Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 5615618, 13 pages
http://dx.doi.org/10.1155/2016/5615618

Research Article

Quadrupedal Robot Locomotion: A Biologically Inspired
Approach and Its Hardware Implementation

A. Espinal,1 H. Rostro-Gonzalez,”> M. Carpio,1 E. L. Guerra-Hernandez,’
M. Ornelas-Rodriguez,' H. J. Puga-Soberanes,' M. A. Sotelo-Figueroa,’ and P. Melin*

'Division of Postgraduate Studies and Research, Leon Institute of Technology, 37290 Leon, GTO, Mexico
ZDepartment of Electronics, DICIS, University of Guanajuato, 36885 Salamanca, GTO, Mexico
’Department of Organizational Studies, DCEA, University of Guanajuato, 36250 Guanajuato, GTO, Mexico
*Division of Postgraduate Studies and Research, Tijuana Institute of Technology, 22414 Tijuana, BC, Mexico

Correspondence should be addressed to H. Rostro-Gonzalez; hrostrog@ugto.mx

Received 12 February 2016; Revised 6 April 2016; Accepted 24 May 2016

Academic Editor: Ricardo Aler

Copyright © 2016 A. Espinal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A bioinspired locomotion system for a quadruped robot is presented. Locomotion is achieved by a spiking neural network (SNN)
that acts as a Central Pattern Generator (CPG) producing different locomotion patterns represented by their raster plots. To
generate these patterns, the SNN is configured with specific parameters (synaptic weights and topologies), which were estimated by
a metaheuristic method based on Christiansen Grammar Evolution (CGE). The system has been implemented and validated on two
robot platforms; firstly, we tested our system on a quadruped robot and, secondly, on a hexapod one. In this last one, we simulated
the case where two legs of the hexapod were amputated and its locomotion mechanism has been changed. For the quadruped
robot, the control is performed by the spiking neural network implemented on an Arduino board with 35% of resource usage. In
the hexapod robot, we used Spartan 6 FPGA board with only 3% of resource usage. Numerical results show the effectiveness of the

proposed system in both cases.

1. Introduction

Autonomous robot locomotion is a problem that has been
partially solved. To deal with the inherent locomotion prob-
lems, different mechanisms have been implemented. Some
of them have been implemented through wheels due to
simplicity. However, this approach presents disadvantages
related to the environment surface. Hence, previous research
work has addressed the feasibility of implementing locomo-
tion mechanism based on legs. Legged locomotion results
from complex, high-dimensional, nonlinear, dynamically
coupled interactions between an organism and its environ-
ment. Fortunately, models have been proposed to resolve the
redundancy of multiple legs, joints, and muscles by seeking
synergies and symmetries [1]. In the literature, there are
two main approaches for the design of locomotion control
systems such as kinematic and dynamic mathematical models
and biologically inspired approaches [2]. In the first one,
to move a leg in a desired trajectory, the joint angles are

calculated in advance, by using a mathematical model that
incorporates both robot and environment parameters, to
produce a sequence of actions algorithmically scheduled [3];
these kinds of algorithms can be too complex and unable to
be used in dynamic environments with real time response
restrictions. The second approach uses bioinspired principles
found in nature. From an engineering viewpoint, the main
reason for the great interest in bioinspired approaches is
the fact that they provide suitable solutions for the design
of efficient walking robots. Usually, bioinspired solutions
use common principles found in a large variety of animals.
Applications of these principles are possible since major
advances have been made by biologists in understanding ani-
mal locomotion, and at the same time artificial locomotion
systems are interesting topics of study, in particular robotics,
since they are a good realistic way to verify a hypothesis
regarding the biological model and a good source for new
ideas [4].

http://dx.doi.org/10.1155/2016/5615618

Biologists often assume that vertebrate locomotion is
controlled by a Central Pattern Generator (CPG) capable of
producing rhythmic patterns or gaits. CPGs have the ability
to automatically generate complex control signals for the
coordination of muscles during rhythmic movements, such
as walking, running, swimming, and flying [5, 6]. CPGs
have been used to control a variety of different types of
robots and different modes of locomotion. For example,
CPG models have been used with hexapod and octopod
robots inspired by insect locomotion, quadruped robots
inspired by vertebrates, such as horse, biped robots inspired
by humans, and other kinds of robots inspired by reptiles,
such as snakes. Different levels of abstraction have been used
to model CPGs; depending on the phenomena under study
the CPG can be designed from detailed biophysical models
to abstract systems of coupled oscillators [2, 7]. CPGs present
several interesting properties including distributed control,
the ability to deal with redundancies, robustness against
perturbations, and feedback loops allowing modulation of
locomotion in unknown environments by simple control
signal. These properties, when transferred to mathematical
models, make CPGs interesting building blocks for locomo-
tion controllers in mobile robots [7].

