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Expression of copper metabolism-related genes is associated 
with the tumor immune microenvironment and predicts the 
prognosis of hepatocellular carcinoma
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Background: Copper metabolism dysfunction has been found to be associated with the progression 
of various malignant tumors. The aim of this study is to explore the prognostic value of copper 
metabolism-related genes (CMRGs) in hepatocellular carcinoma (HCC) and their impact on the immune 
microenvironment.
Methods: We identified differentially expressed CMRGs in cancer and adjacent samples of HCC from 
The Cancer Genome Atlas (TCGA). Consensus clustering was performed to distinguish subgroups, and 
TIMER and CIBERSORT were applied to analyze the tumor immune microenvironment (TIME). We 
used the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis 
to establish a prognostic risk model for CMRGs. Gene set enrichment analysis (GSEA) was performed to 
elucidate potential signaling mechanisms associated with the risk group, as well as to determine and compare 
the tumor mutation burden (TMB), immune cell infiltration levels, and immune checkpoint of the identified 
risk groups.
Results: Two subgroups with significantly different survival rates were identified, with a better prognosis 
associated with high immune scores, high abundance of immune-infiltrating cells, and a relatively higher 
immune status. A prognostic risk model based on five CMRGs was constructed, which showed significant 
prognostic value. When combined with clinical feature column charts, this model can predict the prognosis 
of patients with HCC. Functional enrichment analysis showed that the low-risk group was enriched in 
a large number of metabolic pathways, while the high and low-risk groups exhibited different TMB and 
differential expression of immune checkpoint genes. The established model was validated in an independent 
International Cancer Genome Consortium (ICGC) dataset.
Conclusions: The results indicate that the expression of CMRGs is associated with the prognosis of HCC 
and the tumor microenvironment, and can serve as a predictive indicator for evaluating the prognosis of 
HCC.
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Introduction

Hepatocellular carcinoma (HCC) is a highly heterogeneous 
type of tumor (1). Current data show that it has a high 
incidence rate and a worldwide mortality rate of up to 
8.3% (2). Early detection of cancer can improve the overall 
survival (OS) of patients, but most patients are already 
in the advanced stage when diagnosed (3), making HCC 
difficult to cure. The main treatment method for HCC 
is still surgical treatment, including liver transplantation 
(4,5) and liver resection (6,7). Despite the progress made in 
treatment methods, the prognostic effect for patients is still 
not ideal. Therefore, it is necessary to screen for reliable 
prognostic markers to improve the accuracy of cancer 
diagnosis and treatment effectiveness, as well as to improve 
patient prognosis.

Copper is an essential trace element in the human body 
that plays a crucial role in various biological processes, 
including cellular respiration and antioxidant defense (8). 

As a regulatory factor in mitochondria, copper is a key 
component in normal cellular energy metabolism (9), 
providing the high energy demands required for tumor 
growth. Copper homeostasis is fundamental to maintaining 
normal cell growth. However, when certain proteins 
misfold, aggregate, or malfunction, copper may accumulate 
excessively or be improperly transported, leading to 
oxidative stress and cellular toxicity (10,11). Such abnormal 
copper metabolism can disrupt copper homeostasis and 
has been implicated in various cancers, including HCC 
(12,13), colorectal cancer (14), breast cancer (15), and 
gastric cancer (16). Numerous reports have highlighted the 
significant role of copper in these cancers. Moreover, intact 
mitochondrial metabolism regulates the anti-tumor effect of 
the immune system (17). Disturbance of copper metabolism 
affects mitochondrial metabolism and leads to a reduction 
in the immune response of tumor cells. Therefore, 
the characteristics of copper metabolism-related genes 
(CMRGs) may serve as promising indicators for assessing 
the prognosis of HCC and for determining the effectiveness 
of immunotherapy.

The tumor immune microenvironment (TIME) has been 
shown to play a critical role in cancer development (18-20). 
The TIME is composed of stromal cells, immune cells, and 
the extracellular matrix (21). Disruption of the TIME can 
lead to abnormal cell metabolism, thereby promoting tumor 
proliferation and metastasis. Targeting the TIME has thus 
become a promising cancer treatment strategy in recent 
years (22). However, few studies have analyzed the interplay 
between copper metabolism and the TIME in the context 
of HCC progression, which serves as the background for 
the present study.

