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Abstract
Aims/hypothesis Podocytes are insulin-responsive cells of the
glomerular filtration barrier and are key in preventing albu-
minuria, a hallmark feature of diabetic nephropathy. While
there is evidence that a loss of insulin signalling to podocytes
is detrimental, the molecular mechanisms underpinning the
development of podocyte insulin resistance in diabetes remain
unclear. Thus, we aimed to further investigate podocyte insu-
lin responses early in the context of diabetic nephropathy.
Methods Conditionally immortalised human and mouse
podocyte cell lines and glomeruli isolated from db/db DBA/
2J mice were studied. Podocyte insulin responses were inves-
tigated with western blotting, cellular glucose uptake assays
and automated fluorescent imaging of the actin cytoskeleton.
Quantitative (q)RT-PCRwas employed to investigate changes
in mRNA. Human cell lines stably overproducing the insulin
receptor (IR) and nephrin were also generated, using lentiviral
constructs.
Results Podocytes exposed to a diabetic environment (high glu-
cose, high insulin and the proinflammatory cytokines TNF-α

and IL-6) become insulin resistant with respect to glucose up-
take and activation of phosphoinositide 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) signalling. These
podocytes lose expression of the IR as a direct consequence of
prolonged exposure to high insulin concentrations, which causes
an increase in IR protein degradation via a proteasome-
dependent and bafilomycin-sensitive pathway. Reintroducing
the IR into insulin-resistant human podocytes rescues upstream
phosphorylation events, but not glucose uptake. Stable expres-
sion of nephrin is also required for the insulin-stimulated glucose
uptake response in podocytes and for efficient insulin-stimulated
remodelling of the actin cytoskeleton.
Conclusions/interpretation Together, these results suggest
that IR degradation, caused by high levels of insulin, drives
early podocyte insulin resistance, and that both the IR and
nephrin are required for full insulin sensitivity of this cell.
This could be highly relevant for the development of nephro-
pathy in individuals with type 2 diabetes, who are commonly
hyperinsulinaemic in the early phases of their disease.
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WT-Neph Wild-type cells producing nephrin
VEGF Vascular endothelial growth factor

Introduction

Diabetic nephropathy, in which albuminuria is an early man-
ifestation, occurs in approximately one third of diabetic indi-
viduals and is the leading cause of end-stage renal failure
worldwide [1]. It is well recognised that insulin resistance
plays a major role in the pathogenesis of both type 1 and type
2 diabetes [2, 3], including a role in the development of renal
complications. Interestingly, in addition to being associated
with albuminuria and nephropathy in both type 1 [4, 5] and
type 2 [6] diabetes, insulin resistance is also associated with
the development of albuminuria in non-diabetic individuals
[7]. Renal disease is also common among people with severe
forms of genetic insulin resistance [8].

A range of circulating factors are dysregulated early in the
development of systemic insulin resistance, as either a cause or
a consequence of disrupted cellular insulin signalling. Among
these factors, elevated inflammatory cytokines, hyperglycaemia
and hyperinsulinaemia are particularly prominent [9]. Although
the negative regulation of insulin signalling is relatively well
characterised in classical insulin-responsive tissues, such as
skeletal muscle and liver, the impairment of insulin action does
not occur uniformly throughout all insulin-responsive tissues,
and the effects of factors associated with insulin resistance are
often tissue-specific [10].

Podocytes are specialised epithelial cells lining the urinary
side of the glomerular filtration barrier in the kidney, essential in
the maintenance of glomerular function. Podocyte loss or dis-
turbance is linked to the development of albuminuria and oc-
curs early in the progression of diabetic nephropathy [11–14].

We previously demonstrated that podocytes are insulin-
responsive cells in vitro [15], and the specific deletion of the
podocyte insulin receptor (IR) in vivo disrupts glomerular
function, causing features reminiscent of diabetic nephropa-
thy, independent of hyperglycaemia [16]. Furthermore, a
podocyte-specific reduction in IR production has been found
to exacerbate albuminuria in a mouse model of diabetic ne-
phropathy [17], further highlighting the importance of
podocyte IR signalling in disease.

There is also increasing evidence that podocyte insulin
responses may be negatively regulated in situations of sys-
temic insulin resistance [18, 19]. In particular, the finding
that podocytes isolated from db/db mice display reduced
insulin-stimulated Akt phosphorylation may suggest that
circulating factors, associated with type 2 diabetes, have
the capacity to disrupt podocyte insulin responses early in
the course of glomerular disease [20]. Despite this, rela-
tively little is still known about the specific factors that
regulate podocyte insulin responses.