CPGs have been implemented using general purpose
processor providing high accuracy and flexibility but those
systems consume relatively high power and occupy a large
area, restricting their utility in embedded applications. Addi-
tionally, in these processors each task gets time on the CPU
regardless of its priority and even the most time-critical
application can be suspended for some routine maintenance;
these two features have a considerable effect on performance
and real time response cannot be ensured [9]. These pro-
cessors have begun to inherit high-performance techniques
from their desktop counterparts, such as pipelining, caches,
dynamic branch prediction, and multithreading. Unfortu-
nately, even when these techniques offer a good solution in
software, their performance cannot be analytically bounded,
so when a task will be executed cannot be determined
accurately. As a consequence, CPG dedicated hardware
implementation, both analog and digital, has received more
attention. On one hand, analog circuits have been already
proposed, being computational and power efficient, but they
usually lack flexibility and they involve large design cycles.
Although there is efficient locomotion control based on
CPGs, few works have focused on adopting the technology
to fully practical embedded implementation with the ability
to be scalable or reusable in different robots morphologies
[10-12]. Recent developments in embedded controller tech-
nology have yielded very sophisticated computing devices
in relatively small and easily programmed modules. These
technologies are of low cost, power efficient, and adaptive,
which might greatly benefit from custom hardware architec-
tures. These architectures can be an alternative to implement
robot control schemes that counterbalance the fully analog
and digital drawbacks by providing custom efficient hardware
attached to embedded processors in a single chip (SoC).

Recently, FPGA (Field Programmable Gate Array) tech-
nology has improved in density up to the point that it is
feasible to implement large scale bioinspired systems on a

Computational Intelligence and Neuroscience

single FPGA device. Many interesting bioinspired systems
such as locomotion control based on CPGs can be imple-
mented using this technology [13]. FPGAs offer a compu-
tational architecture that is well suited for algorithms that
require massive parallelism of fine-grained computational
units. The inherent parallelism of the logic resources, as
well as the availability of hard cores (such as multipliers,
large distributed Random Access Memory (RAM) blocks,
Digital Signal Processing (DSP), and slices) on the FPGA,
allows a considerable computation throughput even at sub-
500 MHz clock rates. Although CPGs might not be highly
computationally demanding, autonomous robot locomotion
needs additional modules to carry out interaction tasks with
the environment, and, in general, these tasks are complex
to be achieved in embedded general purpose processors by
themselves. FPGA implementation can provide flexibility
and lower latency and real time responsiveness compared to
software-based embedded systems.

2. Materials and Methods

2.1. The Spiking Neuron Model. In its simplest form, the
evolution of the membrane potential of the integrate-and-fire
spiking neuron model is described by the following equations
(see [14, 15] for more details about the derivation):

VIkl=yVIk-1]1(1-Z[k-1])

N 1)
+ Y WZ [k = 1]+ 1% [k - 1],
=1
1 ifV >0 (firin
S (firing) -
0 otherwise,

where V[k] represents the membrane potential of a neuron
at a discrete time k. y € [0, 1[defines the leak rate. The
firing state is given by the term Z in (2). N is the number
of presynaptic neurons. W is the matrix of synaptic weights.
Finally, I ! represents an external stimulus.

When V[k] reaches a given threshold 0, then a spike
occurs in Z[k] and the neuron is reset by the term (1 - Z;[k])
in (1).

