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Abstract

Gene-based association tests aggregate genotypes across multiple variants for each gene,

providing an interpretable gene-level analysis framework for genome-wide association stud-

ies (GWAS). Early gene-based test applications often focused on rare coding variants; a

more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory

associations. Regulatory variants are expected to be particularly valuable for gene-based

analysis, since most GWAS associations to date are non-coding. However, identifying

causal genes from regulatory associations remains challenging and contentious. Here, we

present a statistical framework and computational tool to integrate heterogeneous annota-

tions with GWAS summary statistics for gene-based analysis, applied with comprehensive

coding and tissue-specific regulatory annotations. We compare power and accuracy identi-

fying causal genes across single-annotation, omnibus, and annotation-agnostic gene-

based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find

that incorporating heterogeneous annotations in gene-based association analysis increases

power and performance identifying causal genes.

Author summary

Gene-based association tests are statistical methods used in genome-wide association

studies (GWAS) to identify genes that affect heritable traits. Gene-based tests are formed

by aggregating genotypes across multiple genetic variants for each gene, often including

only variants that are likely to affect gene function or regulation. In this work, we present

a unified framework to integrate heterogeneous classes of functional variants in gene-

based association analysis. This approach enables us to simultaneously assess multiple dis-

tinct biological mechanisms underlying GWAS association signals, and to construct pow-

erful omnibus tests by aggregating across functional classes for each gene. We evaluated

the performance of gene-based association test methods and strategies to identify causal

genes by conducting extensive simulation studies, and by analyzing 128 human traits
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from the UK Biobank and comparing our results against lists of high-confidence putative

causal genes. Our analysis suggests that incorporating heterogeneous functional variants

in gene-based association tests increases power to detect gene-based association and helps

identify causal genes.

Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic loci associated

with complex traits [1]; however, the biological mechanisms underlying these associations are

often poorly understood. Gene-based association tests can provide a more interpretable analy-

sis framework compared to single-variant analysis, interrogating association at the gene level

by aggregating genotypes across multiple variants for each gene. This strategy can also increase

power to detect association by aggregating small effects across variants, reducing the burden of

multiple testing, and weighting or filtering to prioritize functional variants [2, 3].

In gene-based analysis, variants are often grouped or weighted by putative functional effect,

for example, a common strategy for exome analysis is to include only rare non-synonymous or

loss-of-function (LoF) variants in gene-based tests such as SKAT and the CMC burden test [4,

5]. A more recent wave of gene-based methods, e.g. PrediXcan [6, 7] and TWAS [8], use eQTL

variants to construct gene-based tests of association between the predicted genetic component

of gene expression and GWAS trait. Incorporating regulatory variants is expected to be partic-

ularly valuable for gene-based analysis of complex traits, since most genetic associations dis-

covered to date are in non-coding regions [9]. However, while coding variants generally

implicate a single known gene, the gene(s) affected by regulatory variants are often less clear

[10, 11].

Incorporating multiple types of annotation in gene-based analysis provides several advan-

tages over analysis methods using annotations of a single type. First, including variants from

multiple annotation categories is expected to increase accuracy (e.g., odds that the most signifi-

cant gene at a locus is causal), since signals that overlap a single annotation type (e.g., eQTL

variants) may be driven by linkage disequilibrium (LD) or pleiotropic regulatory effects [12,

13]. Second, it can increase power by increasing the signal-to-noise ratio, and capturing a

wider range of possible mechanisms driving genetic associations with complex traits (e.g., [14–

16]). For example, tests that incorporate both coding and eQTL variants are expected to have

high power to detect both protein-altering associations as well as associations driven by effects

on gene expression levels. One-dimensional annotation scores derived from multiple annota-

tion data sets can be used to weight variants in gene-based tests (e.g., [17–19]), which can

increase power by assigning higher weight to functional variants. However, aggregating vari-

ants separately for multiple annotation types and combining the result allows us to explicitly

model multiple distinct genes and biological mechanisms underlying associations.

Here, we present a statistical framework and computational tool to integrate heterogeneous

functional annotations with GWAS association summary statistics for gene-based analysis. We

analyze a diverse set of functional annotation data including multiple tissue-specific eQTL

annotation data sets, multiple epigenetic annotation sets mapping regulatory elements to puta-

tive target genes, coding variant annotations, and TSS annotations. We compare the perfor-

mance of single-annotation, omnibus, and annotation-agnostic (not stratified or weighted by

functional annotation) gene-based analysis methods through simulation studies, and by ana-

lyzing GWAS summary statistics from the UK Biobank [20]. Our contributions are to 1)

expound a general statistical framework for gene-based analysis with heterogeneous functional
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annotations, which includes several existing single-annotation gene-based association meth-

ods as components or special cases; 2) provide a computationally efficient open-source tool for

gene-based analysis from summary statistics; and 3) conduct a comprehensive analysis of sta-

tistical power and accuracy identifying causal genes across gene-based association methods

through extensive simulation studies and analysis of GWAS data for 128 human traits.

Results

We first outline a statistical framework and open-source tool for gene-based analysis with het-

erogeneous functional annotations. Next, we describe simulations to evaluate 1) the Type I

error rates of gene-based test statistics, 2) statistical power, and 3) specificity to identify causal

genes. Finally, we discuss applications to empirical data using GWAS summary statistics from

the UK Biobank. We assess 1) the empirical power of gene-based tests by comparing the num-

bers of significant independent gene-based associations discovered for each UK Biobank trait,

and 2) concordance with benchmark gene lists compiled from the ClinVar database [21] and

the Human Phenotype Ontology (HPO) [22].

GAMBIT framework

GAMBIT (Gene-based Analysis with oMniBus, Integrative Tests) is an open-source tool for cal-

culating and combining annotation-stratified gene-based tests using GWAS summary statistics

(single-variant association z-scores). Broadly, GAMBIT’s strategy is to first separately calculate

single-annotation gene-based association tests stratified by functional annotation class, and

aggregate across classes for each gene to construct omnibus gene-based tests (illustrated in Fig

1). Here and elsewhere, we refer to this omnibus test statistic as the GAMBIT gene-based test.

GAMBIT calculates four general forms of gene based test statistics, described briefly in Table 1

and detailed in Materials and Methods. To account for LD between neighboring variants and

genes, GAMBIT relies on an LD reference panel from an appropriately matched population

(e.g., [23, 24]). GAMBIT is implemented in C++, open source, and freely available.

Functional annotation data

We considered 5 broad annotation classes in our analysis: 1) proximity-based annotations, 2)

coding annotations, 3) UTR regions, 4) enhancer and promoter regions, and 5) eQTL predic-

tive weights. Each of these annotation classes comprises multiple subclasses; for example,

annotations include non-synonymous, splice-site, and other variant categories; and eQTL var-

iants are stratified by tissue. Briefly, we annotated coding and UTR variants using TabAnno

[32] and EPACTS [33]; obtained enhancer element and enhancer-target gene weight annota-

tions from RoadmapLinks [10, 34], GeneHancer [35], and JEME [11]; and pre-computed

tissue-specific eQTL predictive weights from PredictDB [6, 7] and FUSION/TWAS [8].