Analyzing the impact of CMRGs on the prognosis 
of HCC patients is of great value. Therefore, this study 
explores the close relationship between CMRG expression 
levels and HCC, as well as the TIME. We constructed 
a risk model based on the differential expression of five 
CMRGs using the The Cancer Genome Atlas (TCGA) 
database, and the results were further validated using the 
International Cancer Genome Consortium (ICGC). In 
summary, our study elucidates the role of CMRGs in HCC 
and develops an effective HCC prognostic model that 
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Highlight box

Key findings
• Comprehensive analysis of copper metabolism-related genes 

(CMRGs) involved in hepatocellular carcinoma (HCC) progression 
and prognosis can guide clinical decision-making.

• CMRGs signature effectively classify patients with HCC into 
two distinct categories based on the degree of risk, emphasizing 
important biological pathways, immunological features, and 
checkpoint molecules.

What is known and what is new?
• Abnormal copper metabolism can trigger the development and 

progression of many tumors, and few studies have explored the 
impact of CMRGs on the prognosis of HCC patients.

• In this study, we first analyzed the CMRGs related to HCC 
prognosis, and established and validated a prognostic prediction 
model for HCC based on five gene signatures, and explored 
the connections between CMRGs and the tumor immune 
microenvironment.

What is the implication, and what should change now?
• Characterization based on CMRGs provides an effective approach 

for prognostic prediction and personalized treatment of HCC. 
Follow-up studies should further explore the potential therapeutic 
targets of the identified genes.
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can improve patient outcomes and guide immunotherapy. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1890/rc).

Methods

Data acquisition

RNA-sequencing (RNA-seq) data from 370 patients with 
HCC and 50 normal liver tissues were obtained from TCGA 
database (https://portal.gdc.cancer.gov/) for statistical 
analysis. Additionally, RNA-seq data and clinical information 
from 240 HCC patients were retrieved from the ICGC 
database to serve as a validation cohort. Samples without 
information on status, OS, and tumor-node-metastasis 
(TNM) staging were excluded. CMRGs were downloaded 
from the MsigDB. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Differentially expressed CMRG

The ‘limma’ package was employed to identify differentially 
expressed CMRGs between HCC and normal tissues (23). 
The identification threshold was set to false discovery rate 
(FDR) of <0.05 and log2|fold change| of >1.5.

Identification of CMRG subgroups by consensus clustering

The single-factor Cox regression analysis identified 24 
CMRGs that were associated with the prognosis of HCC, 
with a P value of less than 0.05 indicating statistical 
significance. ConsensusClusterPlus was employed to 
perform consensus clustering based on the expression levels 
of the 24 genes. The CIBERSORT algorithm (24) was used 
to calculate the abundance of immune cell infiltration of 22 
immune cell types in the clustered subgroups.

Development and validation of a prognostic risk model for 
genes related to copper metabolism

The least absolute shrinkage and selection operator (LASSO) 
regression algorithm was utilized to screen previously filtered 
prognostic genes and eliminate overfitting with the ‘glmnet’ 
package. A multi-factor Cox regression was employed to 
determine the prognostic risk model for CMRGs. The 
risk score for each HCC sample was calculated using the 
following formula: risk score for each patient = β1 × Exp1 

+ β2 × Exp2 + β3 × Exp3 + β4 × Exp4 + β5 × Exp5, where 
Expi represents the expression of CMRGs in HCC, and βi 
represents their coefficients. Patients were classified into 
high-risk and low-risk groups based on this risk score. To 
determine the prognostic value of the model, we compared 
the difference in OS between the two risk groups using the 
Kaplan-Meier survival curve, and evaluated the efficacy of 
the established model using the time-dependent receiver 
operating characteristic (ROC) curve. Additionally, we 
associated the risk scores with conventional clinical features, 
such as gender, age, and clinical stage, and created a column 
chart to determine the effectiveness and accuracy of the 
model from multiple perspectives.