This study aimed to investigate how factors associated with
systemic insulin resistance influence podocyte insulin signal-
ling and, consequently, the development of renal disease in
situations of insulin resistance, including diabetic nephropathy.

Methods

AnimalsAll animal experiments and procedureswere approved
by the UK Home Office in accordance with the Animals
(Scientific Procedures) Act 1986, and the Guide for the Care
and Use of Laboratory Animals was followed during experi-
ments. Heterozygous db/wt DBA/2J (D2.BKS(D)-Leprdb/J)
mice were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA). Female and male db/db mice were bred in
house, as described [21]. Glomeruli were isolated after perfusion
with dynabeads (Thermo Fisher, Paisley, UK). Further details
are available in the electronic supplementary material (ESM).

Generation of podocyte cell lines from db/db and wild-type
mice Podocytes were isolated from perfused glomeruli from a
male db/db DBA/2J and male wild-type (WT) DBA/2J litter-
mate control mouse at 12 weeks of age. These podocytes were
conditionally immortalised with temperature-sensitive SV40
transfection as previously described [22, 23].

Cell culture Conditionally immortalised human [24] and
mouse [22] podocytes were maintained in RPMI-1640 con-
taining L-glutamine and NaHCO3, supplemented with 10%
FBS (Sigma Aldrich, Gillingham, UK). Cells were studied
after 12–14 days differentiation at 37°C and were free of
Mycoplasma infection.

Cell treatments To mimic a diabetic environment in vitro,
podocytes were grown in the presence of 100 nmol/l insulin
(Tocris, Bristol, UK), 25 mmol/l glucose (Sigma), 1 ng/ml
TNF-α and 1 ng/ml IL-6 (R&D systems, Abingdon, UK). D-
Mannitol (Sigma) was used as a control for osmotic pressure
in these assays. For initial chronic insulin exposure, podocytes
were incubated with insulin at 10 nmol/l and 100 nmol/l for
10 days. Although supraphysiological (as physiological
hyperinsulinaemia is typically within the range 1000–
2000 pmol/l, occurring over an extended period of months
or years), this is consistent with numerous in vitro studies of
other cell types [25–30]. For short-term insulin stimulation,
culture medium was replaced with serum- and insulin-free
RPMI-1640 for 2–4 h, and podocytes were re-challenged with
insulin at 10 or 100 nmol/l for 10 min. For inhibition of
proteasomal and lysosomal degradation, podocytes were treat-
ed with 10 μmol/l MG-132 (Sigma) or 50 nmol/l bafilomycin
(Tocris), respectively, for 8 h.
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Lentiviral transfection of podocytes Human IR
(NM_000208.2) was subcloned into pLenti-TetCMV(IR)-
Rsv(RFP-Bsd) expression vector (Gentarget, San Diego, CA,
USA). The human nephrin expression plasmid (pWPXL-
Nephrin-FLAG) was a gift from R. Lennon (University of
Manchester). Expression vectors were transfected into Lenti-X
293T cells (Clontech/Takara Bio Europe SAS, Saint-Germain-
en-Laye, France), together with packaging vectors pMD.2G
(Addgene no. 12259) and psPAX2 (Addgene no. 12260), both
gifts fromD. Trono (École polytechnique fédérale de Lausanne),
as previously reported [31]. Lentiviral particles were purified
from the cell supernatant fraction, and immortalised podocytes
were transduced overnight in the presence of polybrene. IR-
containing podocytes were selected using blasticidin.

Glucose uptake assays Insulin-stimulated glucose uptake in-
to podocytes was measured as previously described [15].
Briefly, cells were serum-starved before incubation with a
modified KRP solution (see ESM Methods) for 15 min at
37°C. After appropriate stimulation, [3H]2-deoxy-D-glucose
(Perkin Elmer, Coventry, UK) was added at 37 kBq/ml for
5 min. Solubilised cell suspensions were collected, and radio-
activity was measured in dpm using a multi-purpose scintilla-
tor counter (Beckman Coulter, High Wycombe, UK). Each
condition was performed in duplicate or triplicate.

Quantitative RT-PCR Total RNAwas isolated using TRIzol
Reagent (Invitrogen/Thermo Fisher), and cDNAwas synthe-
sised using a high-capacity RNA-cDNA kit (Applied
Biosystems/Thermo Fisher). Quantitative (q)RT-PCR was
performed using SYBR green (Sigma) in an Applied

Biosystems StepOnePlus system and mRNA normalised to
β-actin. Primer sequences are listed in ESM Methods.