Enhancer annotations were largely derived from NIH Roadmap Epigenomics and ENCODE

project data [36, 37], as well as from the FANTOM Consortium [11, 38, 39]. All eQTL variant

annotations were estimated using the GTEx project v7 data [40]. Fig 2 illustrates a subset of

these annotations at the CELSR2 locus on chromosome 1; detailed descriptions of annotation

data and statistical methods used to aggregate test statistics within and across classes are pro-

vided in Materials and Methods.

GWAS simulations

We simulated GWAS summary statistics at 2,000 loci using haplotype data from the European

subset of the 1000 Genomes Project (1KGP) Phase 3 reference panel [24]. Briefly, each locus
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Fig 1. GAMBIT analysis framework & workflow. Broad overview of GAMBIT software pipeline. (1) GWAS association summary statistics (single-

variant z-scores, or effect size estimates and standard errors) are cross-referenced and linked with multiple sets of functional annotations. (2) Annotated

GWAS variants are cross-referenced with LD reference data (a haplotype reference panel to estimate LD as needed). (3) GWAS summary statistics,

annotations, and LD estimates are used to calculate stratified gene-based test statistics. (4) Stratified gene-based tests are combined for each gene to

construct omnibus test statistics. GAMBIT supports multiple single-annotation test methods and multiple omnibus test methods to combine single-

annotation tests. Statistical tests are listed in Table 1; basic annotation types are illustrated in Fig 2 and listed in Table 2. A complete description of

statistical methods and annotation types can be found in Materials and Methods.

https://doi.org/10.1371/journal.pgen.1009060.g001

Table 1. Forms of gene-based test statistics.

Statistic Null Distribution References & Examples

L-type ∑k wk Zk N ð0;w>RZwÞ Burden [25, 26], PrediXcan [6], TWAS [8]

Q-type
P

kwkZ2
k

P
klkw

2
1;k SKAT [27], SOCS [28]

M-type maxkZ2
k – Min-P [29], MOCS [28]

ACAT
P

kwkF� 1
Cauchyð0;1Þð1 � pkÞ � Cauchy(0, ∑k wk) [30, 59]

HMP ∑k wk/(∑k0 wk0/pk0) � Landau(μ, π/2)−1 [31]

Basic gene-based test forms used in GAMBIT. Zk denotes the single-variant z-score association test statistic for variant k, with p-value pk ¼ 1 � Fw2
1
ðZ2

kÞ. Under the null

hypothesis, each Zk is standard normal and Z is multivariate normal with correlation matrix RZ.

wk denotes the weight assigned to variant k. Any real-valued weights can be used in L-type tests, whereas Q-type, ACAT, and the harmonic mean p-value (HMP) require

non-negative weights.

λk denotes the kth eigenvalue of diag(w)1/2 RZdiag(w)1/2, and each w2
1;k is i.i.d w2

1
. The location parameter μ = logm + 1 + γ + log(π/2), where m is the number of variants

and γ is the Euler-Mascheroni constant.

https://doi.org/10.1371/journal.pgen.1009060.t001
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was defined by first sampling a single causal protein-coding gene, aggregating all genes within

1 Mbp of the causal gene, and finally aggregating all variants assigned to one or more genes

based on functional annotations or within� 500kbp of any gene at the locus. For each of the

2,000 loci, we simulated genetic effects under four causal scenarios: 1) coding variants are

causal, 2) eQTL variants are causal, 3) enhancer variants are causal, and 4) UTR variants are

causal. For each locus and causal scenario, we varied the proportion of trait variance accounted

for by variants at the locus h2
L = 0.01%, 0.025%, 0.05%, 0.1%, 0.25% with constant GWAS sam-

ple size n = 50,000; and for each locus-scenario-h2
L combination, we generated 100 indepen-

dent simulated replicates. To evaluate p-value calibration and Type I error rates of gene-based

tests, we further simulated genome-wide summary statistics for 1,000 traits under the null

hypothesis. Detailed simulation procedures are provided in Materials and Methods.

Simulation studies: Power and accuracy identifying causal genes

We compared performance identifying causal genes across 8 gene ranking methods: 1) rank-

ing each gene by distance between its transcription start site (TSS) and the most significant

independent single variant at the locus, 2) the Pascal SOCS test -log10p-value, which assigns

equal weight to all variants within 500kbp of the gene body, 3) the omnibus test (“GAMBIT”)

-log10p-value, and 4-8) -log10p-values for gene-based tests using each annotation class individ-

ually (listed in Table 2 and described in Materials and methods). As expected, test statistics

Fig 2. Regulatory annotation tracks and gene weights. Illustration of primary regulatory annotation tracks used in GAMBIT gene-based analysis

framework at the CELSR2 locus on chromosome 1. Top panel: Distance-to-transcription start site (dTSS) weights, calculated as wjk(α) = exp(−α|djk|),
where djk is the number of base pairs between variant j and the TSS of gene k, shown for α = 10−5 (solid lines), α = 5 × 10−5 (dashed lines), and α = 10−4

(dotted lines). Gene bodies are indicated by arrows and variant locations are marked in black at y = 0. Middle panel: enhancer-to-target-gene

confidence weights. Weights are shown for enhancer variant and target gene, and unique enhancer elements are marked by black lines at y = 0. Lower

panel: tissue-specific eQTL weights for each gene. eQTL tissues are differentiated by shape.

https://doi.org/10.1371/journal.pgen.1009060.g002
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calculated using the known causal annotation class alone were most accurate for identifying

the causal gene (e.g., gene-based p-values using coding variants were most accurate when cod-

ing variants were causal); however, the GAMBIT omnibus test was nearly as accurate, and had

the second-highest performance across simulation settings (Fig 3; S1 Fig). In practical applica-

tions, the causal mechanisms underlying associations are unknown and often heterogeneous

across loci; in this case, we expect the GAMBIT omnibus testing strategy to be most accurate

(Fig 3, right panel).

We also compared statistical power for each of the gene-based test methods at both causal

and non-causal proximal genes at each simulated locus (Fig 4). For proximal genes, association

signals are driven by LD and pleiotropic regulatory variants shared with the causal gene; thus,

gene-based tests should ideally have high power for causal genes but comparatively low power

for proximal genes. Similar to the previous analysis, gene-based tests using the causal annota-

tion class alone had the highest power for causal genes and highest specificity (low power for

proximal genes) across simulation settings. The omnibus test (“GAMBIT”) generally had the

Table 2. Single-annotation gene-based tests.