Risk group functional enrichment and tumor mutation 
load analysis

We performed gene set enrichment analysis (GSEA) (25) 
to identify potential molecular mechanisms or functional 
pathways between the high- and low-risk groups. GSEA 
was conducted on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) dataset c2.cp.kegg.v2023.1.Hs.symbols.
gmt using the javaGSEA v.4.1.0 software. The threshold 
was set to normalized enrichment score (|NES|>1) and an 
FDR <0.05. In addition, we obtained the somatic mutation 
spectrum of HCC samples from the VarScan platform in the 
TCGA database and analyzed the differences in mutations 
between the different risk groups using the “Maftools” 
package in R.

Immuno-infiltration analysis

To explore the potential relationship between the CMRG-
based prognostic model and immune cell infiltration 
in HCC, we used the online database Tumor Immune 
Estimation Resource (TIMER) (26) to estimate the 
infiltration levels of six immune cell types: B cells, 
macrophages, dendritic cells, CD4 T cells, CD8 T cells, and 
neutrophils, in the two risk groups. Pearson method was 
used to evaluate the correlation between the risk score and 
immune infiltration scores. Additionally, we analyzed the 
expression differences of key immune checkpoints between 
the two risk groups to explore the impact of CMRGs on the 
immune therapy response.

Statistical analysis

Statistical analysis was conducted using R (v.4.1.3) software 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1890/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1890/rc
https://portal.gdc.cancer.gov/
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Figure 1 TCGA CMRGs associated with OS in HCC patients. (A) The analytical process of this study. The Venn diagram in (B), volcano 
plot in (C), and heatmap in (D) illustrate OS-related CMRGs between HCC and normal samples. RNA-seq, RNA-sequencing; HCC, 
hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; CMRGs, copper metabolism-related 
genes; LASSO, least absolute shrinkage and selection operator; ICGC, International Cancer Genome Consortium; FDR, false discovery 
rate; OS, overall survival.
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and relevant packages. The chi-square test was used to 
analyze the differences in characteristics such as age and sex 
between the two groups. A P value <0.05 was considered 
statistically significant.

Results

Consensus clustering identified two copper metabolism-
related differential gene subgroups in HCC

The expression of CMRGs in HCC samples and normal 
samples was first explored (Figure 1). The specific structure 
of this study is shown in Figure 1A. Using the limma 

algorithm for preliminary screening, we identified 5,642 
differentially expressed genes (DEGs; 912 downregulated 
and 4,730 upregulated) in 370 tumor samples and 50 normal 
samples from the TCGA database (Figure 1C). Previous 
studies have reported that CMRGs are involved in the 
occurrence and development of HCC (27-29). Therefore, 
we explored whether any of the DEGs associated with OS 
(P<0.05) were related to CMRGs. A Venn diagram showed 
that 24 CMRGs were among the 3,038 DEGs generated 
by univariate Cox regression analysis (Figure 1B), and there 
is a difference in its expression between tumor and normal 
samples (Figure 1D). This suggests that CMRGs may have 



Translational Cancer Research, Vol 13, No 5 May 2024 2255

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(5):2251-2265 | https://dx.doi.org/10.21037/tcr-23-1890

Figure 2 Consensus clustering identified two subgroups of CMRGs. (A) Consensus clustering matrix heatmap for K=2. (B) Cumulative 
distribution function plot for consensus clustering. (C) Sample clustering consistency from K=2 to 10. (D) Relative change in area under 
distribution curve for each K. (E) Survival curves for patients in the two subgroups. CDF, cumulative distribution function; HR, hazard 
ratio; CI, confidence interval; CMRG, copper metabolism-related gene.
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a role in the biological behavior of HCC. Through the 
consensus clustering algorithm, we divided HCC patients 
from the TCGA training cohort into subgroups based on 
the 24 CMRGs (Figure 2A). The subgroup with the highest 
clustering stability was found when K=2, with 113 patients 

assigned to cluster 1 and 257 patients assigned to cluster 
2 (Figure 2B-2D). Significant differences were observed in 
the expression levels of CMRGs between the two subtypes, 
with patients in cluster 2 exhibiting better OS than those in 
cluster 1 (Figure 2E).
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Figure 3 Immunological analysis of the two subgroups. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P=1.5e−13; and “.” and “-” for non-
significant. NK, natural killer.
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Copper metabolism genes are associated with immune cell 
infiltration

To explore the immune differences between the two 
subtypes, we used the CIBERSORT algorithm to calculate 
the degree of immune cell infiltration between them. The 
results showed that except for macrophages M0, naive 
and memory B cells, resting CD4 memory T cells, resting 
natural killer (NK) cells, monocytes, macrophages M1, 
macrophages M2, resting mast cells, and Neutrophils, all 
other immune cells had higher levels in cluster 2 (Figure 3). 
These results indicate significant differences in the tumor 
microenvironment and immune status between the two 
molecular subtypes, suggesting a close relationship between 
CMRGs and immune infiltration in HCC.