2.2. The Locomotion System. The locomotion system is a
spiking neural network (SNN) that acts as a Central Pattern
Generator (CPG) [2]. That is, the SNN is able to generate
different periodic patterns (locomotion gaits), such as those
observed for interleg coordination in free-walking adult stick
insects and shown in Figure 1 [8]. Such patterns can be
represented as spike trains of N neurons (8 for both robots,
quadruped and hexapod), which are estimated from the
following equation:

z

Vi [K] = Vi [k = 1) (1= Z; [k = 1]) + YW, Z; [k~ 1]

1 (€)

—
Il

+ I [k -1],

1

Computational Intelligence and Neuroscience

©
R2 I
1
il T
()
w
|
Lo

B —

(©)

o
R -
13]

L2

FIGURE I: Schematic drawing of different stereotypic quadrupedal walking patterns. In trot, two diagonal legs swing in synchrony (a). In
walk, synchronous swing of a diagonal pair of legs is followed by two single leg swing phases (b, ¢). Black bars indicate leg swing and R and

L correspond to right and left sides, respectively [8].

and the spiking activity (spike train) of the whole network is
defined by Z as indicated in (2).

The synaptic weights (W) are represented as NxN matrix,
which defines a specific topology for the spiking neural
network and it is determined by the methodology described
in Section 2.3. Once these parameters have been estimated
they are used in (3) to generate the desired locomotion gait.
For a practical reason, the value of y (leakage parameter)
has been set to 0.5; this is due to the fact that such value is
a power of two (271, which is highly suitable for hardware
implementation (binary operations). The CPGs can produce
rhythmic signals without afferent sensory information, and
for this reason the SNN does not require exogenous inputs;
that is, I has been set to zero. Finally, the initial conditions
for Z and V correspond to the values at the time k — 1 of the
desired locomotion gait.

In this research, the locomotion patterns shown in Fig-
ure 1 have been modified in order to match with the robot
structure. To be more specific, the quadruped and hexapod
robots have 12 and 18 Degrees of Freedom (DOFs), respec-
tively, with 3 servomotors (DOFs) per leg, which correspond
to femur, tibia, and coxa. However, for locomotion we only
need to control 2 of them, femur and coxa (see Figure 5). The
servomotor for the tibia only needs to be energised but not
controlled. This is due to the fact that the tibia is the weight-
bearing part of the robot. Thus, the improved locomotion
patterns are shown in Figure 2.

2.3. Parameter Estimation. The parameter estimation of Cen-
tral Pattern Generators (CPGs) is generally a difficult task;
on it depends the spiking neural network’s (SNN) capability
to periodically replicate a set of rhythmic signals [2]. In this
work, the parameter estimation (synaptic weights and con-
nections) of SNNs follows a divide-and-conquer workflow
based on an evolutionary approach. Different evolutionary
approaches to deal with design and tuning parameters of
Artificial Neural Networks have been proposed, for example,
weight tuning, topology definition, learning rule optimiza-
tion, and combination of them. Besides, these evolution-
ary approaches can search directly or indirectly over the
search space according to the representation of candidate
solutions (see [16] for a detailed review). Particularly, to

tackle the parameter estimation in CPG-based systems driven
by evolutionary algorithms, most works use evolutionary
algorithms to modulate synaptic parameters of prefixed
network topologies. In [17], a Genetic Algorithm for tunning
the parameters of CPG designed for the locomotion of both
terrestrial and aquatic gaits of a virtual salamander was
successfully implemented. However, the most related work to
this research is presented in [18], where neural networks are
developed and designed by means of Genetic Programming
(GP) to make a virtual fish swim, and this work reports
the feasibility of using GP to develop CPGs; however, those
designs were not implemented on a real robot.

The parameter estimation method deals with an opti-
mization problem, where the search space is formed by all
weighted connectivity configurations for a graph with N
nodes; hence, the matrix W in (3) defines both the topology
and synaptic weights of a SNN; it can be considered as the
adjacency transpose matrix of a weighted directed graph.
The parameter estimation method divides the design of a
SNN into individual connectivity designs for each spiking
neuron, instead of designing and training a SNN as a whole.
Each connectivity design of a neuron is carried out by an
evolutionary approach that represents solutions indirectly.
The purpose of the evolutionary method is to find out a set of
weighted connections for a neuron to periodically replicate
a target rhythmic pattern according to a desired gait. The
connectivity configuration of each neuron is represented by
words, and (4) shows the syntax for connectivity words,
where the first part (before the sign “.”) indicates the number
of presynaptic connections of the current neuron and the
second part (after the sign “.”) indicates the indexes and
synaptic weights of each presynaptic neuron:

Ist configured synapse

——
n : 1d,, weight

—— Ist
synaptic connections

nth configured synapse

(4)

e
[--+| id,q,, weight,, .