Test Form Annotation Subclasses Annotated Variants

dTSS ACAT/HMP dTSS-α value Variants within 500kbp of TSS

CT-TWAS L-type eQTL tissue eQTL variants across 48 tissues

Enhancers Q-type; ACAT/HMP Enhancer region All enhancer variants

UTR Q-type; ACAT/HMP 3’ and 5’ UTR 3’ and 5’ UTR variants

Coding Q-type; ACAT/HMP Variant type (e.g., missense, splice site) Exonic variants

Summary of variant types, default test methods, and default aggregation procedures for primary annotation classes in GAMBIT. Rationale and further details are

provided in Materials and Methods.

https://doi.org/10.1371/journal.pgen.1009060.t002

Fig 3. Performance identifying causal genes in simulations. Proportion of simulation replicates in which causal gene is top-ranked at its locus (y-axis)

for each gene-based association or gene ranking method (x-axis & bar fill color) stratified by locus heritability h2
L (color shade) when either coding,

eQTL, enhancer, UTR variants are causal (left panel facets), or a mixture in which either coding, eQTL, enhancer, or UTR variants are causal with equal

probability (“heterogeneous across loci”; right panel). TSS-to-top-SNP refers to ranking genes by the distance between their TSS and the most

significant single variant at each locus; dTSS-weighted gene-based tests (labeled dTSS) use exponential weight functions to assign higher weight to

variants nearer the TSS for each gene (Materials and methods).

https://doi.org/10.1371/journal.pgen.1009060.g003
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second-highest power for causal genes, and intermediate power for proximal genes. Thus, we

expect the omnibus testing approach to be powerful and robust when causal mechanisms are

unknown or heterogeneous across loci.

Analysis of GWAS summary statistics from UK Biobank

Significant independent associations detected for 128 UK Biobank traits. To compare

the power of gene-based tests in empirical data, we evaluated the numbers of significant inde-

pendent gene-based associations detected for each method across 128 approximately indepen-

dent GWAS traits in the UK Biobank (selection procedures are described in Materials and

methods). The number of independent associations is calculated for each trait by selecting the

most significant gene-based association p-value, masking all gene-based tests that include vari-

ants within 1 Mbp of variants for the selected gene, and repeating until all genes with Bonfer-

roni-adjusted p-value� 5% are either selected or masked. This procedure ensures that all

selected genes are separated by at least 1 Mbp, and provides a conservative estimate of the

number of significant independent signals. The omnibus test (“GAMBIT”) detected signifi-

cantly more associations than other gene-based association methods overall (Fig 5A), and con-

sistently detected more associations than other methods across a wide range of traits (Fig 5B).

We also compared the numbers of significant associations for each method without filtering

or LD pruning (Fig 6). Statistics that incorporate many variants over a broad region for each

gene (e.g., dTSS-weighted tests) yield substantially more significant associations, as expected.

Fig 4. Statistical power to detect gene-based associations in simulations. Statistical power (proportion of simulation replicates in which gene-based

p-value�2.5 × 10−6 across loci; y-axis) for each gene-based testing approach (x-axis & color) stratified by locus heritability h2
L (plot rows) when coding,

eQTL, enhancer, UTR variants, or a mixture of these (“heterogeneous across loci”) are causal (plot columns). In the rightmost column, either coding,

eQTL, enhancer, or UTR variants are causal with equal probability (as when the causal annotation class is heterogeneous across loci for a single trait).

Power is shown separately for causal genes and proximal genes (non-causal genes that are proximal to a causal gene, as defined in Materials and

methods). Ideally, gene-based tests should have high power for causal genes, and relatively lower power for proximal genes. Error bars show 95%

confidence intervals for average power across loci.

https://doi.org/10.1371/journal.pgen.1009060.g004
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Fig 5. UK Biobank analysis: Numbers of significant independent associations detected. Numbers of independent gene-based associations (at

Bonferroni-corrected 5% significance level) detected by each method across 128 UK Biobank traits. Panel A: Total number of significant independent

associations across traits (delineated by horizontal black lines) for each gene-based test; Wilcoxon signed-rank p-values (top) for paired comparisons

between no. associations detected by the omnibus test (“GAMBIT”; red) versus Pascal/SOCS (blue) and single-annotation gene-based tests (green). The

omnibus test detects significantly more associations than any individual constituent gene-based test or by Pascal/SOCS across UK Biobank traits. Panel

B: Comparison of total numbers of genes detected across individual traits for the omnibus test (y-axis) versus single-annotation tests (x-axis).

https://doi.org/10.1371/journal.pgen.1009060.g005

Fig 6. UK Biobank analysis: Overlap between gene-based association methods. Panel A: Total number of significant genes (p-value< 2.5e-6) for

each method across all 128 traits. Unlike Fig 5, gene-based associations in Fig 6 are not filtered or LD pruned, and a single significant GWAS variant

can produce multiple significant gene-based associations for a given method. Here, a larger number of significant genes does not necessarily suggest

greater statistical power. Panel B: The i, jth heatmap element can be interpreted as the conditional probability that gene-based test i is significant given

that gene-based test j is significant, which is estimated as the total number of overlapping significant genes between tests i and j divided by the total

number of significant genes for test j.

https://doi.org/10.1371/journal.pgen.1009060.g006
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Concordance with benchmark genes for 25 UK Biobank traits. We compiled lists of

benchmark genes from the ClinVar database [21] and the Human Phenotype Ontology (HPO)

[22] for 25 traits in the UK Biobank to compare the gene-based analysis methods identifying

causal genes; procedures and selection criteria are detailed in Materials and Methods. Results

are shown separately using the union and intersection of ClinVar and HPO benchmark genes;

the latter gene set is expected to have higher specificity, albeit fewer genes. Performance identi-

fying benchmark genes was assessed by ranking genes separately within each benchmark locus

for each UK Biobank trait, where a benchmark locus is defined as the set of all genes within 1

Mbp of a genome-wide significant single-variant association that also is within 1 Mbp of a

benchmark gene. To compare the performance of gene ranking methods, we calculated the

fraction of loci at which the top-ranked gene coincides with a benchmark gene (Fig 7) and

assessed receiver operating characteristic (ROC) and precision-recall curves for each method

(S2 Fig).

GAMBIT omnibus tests had the highest performance identifying benchmark genes among

the gene ranking methods considered, particularly for the stricter gene set, although the differ-

ence was not statistically significant relative to most other gene ranking methods (Fig 7).

Gene-based tests using coding variants alone had the second-highest performance (Fig 7; S2

Fig), which may reflect the enrichment for coding associations within the benchmark gene set

(S3 Fig) caused by benchmark gene selection criteria (described in Materials and methods).

Due to the over-representation of coding associations, Fig 7 may underestimate the impact of

incorporating heterogeneous regulatory annotations for associated loci without an established

benchmark gene.