Risk scoring model based on genes related to copper 
metabolism has a good prognostic value

LASSO regression analysis was used to construct a risk 
feature model to evaluate the prognostic value of CMRGs in 
HCC (Figure 4). Five prognostic-related CMRGs [lecithin-
cholesterol acyltransferase (LCAT), cyclin-dependent kinase 
1 (CDK1), ATPase cation transporting 13A2 (ATP13A2), 

ring finger protein 7 (RNF7), and ADAM metallopeptidase 
domain 9 (ADAM9)] were identified (Figure 4A), the 
coefficients for each gene are shown in Figure 4C, and the 
risk score was calculated using the following formula: risk 
score = −0.0848 × Exp(LCAT) + 0.1050 × Exp(CDK1) + 
0.0971 × Exp(ATP13A2) + 0.0018 × Exp(RNF7) + 0.0208 × 
Exp(ADAM9). Additionally, ROC analysis revealed that the 
constructed risk model exhibited precise predictive ability 
within 5 years, with the area under curve (AUC) values 
of 0.74, 0.72, and 0.71 for 1, 3, and 5 years, respectively 
(Figure 4B). The model successfully stratified TCGA 
patients into a high-risk group (n=183) and a low-risk group 
(n=182). The Kaplan-Meier curve indicated that the OS 
of the high-risk group was lower than that of the low-risk 
group (Figure 5A). A scatter plot demonstrated a significant 
difference in survival rates between the high-risk and low-
risk groups, and the expression levels of the five genes were 
all associated with poor prognosis in HCC patients, and the 
heatmap clearly displayed significantly different expression 
levels of the five prognostic CMRGs in the two risk groups 
(Figure 5B). Figure 5C,5D show the predictive power of the 
ICGC-validated centralized risk model, and the five CMRG 
expressions, respectively.
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Figure 4 The construction of the risk model in the training set of TCGA. (A) The LASSO regression analysis of CMRGs. The optimal 
model was obtained through 10-fold cross-validation. (B) Time-dependent ROC curve of the prognostic model for HCC patients in 
TCGA cohort. (C) LASSO coefficient curves for five CMRGs in HCC. AUC, area under curve; ROC, receiver operating characteristic; 
CI, confidence interval; Coef, coefficients; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator; 
CMRGs, copper metabolism-related genes; HCC, hepatocellular carcinoma.

Risk scores were significantly correlated with clinical 
characteristics

We collected complete clinical information on patients 
in the TCGA cohort, including age, sex, clinical stage, 
and tumor grade. The results demonstrated a significant 
correlation between the risk score calculated by the 
model and age, T stage, grade, and stage, but not with sex  
(Figure 6A-6F). To explore the probability of the model 
predicting the survival rate of patients in the TCGA cohort, 
we established a nomogram (Figure 6G). The calibration 
curve revealed that the predicted results were consistent 
with the actual results (Figure 6H). These findings 
suggest that the risk model, which is based on CMRGs, 
is independent and plays a crucial role in predicting the 
clinical survival of HCC patients based on the calculated 
risk score.

Differences in biological function between the two risk 
groups with tumor mutation burden (TMB)

We conducted GSEA on high-risk and low-risk groups to 
investigate the molecular mechanisms of HCC patients 

based on five CMRGs. Additionally, we analyzed the 
TMB of each patient in the TCGA cohort to calculate 
the difference in mutation spectrum between the two risk 
groups. KEGG enrichment analysis revealed that the high-
risk group was mainly associated with DNA replication, cell 
cycle, and homologous recombination (Figure 7A-7C), while 
the low-risk group was primarily associated with multiple 
metabolic pathways (Figure 7D-7F). Notably, the gene 
mutation frequency in the high-risk group was higher than 
that in the low-risk group (Figure 7G), with TP53 being the 
most common mutation type, while TNN mutations were 
more frequent in the low-risk group. These findings provide 
distinct research directions for exploring the occurrence of 
HCC.