The words in (4) besides syntactic correctness require
ensuring semantic criteria related to the matrix W in (3) such
as the following: the number of presynaptic neurons must
be bounded 1 < n < N and the indexes of the presynaptic
neurons must be different (id, # id, # --- # id,,) to avoid
multiples ties or loops from the same presynaptic neuron to

4
CR2
£§f------
10 HEENI]
gﬁl.....l
il HE AN

(a)

CR2
FR2
CR1
FR1
CL2
FL2
CL1

FL1 l

(0)

Computational Intelligence and Neuroscience

CR2
o HE B B B
FRI H B B 1
CL2

gﬁ----
HE B B B

FL1
(b)

FIGURE 2: Modified locomotion patterns for the legged robots.

the current neuron being designed (or multiple values into a
single cell from the matrix W).

To obtain solutions that are syntactically and semantically
correct such as in (4), the configuration for each neuron is
carried out by Christiansen Grammar Evolution (CGE) [19]
framework and requires the next three components:

(i) A Christiansen Grammar (CG) which reflects the
syntactic and semantic requirements for the language
of neuron connectivities. Several CG can be designed
to cover these requirements, for example, a CG that
removes neuron indexes when they were used (see the
appendix).

(ii) A fitness function to set the quality of a candidate
solution once it has been mapped from its genotypical
form (string of numbers) to its phenotypical form (a
spiking neuron connected to its presynaptic neurons).
An important criterion to achieve that a specific
neuron replicates an input rhythmic signal is the
design of a fitness function to explore the search
space of weighted connectivity configurations. In
functional approximation, an alternate and explicit
mathematical expression is constructed for the objec-
tive function [20], which in this case is unknown.
In this work, the SPIKE-distance is used as basis of
functional approximation for the fitness function. The
SPIKE-distance is a parameter-free and timescale-
adaptive measure for estimating the degree of syn-
chrony between spike trains. In general, the distance
is defined as a temporal average of the spike trains’
dissimilarity profiles (see [21] for detailed definition).
Here, the bivariate SPIKE-distance is used to measure
the similarity between a target spike train (rhythmic
signal) and the spike train generated after simulation
by the phenotypical form of the candidate solution.

(iii) A search engine (metaheuristic algorithm) to drive
the search of good solutions based on their quality.

Here, a continuous Univariate Marginal Distribu-
tion Algorithm (UMDAY) with elitism is used to
evolve the connectivity designs as that is an easy-
to-implement evolutionary algorithm (see [22] for
implementation details).

The whole design process works as follows: a gait rep-
resented as a set of spike trains (rhythmic signals) is given
as input. Next, each spike train (rhythmic signal) is treated
individually for being designed, and all the spike trains except
the targeted one are set as available as activity of feasible
presynaptic neurons and the initial state of the current
designed neuron is set according to the input gait, if at time
k 0 the neuron should fire or should not. Once the
required configurations are done the CGE framework evolves
candidate solutions for connectivity until an expected error is
achieved (this depends on the fitness function being used);
after the gait’s replication is achieved, the current neuron
connectivity design is stored and the process continues until
achieving the correct replication of N spike trains from
the input gait. Finally, all N individual neuron connectivity
designs are integrated into a SNN (see Algorithm 1).

In Figure 3, a graphic workflow of the design method
is presented, an input is decomposed into individual spike
trains, and each neuron is configured to replicate a specific
spike train. Later, all the individual designs are integrated into
a SNN; the output is the CPG design, which is illustrated as
a directed graph (weights have been omitted for clarity in the
graphic), where each neuron configuration in the design part
is associated with a color and its connectivity pattern can be
visualised in the final graph (the final graph shows that the
design does not use all available ties and loops; only the non-
gray colored and continuous ones define the CPG topology).

2.4. Hardware. To validate the different configurations of
the CPGs we have performed hardware implementation
on dedicated hardware, such as Arduino (Microcontroller)

Computational Intelligence and Neuroscience 5

Require: G = {S,,...,Sy}

Ensure: CPG design

(1) foralli=1toN do

(2) Configure the available signals for the ith spiking neuron ({G - §;}).

(3) Set the initial state of the ith spiking neuron.

(4) repeat

(5) Evolve both the connectivity and synaptic weights for the ith spiking neuron by means of CGE.
(6) until Best Solution’s Fitness != Expected Error

(7) Store the CGE’s Best Solution for the ith spiking neuron’s configuration.
(8) end for

(9) Integrate all configurations into a SNN.