Further inspection revealed a number of loci of biological or clinical interest. In the analy-

sis of skin cancer in the UK Biobank, three melanin or melanogenesis-related genes (TYR,

OCA2, and MC1R) and telomerase reverse transcriptase (TERT) were top-ranked by the

Fig 7. UK Biobank analysis: Performance identifying benchmark genes. Percentage of loci at which the benchmark gene (identified from HPO and/

or ClinVar) is top-ranked for each gene-based association or gene ranking method. For each method, bars on the left (outlined in black) are calculated

for benchmark loci present in both HPO and ClinVar (54 loci), and bars on the right (faded outline) are calculated using the union of all HPO and

ClinVar loci (153 loci). Horizontal red lines indicate the expected percentage of top-ranked benchmark genes under the null hypothesis that gene rank

and benchmark labels are independent. Error bars indicate 95% confidence intervals. TSS-to-top SNP refers to ranking genes by the distance between

TSS and the most significant single variant at each causal locus; the dTSS-weighted gene-based test (dTSS) uses an exponential weight funcion to assign

higher weight to variants nearer the TSS for each gene (Methods).

https://doi.org/10.1371/journal.pgen.1009060.g007
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omnibus test, but not top-ranked based on TSS-to-top-SNP distance, while all other bench-

mark genes for skin cancer were top-ranked by both methods or by neither. At the TERT
locus, the lead GWAS variant was intronic, whereas the lead variants for TYR, OCA2, and

MC1R were nonsynonymous. Unsurprisingly, the latter three benchmark genes were also

top-ranked based on coding variant gene-based p-values; however, only TERT was top-

ranked based on CT-TWAS.

Similarly, APOB, which encodes an apolipoprotein and is associated with autosomal

dominant forms of hypercholesterolemia, was top-ranked by the omnibus test but not by

TSS-to-top-SNP distance for disorders of lipoid metabolism in the UK Biobank. Despite

being >150 Kbp from the intergenic lead GWAS variant, APOB was also top-ranked by all

single-annotation gene-based tests individually. Conversely, TSHR, which encodes a thyroid

horomone receptor, was top-ranked based on TSS-to-top-SNP distance but not by the

omnibus test for thyrotoxicosis. In this case, the lead GWAS variant was intronic, and

CT-TWAS was the only single-annotation gene-based test that ranked TSHR as the top gene

at its locus; in this example, while the omnibus test for TSHR was significant, it was out-

ranked by CEP128 at the locus. A complete table of results for benchmark genes is provided

in Supplementary Materials.

Discussion

Here, we introduced GAMBIT, a statistical framework and software tool for gene-based analy-

sis with heterogeneous annotations. Our work makes several contributions to the field:

First, we conducted extensive simulation studies to systematically compare gene-based

test methods across a range of plausible biological scenarios, and demonstrated pitfalls of test

methods that use only a single annotation class. When the causal annotation class is misspeci-

fied, standard gene-based tests have limited power, and can be confounded by LD and pleio-

tropic regulatory variants that affect multiple genes. This may lead researchers to misidentify

the genes and biological mechanisms that contribute to disease risk. Finemapping, co-localiza-

tion, and conditional analysis can be applied to refine association signals and mitigate spurious

inferences following gene-based analysis (e.g., [41–44]). By contrast, our omnibus testing strat-

egy helps to ameliorate spurious inferences within the context of gene-based testing directly,

and also has high power to detect associations across a range of causal mechanisms underlying

genetic associations.

Second, we analyzed 128 traits from the UK Biobank to evaluate performance in empirical

data across a range of complex traits and genetic architectures, and confirmed that incorporat-

ing annotations of many types and across many tissues increases power relative to standard

methods. While our analysis of concordance with gold-standard causal genes was limited by

the relatively small numbers of benchmark genes identified for UK Biobank traits and the

inherent difficulty establishing causal genes underlying regulatory associations, we found

suggestive evidence that incorporating diverse annotation types in gene-based analysis can

improve performance identifying causal genes relative to standard approaches (e.g., ranking

genes by distance to the most significant single variant) and gene based tests using a single

annotation type.

Finally, we provide a unifying framework and easy-to-use software tool to incorporate het-

erogeneous functional annotations in gene-based analysis. From its inception, gene-based

analysis was built on the premise that aggregating functional variants at the gene level can

increase statistical power and help identify causal genes in GWAS [2]. Early gene based test

methods were developed primarily for rare genic variants (e.g., [25, 26]), and early gene-based

association analyses often used only deleterious coding variants (e.g., [45, 46]). However,
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functional genomics studies have shown that most functional variation is non-coding [37],

and most variant associations discovered through GWAS to date occur in non-coding regions

[1, 9], highlighting the importance of regulatory annotations for gene-based association analy-

sis. The first gene-based tests developed explicitly for regulatory variation were TWAS and

PrediXcan, which aggregate eQTL variants to construct proxy variables for tissue-specific gene

expression levels using predictive weights estimated from external eQTL mapping data [7, 8].

However, functional and regulatory genomics projects have introduced a wealth of annota-

tions with potential utility for gene-based analysis (e.g., [11, 35, 38, 47]).

The omnibus testing strategy used here is expected to perform best under sparse alterna-

tives, e.g. when one or few annotation classes harbor causal variants at a given locus. When a

larger fraction of annotation classes harbor independent signals at a single gene locus, this

omnibus strategy may have less power than one that explicitly accounts for multiple simulta-

neous signal sources. While we did not explore this possibility in our simulations, it is an inter-

esting question which we defer to future work.

Previous studies have evaluated the performance of gene-based tests under misspecifica-

tion, e.g. by varying the proportion of causal variants and correlation structure of causal effects

[48, 49]. In the present study, we evaluated the performance of single-annotation gene-based

tests under misspecified causal mechanisms (for example, TWAS when a mechanism other

than gene expression underlies the association signal). The former problem primarily concerns

the statistical form of gene-based test and the distribution of causal effects, while the latter is

more related to the informativeness of functional annotations and the overlap between classes

of functional variation (e.g., Fig 6B). Our simulation studies also included basic forms of mis-

specification in the distribution of causal effects (e.g., when only a fraction of annotated vari-

ants in the causal annotation class have non-zero causal effects) and measurement error in

functional annotations (e.g., by including a error term in TWAS weights). However, further

research is needed to explicitly address model misspecification and annotation measurement

error in gene-based analysis.