Western blotting and antibodies Total protein lysates were
extracted using RIPA lysis buffer (Sigma), resolved on 7.5–
10% SDS-polyacrylamide gels and blotted onto nitrocellulose
membranes. Membranes were incubated in primary antibo-
dies overnight at 4°C, before washing and incubation with
the appropriate HRP-conjugated secondary antibody (Sigma)
at a 1:10,000 dilution. Immunoreactive bands were visualised
using Clarity ECL Western Blotting Substrate (Bio-Rad,
Hemel Hempstead, UK) on a GEAI600 imager and quantified
using ImageJ (NIH, https://imagej.nih.gov/ij/). Primary
antibodies are listed in ESM Methods.

Immunoprecipitation For immunoprecipitation studies, 5 μg
of anti-IRβ (C-19)-AC or Rabbit IgG-AC (Santa Cruz, Dallas,
TX, USA) was added directly to cell lysates and incubated
overnight at 4°C, under constant rotation. Immune complexes
were pelleted at 10,000 g for 30 s and washed in lysis buffer.
Immune complexes were eluted at 70°C for 10 min.
Immunoprecipitation samples were resolved on 7.5% SDS-
PAGE gels before western blotting.

Semi-automated immunofluorescent imaging and analysis
Cells were grown in 96-well plates (Greiner, Stonehouse, UK),
stimulated as indicated before fixation and immunostaining.
Image acquisition was automated using an IN Cell Analyzer
(GE Healthcare, Amersham, UK) imaging platform, and quan-
tification was performed using IN Cell Analyzer work station
3.5 software. Three technical replicates were performed within
each experiment, with four fields of view per well, yielding data
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Fig. 1 Expression of podocyte markers and key insulin signalling pro-
teins in WT mouse podocytes. Representative western blots and densi-
tometry demonstrating (a) levels of the podocyte markers nephrin, CD2-
associated protein (CD2AP), synaptopodin and the heat-sensitive SV40

transgene, and (b) insulin signalling proteins IRβ, IRS-1 and IRS-2,
normalised to β-actin levels, under conditions of proliferation (33°C)
and differentiation (37°C). *p < 0.05, **p < 0.01, unpaired t test, n = 3
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for around 2000 cells per condition, per experiment. Additional
details can be found in ESM Methods.

Statistical analysis Data are presented as means ± SEM un-
less otherwise stated. Statistical analysis was performed using
GraphPad Prism (GraphPad Software, La Jolla, CA, USA).
Statistical significance was calculated with one-way ANOVA
with Tukey’s multiple comparison post hoc analysis, or un-
paired two-tailed t tests and taken as p < 0.05.

Results

Culturing insulin-sensitive podocytes in a diabetic envi-
ronment induces cellular insulin resistance Studying condi-
tionally immortalised mouse podocytes [22], we initially demon-
strated that, under basal conditions, these cells express key
podocyte proteins and components of the insulin signalling cas-
cade, which increase following podocyte differentiation (Fig. 1).

To determine whether these podocytes become insulin re-
sistant following exposure to a diabetic environment in vitro,

0

1

2

3

4

5 *
*

Insulin
stimulation

p-
p4

4/
42

 M
A

P
K

de
ns

ito
m

et
ry

 (
fo

ld
 v

s 
ba

sa
l)

0

1

2

3

4

pM
E

K
1/

2 
de

ns
ito

m
et

ry
(f

ol
d 

vs
 b

as
al

)

- O D - O D
0

10

20

30
*** ***

***

-pA
kt

 T
30

8 
de

ns
ito

m
et

ry
(f

ol
d 

vs
 b

as
al

)

0

5

10

15

20 ***
***

***

++ +- -

- O D - O D
- ++ +- -

- O D - O D
- ++ +- -

- O D - O D
- ++ +- - Insulin

stimulation

pA
kt

 S
47

3 
de

ns
ito

m
et

ry
(f

ol
d 

vs
 b

as
al

)

- O D

0.5

1.0

1.5

*** ***

IR
β 

de
ns

ito
m

et
ry

(f
ol

d 
vs

 c
on

tr
ol

)

- O D

- O D- O D

0.5

1.0

1.5

** **

IR
S

-1
 d

en
si

to
m

et
ry

(f
ol

d 
vs

 c
on

tr
ol

)