ALGoRITHM 1: CPG design methodology.

Input Design
(rhythmic signals)

Output
(CPG design)

(CGE process)

CR2 presynaptic
connections
FR2 presynaptic
connections

CRI presynaptic
connections
FR1 presynaptic
connections

ition

0n

Decompos:

CL2 presynaptic
connections

FL2 presynaptic
connections

CL1 presynaptic
connections

FL1 presynaptic
connections

Integrat

FIGURE 3: Schematic diagram of the CGE-based methodology for designing CPGs.

and FPGA board (from OpalKelly) for high and low level
implementation, respectively.

The Arduino board used in this work is the BotBoarduino
(Figure 4(a)), which is based on Atom Microcontrollers for
Lynxmotion robots. It has an onboard speaker, three buttons
and LEDs, a Sony PS2 controller port, a reset button, logic and
servo power inputs, an I/O bus with 20 pins and power and
ground, and a 5vdc 1.5amp regulator. Also, up to 18 servos
can be plugged in directly.

In this work, we also considered the implementation on
FPGA board in order to have better hardware conditions,
such as more resources to implement complex designs, a
hardware design language (HDL), low power consumption,
reconfigurability, hardware parallelism, and very high pro-
cessing speed. Specifically, in this work we use Spartan 6
XEM6310-LX45 board (Figure 4(b)) from the OpalKelly
family (https://www.opalkelly.com/). This specific board has
two more advantages: on one hand the dimensions, only
75mm x 50mm (highly suitable for our robots), and on
the other hand a graphical interface for friendly interaction
between the PC and the FPGA.

In both cases, a SSC-32 servo controller (Figure 4(c))
is used to handle servomotors in the robot. This is a servo

controller with 32 channels of 1uS resolution servo control
and a bidirectional communication.

To connect and control the servos through the FPGA,
we also use a breakout board (BRK6110), which allows us an
easy connection to high-density connectors on the XEM6110-
LX45 by routing all signals to four 40-pin 2-mm headers (see
Figure 4(d)).

To validate the CPGs, we have used real quadruped and
hexapod robots, such as those shown in Figure 5.

3. Results

Here, we present test results for the performance of the
system. We first estimated the synaptic weights for three
different gaits (walking, jogging, and running) of the SNNs
by using Christiansen Grammar Evolution. For this, we
performed three strategies based on three different SPIKE-
distance-based fitness functions as follows:

(i) The Christiansen Grammar Evolution runs with a
SPIKE-distance-based fitness function which has no
restrictions on the number of synaptic connections.

Computational Intelligence and Neuroscience

(c)

(d)

FIGURE 4: Hardware used in this research: (a) BotBoarduino, (b) FPGA, (c) servo controller SSC32, and (d) breakout board BRK6110.

()

(b)

FIGURE 5: Neuronal configurations in the legged robots. (a) Quadruped and (b) hexapod robots. C and F indicate coxa and femur, respectively.
L and R correspond to the side where the neurons are located in the robot (images from Lynxmotion website).

(ii) The Christiansen Grammar Evolution runs with a
SPIKE-distance-based fitness function with restric-
tions on the number of synaptic connections; that
is, we expect that only one presynaptic neuron can
stimulate the postsynaptic neuron to reproduce its
input signal.

(iii) The Christiansen Grammar Evolution has a SPIKE-
distance-based fitness configured to reproduce the
three different locomotion patterns (gaits) with the
same spiking neural network topology.

From these strategies, we obtained the different configu-
rations for the spiking neural networks, which generate the
locomotion patterns for the legged robots.

Equations (5), (6), and (7) correspond to the connectivity
matrices for walking, jogging, and running gaits, respectively,
generated by the Christian Grammar Evolution with no
restrictions on the number of synaptic connections among
the neurons. Similarly, (8), (9), and (10) correspond to the
connectivity matrices for the same gaits but with restrictions
on the number of synaptic connections. Finally, (11) corre-
sponds to the connectivity matrix which can reproduce any