The utility of incorporating annotations in gene-based analysis depends crucially on the

accuracy and comprehensiveness of the underlying annotation data sets. While we considered

the case that causal variants may be misspecified, our simulations assumed that the confidence

weights assigned to regulatory elements are well-calibrated, and that causal eQTL variants are

annotated. Violations of these assumptions will reduce both power and accuracy in gene-

based analysis, and may in part account for differences between our results with empirical ver-

sus simulated data. Current transcriptomic and epigenomic studies are generally limited to a

subset of human tissues and cell-types, and are derived from data sets of limited sample size

(e.g., [37, 47]). Thus, we expect current transcriptomic and epigenomic annotations to be

incomplete and imprecise. Looking forward, larger and more comprehensive studies will

enable more comprehensive and accurate annotations, increasing the utility of annotation-

informed association analysis methods.

In summary, our work builds upon and generalizes previous gene-based association meth-

ods, providing a flexible framework for gene-based analysis with heterogeneous annotations

that can be readily adapted when new annotation resources are developed and released.

Materials and methods

We describe 1) gene-based association test statistics, 2) procedures to aggregate variants within

each class of functional variation for gene-based analysis, 3) functional annotation data sources

4) procedures to simulate GWAS data using real genotype and functional annotation data, and

5) GWAS data from the UK Biobank to which we applied our methods.
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Multiple-variant association test statistics

Here, we review statistical methods to aggregate multiple variants for gene-based, region-

based, or pathway association analysis. For convenience, we assume a quantitative trait and

ignore the presence of covariates; however, our results can easily be adapted to other settings.

Linear-type gene-based tests (L-type). The oldest and most widely used gene-based tests

are linear combinations of genotypes across variants [25, 26, 50], here referred to as L-type

tests. We define the L-type test statistic as TL = (w>RZw)−1/2 w> Z, where w is a vector of sin-

gle-variant weights, Z is a vector of single-variant association statistics (where each Zj follows

the standard normal distribution under the null hypothesis), and RZ is the correlation matrix

of z-scores. Under the null hypothesis of no association, TL follows the standard normal distri-

bution. The L-type test statistic TL can be computed from GWAS summary statistics (single-

variant z-scores, or effect sizes and standard errors) and covariance estimates, and can be writ-

ten either as linear combinations of single-variant association statistics or as linear combina-

tions of genotypes [4, 51].

Examples of L-type tests include burden tests, which calculate burden scores as a weighted

sum of rare, putatively deleterious mutations [25, 50]; the cohort allelic sums test (CAST) [52];

and TWAS/PrediXcan tests [6–8], which aggregate eQTL variants using predictive weights

estimated from external data sets, e.g. from the GTEx project [40]. These can be viewed as tests

of association between GWAS trait and an explicit proxy variable constructed as a linear com-

bination of genotypes. Importantly, L-type tests rely on prior knowledge regarding the direc-

tions of effect across variants [27, 50]. For example, the signed weights used in burden tests

often reflect the hypothesis that rare deleterious alleles increase risk for disease, and the predic-

tive weights used in TWAS/PrediXcan reflect the hypothesis that gene expression mediates the

associations between genotypes and complex trait.

Quadratic-type gene-based tests (Q-type). Variance component tests and quadratic

forms of single-variant association statistics comprise another widely used class of gene-based

association methods, here referred to as Q-type (quadratic) tests. Q-type tests include VEGAS

(or SOCS), defined as the sum of squared single-variant z-scores [28, 53]; the C-alpha test [54];

and SKAT, a weighted quadratic form of single-variant association statistics [27]. We define

the Q-type test statistic as TQ = Z> diag(w)Z, where diag(w) is a diagonal weight matrix and Z
is a vector of single-variant association z-scores; under the null hypothesis of no association,

TQ follows a mixture chi-squared distribution with mixture proportions equal to the eigenval-

ues of diag(w)1/2 RZ diag(w)1/2, where RZ is the correlation matrix of z-scores. In contrast to L-

type tests, Q-type tests aggregate single-variant association statistics without prior knowledge

or assumptions pertaining to the directions of effects across variants [27, 50]. While less tracta-

ble than L-type, analytical p-values for Q-type tests can be calculated using a variety of tech-

niques to approximate the tail probabilities of multivariate normal quadratic forms (e.g., [55,

56]), which are far more efficient than permutation procedures or Monte Carlo methods [28,

57]. Q-type tests are most appropriate when a sizable proportion of variants are hypothesized

to have non-zero effects of unknown and inconsistent direction [50].

Maximum chi-squared statistic as a gene-based test (M-type). Perhaps the simplest

gene-based test is the maximum chi-squared statistic across variants (or equivalently, the mini-

mum p-value), here referred to as M-type tests. Analytical p-values for M-type tests can be

calculated by directly integrating the multivariate normal density of z-scores within the hyper-

cube given by x 2 Rm
: max kjxkj � max jjZjj where m is the number of variants, or approxi-

mated by adjusting the minimum p-value across variants by the effective number of tests

[28, 29]. M-type tests are most appropriate when only one or a small fraction of variants

are hypothesized to have non-trivial effects. We note that the M-type test accounts for the
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correlation structure across variants, whereas Tippett’s method [58] assumes independent p-

values; thus, the M-type test reduces to Tippet’s method when z-scores are uncorrelated.

Aggregated cauchy association test (ACAT). The aggregated Cauchy association test

(ACAT), a recently proposed method to combine multiple dependent p-values, can be used to

construct gene-based tests by transforming single-variant association p-values using the Cau-

chy quantile and cumulative distribution functions, and computing a p-value

pACAT ¼ FCauchyð0;1Þ

1
P

i0wi0

X

i

wiF
� 1

Cauchyð0;1Þ
ðpiÞ

 !

;

where pi and wi are the p-value and weight for the ith variant and FCauchyð0;1Þ
ðtÞ ¼ 1

p
arctan ðtÞ þ 1

2

is the CDF of the standard Cauchy distribution [30, 59]. ACAT is expected to perform well

when only a small fraction of variants are causal [30]. Importantly, ACAT does not require LD

computation, and can thus be calculated in O(m) time where m is the number of variants.

Harmonic mean p-value (HMP). Another recently proposed method to combine multi-

ple dependent p-values, the Harmonic Mean P-value (HMP; [31]), can similarly be used to

construct gene-based tests by weighting p-values from single-variant association tests. The

unadjusted HMP p-value is defined

pHMP ¼

P
kwkP

kwk=pk
:

While this statistic can be anti-conservative when directly interpreted as a p-value, Wilson

(2019) showed that 1/pHMP follows a Landau distribution (with scale and location parameters

given in Table 1), which can be used to compute an asymptotically exact HMP p-value. The

Landau density function is

fLandauðx; m;sÞ ¼
1

ps

Z 1

0

e� u cosf x � mð Þu=sþ 2u=pð Þ log u=sð Þg du;

which can be computed numerically with high precision using asymptotic expansions [60]. To

improve p-value calibration, we implemented the asymptotically exact HMP in the GAMBIT

software tool. Unlike L-type and Q-type tests, p-values from M-type, ACAT, and HMP tests

are greater than or equal to mini pi. However, these methods can still increase power relative to

single-variant analysis by reducing the burden of multiple testing and assigning higher weight

to functional variants.