Significant difference in the level of immune infiltration 
between high- and low-risk groups

To assess the association between the risk model of CMRGs 
and the immune microenvironment of HCC, we used the 
TIMER algorithm to investigate the correlation between 
risk scores and levels of immune cell infiltration. The results 
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Figure 5 Survival analysis results of risk scores in training and validation cohorts. (A) Kaplan-Meier survival curve of OS in TCGA training 
cohort. (B) Distribution of risk scores and OS status in the TCGA training cohort and heatmap of five CMRGs. (C) Kaplan-Meier survival 
curve of OS in the ICGC validation cohort. (D) Distribution of risk scores and OS status in the ICGC validation cohort and heatmap of five 
CMRGs. HR, hazard ratio; CI, confidence interval; OS, overall survival; TCGA, The Cancer Genome Atlas; CMRGs, copper metabolism-
related genes; ICGC, International Cancer Genome Consortium.
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showed that, except for a weak correlation with CD8 T 
cells, the risk score had a significant correlation with CD4 T 
cells, B cells, dendritic cells, macrophages, and neutrophils 
(Figure 8A-8F). Additionally, we observed differences in the 
expression levels of immune checkpoint genes between the 
high- and low-risk groups, with higher expression levels 
of PD-L1, CTLA4, HAVCR2, IDO1, and LAG3 in the 
high-risk group (Figure 9A-9E). Therefore, we conclude 
that the risk model based on the five CMRGs is strongly 
correlated with the TIME of HCC, and the CMRGs may 
act in synergy with immune features as potential prognostic 
characteristics of HCC.

Effects of expression levels of five copper metabolism genes 
on the immune microenvironment of HCC

We analyzed the expression levels of the five CMRGs 
in HCC and their impact on prognosis. Consistent with 
previous studies, patients with LCAT overexpression and 

low expression of CDK1, ATP13A2, RNF7, and ADAM9 
had a better prognosis (Figure 10A-10E). Finally, we 
explored the relationship between the expression levels of 
these five CMRGs and immune cell infiltration. It can be 
observed that LCAT was negatively correlated with seven 
types of immune cells in the TIME (P<0.01), whereas 
CDK1, ATP13A2, RNF7, and ADAM9 were positively 
correlated (P<0.01) and strongly correlated, which suggests 
that the five types of CMRGs play important roles in 
the TIME, and can be used in the future in terms of 
immunotherapeutic targets (Figure 10F).

Discussion

Copper is an essential trace element for maintaining normal 
cellular function in living organisms. Disorders in copper 
metabolism can lead to abnormal cellular activity, increasing 
the incidence of cancer. Currently, research has also reported 
on therapeutic strategies for copper metabolism (30).  
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Figure 6 Correlation between risk score and clinical characteristics. (A-E) Comparison of risk score among different sample classifications. (F) 
Heatmap of clinical characteristics and expression levels of different CMRGs in high/low-risk group patients. (G) Combination column line 
graph of risk score and other clinical characteristics. (H) Calibration curve of TCGA cohort. *, P<0.05; ***, P<0.001; ****, P=1.0e−7; and “-” 
for non-significant. CMRGs, copper metabolism-related genes; TCGA, The Cancer Genome Atlas.

This study aims to explore the important role of CMRGs in 
HCC.

In this study, we analyzed RNA-seq data of HCC from 
the TCGA database and identified prognosis-related copper 
metabolism genes based on DEGs. We found that CMRGs 

were differentially expressed in HCC tissues compared to 
normal tissues. Subsequently, we used consensus clustering 
to divide the differentially expressed copper metabolism 
genes into two subgroups and calculated the abundance of 
immune cell infiltration using the CIBERSORT algorithm. 
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Figure 7 Differences in biological function and TMB between the two risk groups. (A-C) KEGG enrichment of the high-risk group.  
(D-F) KEGG enrichment of the low-risk group. (G) Mutation landscape of significantly mutated genes in the high-risk and low-risk groups. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; TMB, tumor mutation burden.
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Our results showed that patients with poor prognosis had 
relatively lower immune cell infiltration status compared 
to those with better prognosis. In summary, our findings 
suggest that differentially expressed CMRGs are closely 
related to immune cell infiltration in HCC.