Computational Intelligence and Neuroscience 7
CR2 4 ' o - P4
FR2 -1 1 1 1 1- 1 1 1 n
CR1 1. 1 o ' o
é FR1 4+ s e P '
=
2 CLZ-# v (] [
FL2 A 1 1 L} 1 L} 1
CLl -1 1 L} 1 L] 1 L] 1
FLl -1 1 1 1 1 1 1 1 1
00 25 50 75 100 125 150 175 200 225
Simulation time
(b)
FIGURE 6: (a) Network topology and (b) raster plot for the walking gait.
of the three gaits; this is given when the third strategy is used 06000000
with Christiansen Grammar Evolution. 00100000
Besides, in Figures 6, 7, and 8, the schematic on the left
side corresponds to the spiking neural networks topologies 00090000
for walking, jogging, and running gaits, respectively. On the 00002000
right side the raster plots (spiking activity) for the three Wy, = > (8)
! . 00000600
ocomotion patterns are shown:
10000000
54 2 -92-7 3 2
02000000
005 000 =20
00600000
000 100 0O
00-7090 00 “ 09000000
w, = >
w300 =30 7 0 0 00007000
000 000 80 00040000
470 000 08 L _[po000070 o
J2
004 00-20 0 00000700
00000O0O1O0
05000 0 0 O
000000O0Y9
00500 0 0 -3
80000000
00 050 0 0 O
00-100 -3 4 0 © 000000O0T1
w.: = N
i Tloo 0 8 0 -1 8 —6 00003000
00000 0 4 0 00000800
00500 0 0 4 L _[pooo0o0oso o)
19 *
67 25 -7 0 -6 0 00000200
40000000
-7 9 4 -1 0 -6 -3 7
09000000
-5 -89 5 0 0 0 3
00600000
0 -70 4 0 8 0 O
2 6 -8-2-7-3 6 5
w, = (7) In Figure 11, we show the network topologies when the
-1 -7 6 5 -4 7 -4 4 s ati Py h ber of
parameter estimation presents restrictions on the number o
8§ 0 -2 0 -4 0 7 0 synaptic connections. As we can observe, the connectivity
map is clearer and easier to be implemented in hardware. The
6 7 -1 0 7 =5 -7 -4 raster plots are exactly the same as those shown in Figures
-7-9 9 0 3 0 -4 1 6(b), 7(b), and 8(b).

Computational Intelligence and Neuroscience

CR2 4+
FR2
CRI 4
FRI1 {:
CL2 -
FL2 {-
CL1 {:
FLI1 {

Neurons

0.0

7.5 10.0 12,5 150 17.5 20.0

Simulation time

(®)

25 5.0

FIGURE 7: (a) Network topology and (b) raster plot for the jogging gait.

CR2 A
FR2 -
CR1 1.
FRI -
CL2 -
FL2 A
CL1 -
FL1

Neurons

- PR I PR I T B B LI A 1.1

0.0

25 50 75 100 125 150 175 20.0

Simulation time

(®)

FIGURE 8: (a) Network topology and (b) raster plot for the running gait.

In Figure 12, we present the most interesting implemen-
tation, because such network is able to generate the three
locomotion patterns presented in this work.

Finally, in Figure 13, we show real time simulations during
the walking, jogging, and running gaits of the quadruped
and hexapod robots through the use of a digital oscilloscope;
in such figure, x-axis and y-axis represent neuron activity
through time and neuron labels, respectively. For the hexapod
robot, we can appreciate that two signals are death, because
the robot was amputated; for reasons of robot’s stability, we
have simulated that middle legs were amputated instead of
the front legs as in the experimentation reported in [8]. A
sequence of the movement of the quadruped and the hexapod
robots is shown in Figures 9 and 10, respectively (the sequence
in both figures goes from left to right and from top to bottom):

02 000 0 0 0
00 800 0 0 0
1-4070 00 0
33 907 -2 6 -1
Paio=1o 0 0 0-34 0 0)
00 000 0 9 -2
00 000 -8 0 8
5 0 70-60 -5 0

4. Conclusions

A biologically inspired embedded system for quadrupedal
robot locomotion has been presented. The design method-
ology includes a solid mathematical background, biological
validation, numerical simulations, and hardware implemen-
tation. The theoretical framework includes spiking neurons
to reproduce locomotion patterns and a grammar evolution
approach to estimate the parameters of such neurons. In this
work, we show how the simplest spiking neuron model is
able to reproduce periodic patterns such as those observed in
living entities. At the same time, we applied the Christiansen
Grammar Evolution to estimate the weights and synaptic
connections of the spiking neural network to achieve an exact
reproduction of the desired locomotion patterns. Also, we
have improved the parameter estimation in spiking neural
networks by incorporating three different fitness functions
and using the SPIKE-distance to compare the effectiveness of
each of them.