Generalizations and extensions. The simple forms of gene-based tests described above

can be related and combined through a variety generalizations and extensions. Q-type and M-

type can both be viewed as special cases of a statistic (∑j wj|Zj|
p)1/p, which is equivalent to Q-

type when p = 2 and to M-type when p!1; this generalization has been used, for example,

in the aSPU gene-based test [61]. Similarly, Q-type and L-type can both be viewed as special

cases of a statistic Z>ðpdiagðw1Þ þ ð1 � pÞw2w>2 ÞZ, which is equivalent to Q-type when π = 1

and L-type when π = 0; this generalization has been used, for example, in the SKAT-O gene-

based test [50]. Finally, ACAT and HMP can be used to combine p-values across multiple

gene-based test forms [30, 31].

Integrating functional annotations in gene-based tests

Here we describe methods to aggregate variants within each of the 5 major annotation classes

considered in our analysis. Briefly, we use linear (L-type) tests to combine eQTL variants using

signed predictive weights reflecting the alternative hypothesis that genotype effects on trait are
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mediated by gene expression levels. For coding and UTR variants, we use Q-type tests within

each annotation subclass, reflecting the alternative hypothesis that genetic effects follow a sym-

metric mean-zero distribution. For dTSS-weighted tests, we use weighted dependent p-value

combination procedures (ACAT or HMP), which can be viewed as an approximate test for the

alternative hypothesis that a variant is causal with prior probability proportional to e−αdTSS.

Coding variants. Gene-based tests for coding variants are calculated by aggregating vari-

ants separately within each coding subclass (e.g., missense, nonsense, and synonymous) using

Q-type (by default) test statistics. These stratified tests are then combined across subclasses

using a p-value combination procedure (HMP or ACAT) to calculate a coding omnibus test

for each gene.

UTR variants. Gene-based tests for UTR variants are calculated by aggregating variants sep-

arately within the 3’ and 5’ UTR regions using Q-type (by default) test statistics, and applying a p-

value combination procedure (HMP or ACAT) to calculate a UTR omnibus test for each gene.

dTSS weights. One of the most common heuristics to infer likely causal genes at non-cod-

ing GWAS loci is to rank genes by distance between their transcription start site (TSS) and the

most significant single GWAS variant. This strategy is appealing given the strong enrichment

of regulatory variants near TSS.

To incorporate distance-to-TSS (dTSS) and capture association signals at regulatory variants

that are not well-annotated in gene-based analysis, we define the dTSS weights for gene k as

wjkðaÞ ¼ e� ajdjkj, where djk is the genomic distance (number of base pairs) between variant j and

the TSS for the gene of interest. Larger values of the parameter α confer more weight to variants

nearer the TSS. In practice, we only include variants within a specified window (e.g., 500kbp)

of the TSS of the corresponding gene. While dTSS weights can be used in any weighted gene-

based test (e.g., Q-type tests), ACAT and HMP are particularly well-suited due to their linear

computational complexity, as dTSS-weighted tests often involve thousands of variants per gene.

The optimal α value is expected to vary across loci, and likely depends on local gene density

and other factors. However, ACAT and HMP can be applied again to calculate omnibus p-val-

ues by combining dTSS-weighted gene-based test p-values pk(αi) across multiple values α1, α2,

. . . [30, 59]. By default, GAMBIT calculates overall dTSS-weighted test statistics by aggregating

across α values 10−4, 5 × 10−5, 10−5, 5 × 10−6.

Enhancer-target gene weights. To capture association signals across regulatory elements

that have been assigned to one or more target gene, we weight variants in regulatory elements

by element-to-target-gene confidence scores, and aggregate variants for each gene using either

ACAT, HMP, or Q-type gene-based test statistics. For example, we define the regulatory-ele-

ment weighted Q-type test statistic as TR
k ¼

P
i

Pmi
j¼1

wikZ2
ij where mi is the number of variants

in the ith regulatory element, wik is the confidence weight between element i and gene k, and

Zij is the jth variant in the ith regulatory element.

eQTL weights. Given a vector of weights bkt to predict expression levels for gene k in a

given tissue or cell type t as a linear combination of normalized genotypes, we define the

z-score TWAS test of association between predicted expression level and GWAS trait as

Skt ¼ b>ktZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b>ktRZbkt

q

where Z is the vector of single-variant GWAS z-scores and RZ is the cor-

relation matrix of z-scores.

To aggregate test statistics across multiple tissues or cell-types, which we refer to as Cross-

Tissue TWAS (CT-TWAS), we considered three approaches:

1. Q-type Cross-tissue Test (CT-Q): Calculating the sum of squared tissue-specific test statis-

tics,
P

tS
2
kt, which has a mixture chi-squared distribution under the null hypothesis of no

association,
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2. M-type Cross-tissue Test (CT-M): Calculating an analytic p-value for the maximum abso-

lute test statistic maxt|Skt| using the multivariate normal joint density of tissue- or cell-type-

specific test statistics Sk1, Sk2, . . . under the null hypothesis of no association, and

3. ACAT or HMP Cross-tissue Test (CT-A or CT-H): Combining tissue- or cell-type-specific

p-values pkt = 2F(−|Skt|) using the ACAT method or HMP respectively.

CT-Q and CT-M require the cross-tissue correlation matrix RS with elements

½rS�tt0 ¼ corrðb>ktZ; b
>

kt0ZÞ ¼ b>ktRZbkt0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb>ktRZbktÞðb
>

kt0RZbkt0 Þ

q

, which can be computed in O(m2

n + mn2) time where m is the number of tissues or cell-types and n is the number of eQTL var-

iants. By contrast, CT-A and CT-H p-values can be computed in O(m) time, since ACAT and

HMP do not require the correlation matrix to be computed. By default, GAMBIT implements

CT-A; in our analysis of UK Biobank data, CT-M, CT-H, and CT-A generally perform simi-

larly, while CT-Q tends to detect fewer significant associations.

Combining single-annotation test statistics. In early versions of GAMBIT, we combined

gene-based p-values across annotation classes for each gene using standard family-wise error

rate (FWER) and false detection rate (FDR) controlling procedures. However, two recently

proposed methods, the Aggregated Cauchy Association Test (ACAT; [59]) and Harmonic

Mean P-value (HMP; [31]), provide more powerful approaches to combine multiple depen-

dent p-values, and we have therefore implemented both of these methods in GAMBIT. Unlike

gene-based tests such as SKAT, which are formulated as parametric tests in a generalized linear

mixed model, these p-value combination methods are essentially non-parametric, assuming

only that p-values are uniformly distributed under the null hypothesis. Like the exponential

combination (EC) procedure [62], ACAT and HMP are powerful under sparse alternatives;

however, unlike EC, they enable efficient analytic p-value calculation, with computation time

linear in the number of p-values. We calculated ACAT p-values (defined above) using stan-

dard formula for the Cauchy quantile function and CDF. To calculate asymptotically exact

HMP p-values, we adapted a C++ routine from the ROOT System [63] for computing the Lan-

dau distribution CDF following the derivations of Wilson (2019) for the asymptotic distribu-

tion of the HMP.

