vecht B. An agent-based approach to modeling online social influence. In:

Proceedings of the 2013 ieee/acm international conference on advances in social networks analysis

and mining. ACM; 2013. p. 600–607.

44. Jamali M, Haffari G, Ester M. Modeling the temporal dynamics of social rating networks using bidirec-

tional effects of social relations and rating patterns. In: Proceedings of the 20th international conference

on World wide web. ACM; 2011. p. 527–536.

PLOS ONE Experiments to measure the impact of sequential peer exposures on decision making

PLOS ONE | https://doi.org/10.1371/journal.pone.0234875 July 9, 2020 36 / 37

https://doi.org/10.1371/journal.pone.0076027
http://www.ncbi.nlm.nih.gov/pubmed/24098422
https://doi.org/10.1371/journal.pone.0066199
http://www.ncbi.nlm.nih.gov/pubmed/23840422
http://www.ncbi.nlm.nih.gov/pubmed/23929980
http://www.ncbi.nlm.nih.gov/pubmed/16469928
http://www.ncbi.nlm.nih.gov/pubmed/22722253
https://doi.org/10.1371/journal.pone.0234875


45. Yang J, Leskovec J. Modeling information diffusion in implicit networks. In: 2010 IEEE International

Conference on Data Mining. IEEE; 2010. p. 599–608.

46. Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proceedings

of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM;

2008. p. 7–15.

47. Sarkar S, Guo R, Shakarian P. Understanding and forecasting lifecycle events in information cascades.

Social Network Analysis and Mining. 2017; 7(1):55.

48. Cho YS, Ver Steeg G, Galstyan A. Co-evolution of selection and influence in social networks. In:

Twenty-Fifth AAAI Conference on Artificial Intelligence; 2011.

49. Wedel M, DeSarbo WS. A mixture likelihood approach for generalized linear models. Journal of Classifi-

cation. 1995; 12(1):21–55.

50. Zubiaga A, Liakata M, Procter R, Hoi GWS, Tolmie P. Analysing how people orient to and spread

rumours in social media by looking at conversational threads. PloS one. 2016; 11(3):e0150989. https://

doi.org/10.1371/journal.pone.0150989 PMID: 26943909

PLOS ONE Experiments to measure the impact of sequential peer exposures on decision making

PLOS ONE | https://doi.org/10.1371/journal.pone.0234875 July 9, 2020 37 / 37

https://doi.org/10.1371/journal.pone.0150989
https://doi.org/10.1371/journal.pone.0150989
http://www.ncbi.nlm.nih.gov/pubmed/26943909
https://doi.org/10.1371/journal.pone.0234875