Numerical simulations have demonstrated the effective-
ness of the whole system; however, the major achievement is
the hardware implementation of this system on real legged
robots. Implementation in high and low level programming
languages has been performed in order to control the robots
by using Arduino and FPGA boards, respectively.

Computational Intelligence and Neuroscience

FIGURE 9: Real time simulation on a quadruped robot.

10

Computational Intelligence and Neuroscience

FIGURE 10: Real time simulation on a hexapod robot with middle legs amputated.

Computational Intelligence and Neuroscience

1

Neurons

CR2 -
FR2 4
CRI1 {-
FRI1 {i-
CL2 -
FL2 {-
CLI 4.
FLI 4

0.0 1

2.5 1 -

50 4 -
7.5 4
10.0 4 =
12.5
15.0 4
17.5 4
20.0
225 9.
25.0 4 =
27.5 1
30.0 4 =
32.5 -
35.0 A

Simulation time
(b)

FIGURE 12: (a) All-in-one topology network. (b) The three locomotion gaits are generated by the same network.

Real time numerical experiments on two-legged robots
(quadruped and hexapod) have been shown in Section 3. This
methodology can also be applied to any kind of legged robot.
Next step in this research is the use of sensory information
for autonomous navigation.

Appendix
Christiansen Grammar

A Christiansen Grammar (CG) is a set CG = {Z,, 2}, S, P},
where X is the set of nonterminals, X is the set of terminals,

12

Computational Intelligence and Neuroscience

(a) Walk (quadruped)

(b) Walk (hexapod)

(c) Jog (quadruped)

(d) Jog (hexapod)

(e) Run (quadruped)

(f) Run (hexapod)

FIGURE 13: Oscilloscope screenshots for the three locomotion gaits (real time monitoring). On the left side, we show the real time simulation
for the quadruped robot, and on the right side the real time simulation for the amputated hexapod robot.

S is the initial start symbol (S € Xy), and P is the set of
productions (see [19] for more details). Next the CG is shown
which allows deriving words that accomplish the restrictions
mentioned in Section 2.3 by creating a production which
contains a finite number of presynaptic connections (I <
n < N), besides preventing repetitive connections from
a presynaptic neuron by eliminating indexes of presynaptic
neurons already connected (id;, # id, # --- # id,,). Next,
the herein proposed CG for defining presynaptic connections
of a neuron is introduced:

CG={
Xy = {{neuronSynapses)(| g;), {connections)(| g;,T
9o)>

(neuronldList)(| g;,T n),(synapses)(| g;),(syn-
apse)(| 95T g,),

(weight)(] g,), (sign)(| g,), (digit)(g,)},
Sr=1{1,2..,8,9+ -5}
S = (neuronSynapses)(| g;),

P = {{neuronSynapses)(| g;) E {connections)(|
91 9,):

(synapses)(| g,){}

(connections)(| g;,1 g,) E (neuronldList)(| g;,T
n){

T g)(i = | g; U (synapses)(| g;) E (synapse)(| g;>T
go)l

[(synapse)(l g, ,»T 9o,)1}
(neuronldList)(] g,,7 1) E 1{},

(neuronldList)(| g;,T N) E N{},

(synapse)(| g1 g,) E (meuronldList)(| g; T
n), (weight)(] gi){

19, =1 g; — {{neuronldList)(] g;,T n) E T n{}}},
(weight)(| g;) £ (sign)(] g;){digit)(] g){}
(sign)(l g;) E +{},

(sign)(| g;) E —{}

(digit)(| g;) & 1{},

(digit)(l g;) F 91}
}

Competing Interests

The authors declare that they have no competing interests.

Computational Intelligence and Neuroscience

Acknowledgments

This research has been partially supported by the CONACYT
project “Aplicacion de la Neurociencia Computacional en el
Desarrollo de Sistemas Roboticos Biologicamente Inspira-
dos” (no. 269798).

References

(1] R. J. Full and D. E. Koditschek, “Templates and anchors:
neuromechanical hypotheses of legged locomotion on land,
The Journal of Experimental Biology, vol. 202, no. 23, pp. 3325-
3332, 1999.

A.J.Ijspeert, “Central pattern generators for locomotion control
in animals and robots: a review,” Neural Networks, vol. 21, no. 4,
pp. 642-653, 2008.