Functional annotation data sources

Enhancer-target annotation sources. To identify regulatory genetic elements and

their putative target genes, we used pre-computed annotation data sets from three existing

methods: Joint Effects of Multiple Enhancers (JEME) [11], GeneHancer [35], and Roadma-

pLinks [10, 34, 64]. GeneHancer provides a global confidence score between each enhancer

element and one or more putative target genes, while JEME and RoadmapLinks provide

tissue- or cell-type-specific enhancer-target confidence scores. For the latter two data sets,

we calculated overall enhancer-target confidence scores across tissues and cell types as

the soft maximum (LogSumExp function) of tissue- or cell-type-specific scores for each

enhancer-target pair. Descriptive statistics for each enhancer annotation dataset are pro-

vided in S2 Table.

eQTL predictive weight annotation sources. To incorporate eQTL variants in gene-

based analysis, we used pre-computed tissue-specific predictive weights for eGene expression

estimated using GTEx v7 [47] from TWAS/FUSION (including elastic net and LASSO mod-

els) [8] and PredictDB [6, 7]. We generated a GAMBIT eWeight annotation files incorporating

all available tissues and cell types for each data resource and predictive model. Descriptive sta-

tistics for each eQTL variants weight dataset are provided in S1 Table.
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Coding variant and gene annotation sources. We annotated coding variants, TSS loca-

tions, and UTR variants using TabAnno 419 [32] and EPACTS [33] based on GENCODE v14

[65].

Simulation procedures

Here, we describe simulation procedures for GWAS summary statistics, configurations of

causal genes, and causal variant effects.

Simulating GWAS summary statistics. We simulated GWAS traits under the model

Y ¼ 1nb0 þ
~Gβþ ε, where Y 2 Rn is a quantitative trait for a GWAS sample of size n, 1n is

the n × 1 vector of 1’s and b0 2 R is the trait intercept, ~G 2 Rn�m
is the centered and scaled

genotype matrix where each column has mean 0 and variance 1, β 2 Rm�1 is a vector of causal

genetic effects, and ε 2 Rn
is an i.i.d. trait residual with EðεiÞ ¼ 0 and VarðεiÞ ¼ s2

ε. We scale

the parameters s2
ε and β so that Yi has unit marginal variance.

We define the vector of single-variant association statistics (equivalent to t-test statistics

from simple linear regression) for variants k = 1, 2, . . ., m as

Z ¼ ðn � 1Þ
1=2D̂ � 1=2

1

n
~G
> Y ¼ n1=2D̂ � 1=2R̂βþ ðn � 1Þ

1=2D̂ � 1=2
1

n
~G
>
ε

where R̂n ¼
1

n� 1
~G
> ~G is the sample LD matrix, and D̂ is an m ×m diagonal matrix with

D̂kk ¼
n2

ðn� 2Þðn� 1Þ
ðŝ2

Y � â
2
kÞ. Note that D̂ � Im if the proportion of trait variance accounted for

by each individual variant is small (e.g.,< 1%).

We simulated GWAS association statistics Z by calculating R̂ from the European subset

of the 1000 Genomes Project panel, and replacing D̂ by its limiting value D with elements

Dkk ¼ 1 � a2
k .

Simulating genetic effects at causal loci. We used empirical functional annotation data

to simulate causal genetic effects β, guided by the intuition that a variant’s functional effects

ultimately determine its effects on complex traits. While minor allele frequency (MAF) was

not explicitly used to select causal variants in simulations, this procedure induces an implicit

relationship between MAF and causal status due to the relationship between MAF and func-

tional annotations (S4 Fig). For each simulated causal locus, we selected a causal gene by sam-

pling a single CCDS protein-coding gene, and defined proximal genes as any gene with TSS

within 1 Mbp of the causal gene TSS. We then simulated single-variant GWAS summary sta-

tistics for all variants associated with any causal and proximal genes by proximity (� 1 Mbp)

or functional annotations (e.g., eQTL variants).

We simulated causal genetic effects under 5 scenarios: 0) no association (null model), 1)

coding association, 2) enhancer association, 3) eGene association, and 4) UTR association. For

coding and UTR associations, we first selected the number of causal variants M� ¼
P

jIðb
2

j >

0Þ from a Poisson distribution with rate parameter λ = M/4 truncated to 1�M� �M, where

M is the total number of coding (or UTR) variants for the causal gene, and randomly selected

M� causal variants from the total set of M coding (or UTR) variants for the causal gene. This

procedure results in ~25% of all coding (or UTR variants) having non-zero causal effects,

while ensuring that at least one variant is causal. For enhancer associations, we similarly simu-

lated the number of causal enhancers M�
e from a Poisson distribution with rate parameter λ =

Me/4, where Me is the number of enhancers mapped to the causal gene, and selected causal

enhancers using a categorical distribution with probability weights derived from confidence

scores between enhancer elements and the causal gene. For eGene associations, we selected a

single causal tissue at random, and simulated causal effect sizes proportional to precomputed
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eQTL weights for the causal gene and tissue. Because eQTL weights are noisy in practice, we

used simulated weights ~w � N M� w; 9

10N R̂
� 1

� �
in place of the original weight vector w in

TWAS gene-based tests, where N is the GTEx v7 sample size for the causal tissue.

For non-eQTL effects, we simulated the genetic effect for each causal variant βj from an

iid normal distribution, scaled so that the total genetic variance at each locus is equal to h2
L.

Because our model has assumed genotypes are scaled with unit variance (and β is scaled

accordingly), this simulation approach implicitly assumes that the heritability-scale effect of

each causal variant is independent of MAF. This is essentially equivalent to the widely-used

model Var(βj,unscaled) = τ2[2MAFj(1 −MAFj)]a, where a = −1 [26, 66, 67].

The UK Biobank resource

We used GWAS summary statistics (single-variant association effect size estimates, standard

errors, and p-values) for a set of 1,403 traits in the UK Biobank [20] cohort calculated using

SAIGE [68]. Genotype data were imputed using the Haplotype Reference Consortium panel

[69], and filtered to include only variants with imputed MAC> 20 in the UK Biobank. We

selected a subset of 189 traits for primary analysis by including only traits with effective sample

size� 5, 000, and� 1 single-variant association p-value�2.5e-8. For our analysis of empirical

power, we selected a subset of 128/189 traits by iteratively pruning pairs of correlated traits.