IR
S

-2
 d

en
si

to
m

et
ry

(f
ol

d 
vs

 c
on

tr
ol

)
IG

F
-I

R
β 

de
ns

ito
m

et
ry

(f
ol

d 
vs

 c
on

tr
ol

)b

IRS-2

IRS-1

IRβ

- O D

β-Actin

IGF-IRβ

c

WT db/db

IRβ

Nephrin

β-Actin

WT db/db
0

0.5

1.0

1.5

2.0

2.5

*

e

a

- - D D

0.5

0

0

0

0.5

1.0

1.5

0.5

1.0

1.5

0

0

1.0

1.5

2.0

+ +-- Insulin stimulation

**
*

NS

G
lu

co
se

 u
pt

ak
e

(d
pm

 fo
ld

 v
s 

co
nt

ro
l)

Total Akt

p-p44/42 MAPK

pAkt T308

pAkt S473

pMEK1/2

O D O D

β-Actin

-

- -

- - + + + Insulin stimulation

Total p44/42
MAPK

Total MEK1/2

d

8 weeks 12 weeks
0

1

2

3

4

5

IR
β 

no
rm

al
is

ed
 to

 β
-a

ct
in

IR
β 

no
rm

al
is

ed
 to

 β
-a

ct
in

Fig. 2 Loss of IRs in diabetic mouse podocytes in vitro and in glomeruli
from db/db mice. WT mouse podocytes were treated for 10 days with
1 ng/ml TNF-α, 1 ng/ml IL-6, 100 nmol/l insulin and 25 mmol/l glucose
(labelled Diabetic, D), prior to insulin stimulation (100 nmol/l). (a) dpm
counts representing cellular uptake of [3H]2-deoxy-D-glucose following
exposure of podocytes to the diabetic factors (D); n = 4. (b)
Representative western blots and densitometry of IRS-1, IRβ, IRS-2
and IGF-IRβ protein following exposure of podocytes to the diabetic
factors (D), or with mannitol (in parallel with insulin and inflammatory

cytokines) included in place of glucose as an osmotic control (O); n = 4.
(c) Representative western blots and densitometry of insulin-stimulated
phosphorylation of Akt (T308, S473), mitogen-activated ERK-activating
kinase (MEK1/2) and p44/42 MAPK (Thr202/Tyr204); n = 3. (d) IR
protein in glomeruli isolated from db/db mice at 8 (n = 4, two males
and two females) and 12 weeks (n = 5, three males and two females) of
age. (e) IRβ protein in podocyte cultures isolated from 3-month-old db/db
mice and WT littermate controls; n = 6. *p < 0.05, **p < 0.001,
***p < 0.001, one-way ANOVA, Tukey’s multiple comparison
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cells were exposed to common factors associated with insulin
resistance—inflammatory cytokines TNF-α and IL-6, high
glucose and high insulin—for 10 days. Under these conditions,
a significant reduction in insulin-stimulated glucose uptake
was observed (Fig. 2a) and, interestingly, a significant reduc-
tion in podocyte IR and IRS-1 protein, although IGF-IR and
IRS-2 were unchanged (Fig. 2b). These diabetic podocytes
also showed a significant reduction in the insulin-stimulated
phosphorylation of Akt (S473, T308) and p44/42 mitogen-
activated protein kinase (MAPK) (Thr202/Tyr204) (Fig. 2c).

We have recently shown that db/db mice on a DBA2/J
background develop albuminuric renal disease in correlation
with the level of systemic insulin resistance [21]. Glomeruli
isolated from these mice demonstrated a trend towards a re-
duction in IR levels between 8 and 12 weeks of age (as dia-
betes and albuminuria progresses) (Fig. 2d). To determine
podocyte IR production in this model, we isolated podocytes
frommale db/dbmice and maleWT littermate control animals
at 12 weeks of age and generated conditionally immortalised
cell lines. Interestingly, podocytes isolated from db/db animals
had a significantly lower level of IR protein than podocytes
isolated from WT littermate control mice (Fig. 2e). Primary

podocytes isolated from db/db mice also showed reduced IR
production when compared with age- and sex-matched con-
trol mice (ESM Fig. 1).

Thus, factors associated with systemic insulin resistance
modulate podocyte IR levels, attenuating insulin-stimulated
phosphorylation cascades.

Chronic insulin exposure alone is responsible for podocyte
IR loss and is sufficient to attenuate podocyte insulin sig-
nalling We next determined whether any individual factors
were responsible for IR loss. Whereas chronic exposure to high
glucose or TNF-α and IL-6 in isolation had no significant effect
on podocyte IR levels (Fig. 3a, b), chronic exposure to insulin
alone caused a significant reduction in podocyte IR protein,
while IGF-IR, IRS-1 and IRS-2 were unchanged (Fig. 3c).