[3] H. Kimura, I. Shimoyama, and H. Miura, “Dynamics in the
dynamicwalk of a quadruped robot,” International Journal of
Robotics Research, vol. 4, no. 2, pp. 187-202, 2003.

P. Arena, L. Fortuna, M. Frasca, and G. Sicurella, “An adaptive,
self-organizing dynamical system for hierarchical control of
bio-inspired locomotion,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 34, no. 4, pp. 1823-1837,
2004.

[5] L. H. Scott, “Central pattern generator,” Current Biology, vol. 10,
no. 2, pp. 176-177, 2000.

[6] C. M. A. Pinto, “Central pattern generator for legged locomo-
tion: a mathematical approach,” in Proceedings of the Workshop
on Robotics and Mathematics, vol. 16, pp. 1-6, 2007.

[7] A. Fujii, N. Saito, K. Nakahira, A. Ishiguro, and P. Eggenberger,
“Generation of an adaptive controller CPG for a quadruped
robot with neuromodulation mechanism,” in Proceedings of
the International Conference on Intelligent Robots and Systems
(IEEE/RS] °02), pp. 2619-2624, IEEE, October 2002.

M. Grabowska, E. Godlewska, J. Schmidt, and S. Daun-Gruhn,

“Quadrupedal gaits in hexapod animals—inter-leg coordina-

tion in free-walking adult stick insects,” The Journal of Exper-

imental Biology, vol. 215, no. 24, pp. 4255-4266, 2012.

[9] C. Weems and S. Dropsho, “Real-time computing: implications
for general microprocessors,” Tech. Rep., University of Mas-
sachusetts, 1995.

[10] A. Billard and A. J. Jjspeert, “Biologically inspired neural con-
trollers for motor control in a quadruped robot,” in Proceedings
of the International Joint Conference on Neural Networks (IICNN
°00), pp. 637-641, July 2000.

[11] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic

walking of a quadruped robot on irregular terrain based

on biological concepts,” The International Journal of Robotics

Research, vol. 22, no. 3-4, pp. 187-202, 2003.

S. Still and M. W. Tilden, “Controller for a four-legged walking

machine,” in Neuromorphic Systems Engineering Silicon from

Neurobiology, vol. 10 of Progress in Neural Processing, pp. 138—-

148, World Scientific, Singapore, 1998.

J. Liu and C. Wang, “A survey of neuromorphic engineering—

biological nervous systems realized on silicon,” in Proceedings

of the IEEE Circuits and Systems International Conference on

Testing and Diagnosis (ICTD °09), pp. 1-4, IEEE, Chengdu,

China, April 2009.

(14] H. Soula, G. Beslon, and O. Mazet, “Spontaneous dynamics of

asymmetric random recurrent spiking neural networks,” Neural

Computation, vol. 18, no. 1, pp. 60-79, 2006.

S

=

[8

(12

(13

13

[15] B. Cessac, “A discrete time neural network model with spiking
neurons: rigorous results on the spontaneous dynamics,” Jour-
nal of Mathematical Biology, vol. 56, no. 3, pp. 311-345, 2008.

[16] X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423-1447, 1999.

(17] A. J. Ijspeert, “A connectionist central pattern generator for
the aquatic and terrestrial gaits of a simulated salamander,
Biological Cybernetics, vol. 84, no. 5, pp. 331-348, 2001.

[18] A.J.Ijspeert and J. Kodjabachian, “Evolution and development
of a central pattern generator for the swimming of a lamprey;’
Artificial Life, vol. 5, no. 3, pp. 247-269, 1999.

[19] A. Ortega, M. de la Cruz, and M. Alfonseca, “Christiansen
grammar evolution: grammatical evolution with semantics,”
IEEE Transactions on Evolutionary Computation, vol. 11, no. 1,
pp. 77-90, 2007.

[20] Y. Jin, “A comprehensive survey of fitness approximation in
evolutionary computation,” Soft Computing, vol. 9, no. 1, pp. 3-
12, 2005.

[21] T. Kreuz, D. Chicharro, C. Houghton, R. G. Andrzejak, and
E Mormann, “Monitoring spike train synchrony;” Journal of
Neurophysiology, vol. 109, no. 5, pp. 1457-1472, 2013.

[22] D. Simon, Evolutionary Optimization Algorithms, John Wiley &
Sons, 2013.