Beginning with the most highly correlated pair of traits, we retained the trait with the larger

number of significant independent single-variant associations (in the case of ties, we selected the

trait with the most detailed description), and repeated this procedure until the maximum pair-

wise correlation-squared between traits was�0.10. Trait correlations were estimated from

GWAS summary statistics as described in [70]. For our analysis of concordance with benchmark

genes, we first selected a subset of 47 traits including only traits with� 1 single-variant associa-

tion p-value< 5e-10, excluding benign neoplasms, and including at most a single trait within

each trait category. We identified� 1 relevant benchmark genes for 25 of the original 47 traits.

Selection of benchmark genes

Benchmark genes for each of the selected UK Biobank traits were identified using the ClinVar

[21] and Human Phenotype Ontology (HPO) databases [22]. The HPO database explicitly links

genes to traits, while the ClinVar database links traits to variants. To identify benchmark genes

from ClinVar, we extracted protein-altering variants (frameshift, missense, nonsense, splice site,

or stop-loss variants), and excluded variants with unknown or ambiguous molecular conse-

quence (e.g., intergenic and intronic variants). Despite including only ClinVar genes with cod-

ing associations, we expect to capture some genes for which both rare coding variants and

common regulatory variants contribute to disease risk. For each UK Biobank trait, we extracted

all protein-altering ClinVar variants +/- 1 Mbp of a genome-wide significant UK Biobank vari-

ant, and manually selected ClinVar traits equivalent or closely related to the corresponding UK

Biobank trait. We then annotated genes associated with one or more relevant ClinVar trait as a

ClinVar benchmark gene. We identified benchmark genes from the HPO database by manually

matching keywords between UK Biobank and HPO traits. A complete list of HPO/ClinVar

traits and benchmark genes for each UK Biobank trait is provided in Supplementary Materials.

Supporting information

S1 Table. Descriptive statistics for eQTL annotation data sets. Descriptive statistics for

eQTL variant predictive weights used to calculate TWAS test statistics.

(TEX)
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S2 Table. Descriptive statistics for enhancer-to-target gene annotation data sets. Descrip-

tive statistics for regulatory element annotation data sets used to calculate weights between

enhancers and target genes.

(TEX)

S1 Fig. GWAS simulations: ROC and precision-recall curves. Receiver Operating Character-

istic (ROC; top) and Precision-Recall (bottom) curves for each gene-based testing approach

(curve color) when either coding, eQTL, enhancer, or UTR variants are causal (plot columns)

given locus heritability h2
L = 0.05%; similar results were obtained for other h2

L values. Detailed

description of simulation settings is provided under “GWAS Simulations”, and simulation

procedures are described in Materials and Methods. To aggregate results across loci and simu-

lation replicates, we use standardized scores for each method calculated by dividing gene-

based scores (e.g., -log10-p-values) by the maximum value at the corresponding locus within

each replicate. This procedure ensures that curves reflect performance ranking genes at each

locus individually. We obtained similar results using the quantile rank of gene-based scores

within each locus for each method rather than dividing by the maximum value.

(TIF)

S2 Fig. UK Biobank: Sensitivity and specificity of gene ranking materials and methods.

ROC and Precision-Recall curves for each gene-based association or ranking method across

benchmark loci present in both HPO and ClinVar (54 loci in total). To aggregate results across

benchmark loci and UK Biobank traits, we use standardized scores for each method calculated

by dividing gene-based scores (e.g., -log10-p-values) by the maximum value at the correspond-

ing locus. This procedure ensures that curves reflect performance ranking genes at each locus

individually. We obtained similar results using the quantile rank of gene-based scores within

each locus for each method rather than dividing by the maximum value.

(TIF)

S3 Fig. Most significant annotation class for benchmark vs. other genes. Most significant

single-annotation test (x-axis) for genes with one or more gene-based p-value� 5e-6. The pro-

portion of benchmark genes (the union of HPO and ClinVar gene lists) and other genes (not

present in either benchmark genes list) for which the indicated annotation class is most signifi-

cant is shown on the y-axis with 95% confidence intervals. Benchmark genes are strongly

enriched for coding associations (odds ratio = 5.03, p-value = 1.3e-16), which is expected due

to the selection criteria used to construct benchmark gene lists (described in Materials and

methods).

(TIF)

S4 Fig. Comparison of MAF across functional annotation categories. Empirical cumulative

distribution function (ECDF) of minor allele frequency (MAF) in the UK Biobank stratified by

stratified by functional annotation. Overall, annotated functional variants tend to have lower

MAF than intergenic variants, particularly for nonsense and missense variants, as expected.

(TIF)

S5 Fig. Comparison of CT-TWAS aggregation methods. Comparison of Cross-Tissue

TWAS (CT-TWAS) p-values, and p-values using only the top single tissue, for disorders of

lipoid metabolism using GWAS summary statistics from the UK Biobank. The top tissue was

defined as the tissue with the largest number of significant genes using FWER threshold α =

0.05 with Bonferroni adjustment for the number of eGenes in each tissue. In this case, the top

tissue was “Liver” with 27 significant genes out of 3,314 total eGenes (Bonferroni-adjusted p-

value threshold = 1.5 × 10−5). Top-Tissue p-values are compared with CT-TWAS p-values
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(CT-Q, CT-A, and CT-M), which aggregate across all 47 tissues, restricted to Liver eGenes.

CT-Q is calculated using the sum of squared single-tissue TWAS z-scores (similar to SKAT);

CT-A is calculated by combining single-tissue TWAS p-values using ACAT; and CT-M is cal-

culated from the minimum single-tissue p-value using the multivariate normal joint density of

all single-tissue z-scores (described in Materials and methods). Here, CT-M detected 51 signif-

icant genes, followed by CT-A with 47, CT-Q with 33, and top-tissue-only with 27.

(TIF)

S6 Fig. Comparison TWAS/PrediXcan p-values across software. Comparison of TWAS/Pre-

diXcan p-values calculated by GAMBIT versus S-PrediXcan (cloned from GitHub on April 10,

2020) using GWAS summary statistics for HDL cholesterol from the Global Lipids Genetics

Consortium [71]. Results are shown for 25,691 unique genes across 47 tissues using GTEx v7

HapMap predictive weights from PredictDB [6, 7]. Signed -log10(p)-values are shown for

p� 10−50; 10 genes with outlying p< 10−50 are not displayed. The squared Pearson correlation

between z-scores is 0.995; differences in z-scores between GAMBIT and S-PrediXcan are pre-

sumably due to differences in the LD reference data. S-PrediXcan uses precomputed LD files

which are packaged together with predictive weights, whereas GAMBIT calculates LD interac-

tively from a reference panel (here, European individuals in the 1000 Genomes Project).

(TIF)

S1 Data. Gene-based test and ranking results across benchmark loci.

(CSV)
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