To further investigate the effect of CMRG disorders on 

the immune microenvironment of HCC, we constructed 
a prognostic risk model based on five CMRGs (LCAT, 
CDK1, ATP13A2, RNF7, and ADAM9) and validated it in 
the ICGC cohort, obtaining consistent results. LCAT has 
been previously associated with colorectal cancer (31) and 
epithelial ovarian cancer (32). Additionally, studies have 
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Figure 8 Immune infiltration analysis. (A-F) Correlation between risk score and immune cell infiltration. DC, dendritic cell.
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Figure 9 Analysis of immune checkpoint expression in the two risk subgroups. (A-E) Relationship between risk score and expression levels 
of immune checkpoint genes.
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Figure 10 Expression levels, prognosis, and correlation with immune infiltration of the five CMRGs. (A-E) Survival outcomes. (F) The 
impact of the expression levels of the five CMRGs on immune cell infiltration. HR, hazard ratio; CI, confidence interval; TPM, transcripts 
per million; CMRGs, copper metabolism-related genes.
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reported that recombinant LCAT is a potential therapeutic 
strategy for patients with atherosclerosis (33-35). Consistent 
with previous reports, LCAT levels are lower in HCC 
patients (36), and insufficient LCAT expression may lead 
to decreased cellular cholesterol metabolism and increased 
risk of fatty liver. CDK1 is a critical kinase that promotes 
the process of mitosis and plays a vital role in cell growth. 
It binds to AKT and regulates its phosphorylation, thereby 
promoting the progression of advanced gastrointestinal 
stromal tumors (GISTs) (37). In liver cancer research, the 
CDK1 inhibitor RO1 can enhance the therapeutic effect of 
sorafenib by blocking the CDK1/PDK1/β-catenin signaling 
pathway (38). ATP13A2 is a lysosomal transporter protein 
whose insufficient expression disrupts mitochondrial 
function and induces toxicity and cell  death (39).  
Additionally, ATP13A2 is significantly associated with HCC 
prognosis (40). RNF7 plays a positive regulatory role in 
the progression of multiple malignant tumors (41), and it 
is associated with the fibrotic progression of HCC (42).  
ADAM9, the fifth CMRG identified in the study, is a 
membrane-anchored protein whose overexpression is 
correlated with tumor invasiveness and poor prognosis (43).  
Modulating ADAM9 expression using sorafenib may 
be a promising therapeutic strategy for enhancing anti-
tumor immunity in HCC patients (44). The analysis of 
the expression levels of the five genes in this study also 
confirmed a significant correlation between CMRGs and 
HCC patients’ prognosis and immune cell infiltration. In 
summary, the model established in this study has significant 
prognostic value, and the identified five CMRGs are key 
factors in cancer development.

Based on the risk score, HCC patients were divided into 
high- and low-risk groups, with significant differences in 
clinical characteristics between the two groups. To facilitate 
clinical application, we established a bar chart to provide 
personalized scoring. GSEA showed potential molecular 
functional differences between different risk groups. The 
difference in TMB between high and low-risk groups may 
be a direction for exploring HCC treatment targets. More 
importantly, there is a strong correlation between risk 
score and immune cell infiltration. Through analysis of the 
differential expression of multiple immune checkpoints, it 
was found that the low-risk group had significant expression 
of multiple immune checkpoints, which proves that the 
activation of TIME enables the low-risk group to exhibit 
a better prognosis and immune therapy response. The five 
CMRGs screened in this study can provide a reference 
for the diagnosis of HCC prognosis, and future research 

related to target therapy can be conducted. These results 
demonstrate that CMRGs can effectively guide immune 
therapy for HCC patients.

However, there are some potential limitations in this 
study. Firstly, the risk model was built based on public 
databases, which requires further validation with additional 
data. Secondly, it is necessary to further experimentally verify 
the specific roles of the identified CMRGs in HCC, as well 
as their impact on the efficacy of immune therapy for HCC.

Conclusions

We conducted a systematic analysis of the function and 
prognostic value of CMRGs in HCC. The risk model 
identified five CMEGs that are closely related to the 
immune microenvironment and show promising potential 
as prognostic markers. Our study reveals that CMRGs can 
serve as useful guides in predicting HCC prognosis and in 
developing effective immune therapy strategies.
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