Consistent with reduced IR protein, we also found that
chronic insulin exposure was sufficient to attenuate insulin-
stimulated phosphorylation of IR/IGF-IRs (using a phospho-
specific antibody recognising both IR and IGF-IR) and Akt in
podocytes. This was accompanied by a reduction in insulin-
stimulated glucose uptake (Fig. 4).
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As podocyte IRS-1 was decreased in diabetic conditions
(Fig. 2), we also examined the factors influencing IRS-1
levels. In contrast to the IR, chronic exposure to elevated
glucose concentrations alone caused a significant reduction

in podocyte IRS-1, as opposed to chronic insulin or inflam-
matory cytokine exposure (Fig. 5a). There was, however, no
significant attenuation in insulin-stimulated phosphorylation
cascades or glucose uptake under these conditions (Fig. 5b–d).
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of IRS-1 loss in podocytes.
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**p < 0.01, ***p < 0.001; no
significant difference between
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groups, one-way ANOVA,
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Increased IR degradation is responsible for insulin-
induced IR loss in podocytes To elucidate the mechanisms
underlying IR loss in diabetic podocytes, we initially investi-
gated whether insulin had any effect on IR transcription.
Although insulin-induced inhibition of IR (also known as
INSR) mRNA has been reported in other cell systems [26,
27], chronic insulin had no significant effect on mouse
podocyte Ir mRNA levels (Fig. 6a, b).

The IR also exists as two isoforms as a consequence of
the differential splicing of exon 11 [32], and the relative
abundance of IR-A/B has been linked to hyperinsulinaemia
[33]. As podocytes produce both IR isoforms [34], we
quantified the relative abundance of Ir-A/B mRNA in
podocytes using isoform-specific primers [35]. Although
a significantly higher proportion of Ir-A mRNA (than that
encoding Ir-B) was observed in podocytes, there was no
significant effect of chronic insulin exposure on the rela-
tive abundance of either isoform (Fig. 6c–f).

The role of post-translational degradation on insulin-
induced IR loss in podocytes was next examined. Consistent
with the above results, chronic insulin stimulation caused a
significant reduction in the levels of IR protein. Inhibition of
lysosomal degradation in podocytes with bafilomycin (con-
firmed by a significant increase in p62, a protein typically

degraded via autophagy and lysosomal pathways [36]) re-
duced this insulin-induced IR loss (Fig. 7a).

Inhibition of proteasomal degradation in podocytes by an
8 h incubation with the 26S proteasome inhibitor MG132
(confirmed by an increase in ubiquitinated proteins) also de-
layed insulin-induced IR loss (Fig. 7b). In addition, we found
evidence of IR ubiquitination. A small increase in
ubiquitination was observed in IRβ immunoprecipitates where
mouse podocytes were treated with both insulin and MG132.
In mouse podocytes overproducing IR, we observed strong
ubiquitin signals, confirming these results (ESM Fig. 2).

We saw no additional effect where proteasome and lyso-
some inhibitors were used in combination (Fig. 7c).

Asmechanistic target of rapamycin (mTOR) is activated by
insulin signalling [37], and may also regulate autophagy [38],
we also investigated whether mTOR signalling had any in-
volvement in insulin-induced insulin resistance in podocytes.
Inhibition of mTOR with rapamycin had no significant effect
on IR levels (Fig. 7d).

Restoring insulin signalling in insulin-resistant human
podocytes requires stable expression of both IR and
nephrin Human podocytes used in previous studies [15, 39,
40] have become ‘naturally’ insulin resistant as a consequence
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of continuous and historical cell culture conditions, whereby
cell culture media were supplemented with insulin at concen-
trations in excess of 200 nmol/l [24]. To determine whether IR
loss was a primary cause of insulin resistance in these cells,
human podocytes (WT) were stably transfected with the hu-
man IR using lentivirus (WT-IR podocytes).

In contrast toWT podocytes, there was a significant increase
in phosphorylation of Akt following insulin stimulation of WT-
IR podocytes (Fig. 8a). However, there was no significant in-
crease in the glucose uptake response in either cell line (Fig. 8b).

As we have previously demonstrated that nephrin is
necessary for insulin-stimulated glucose uptake in
podocytes [39, 40], and nephrin loss is also evident in
diabetic environments [41–43], the effect of stable nephrin
overproduction in insulin-resistant human podocytes was
investigated. As shown in Fig. 8d, podocytes stably pro-
ducing both IR and nephrin (WT-IR-Neph) retained their
insulin-stimulated phosphorylation of Akt. In addition, a
significant increase in glucose uptake into WT-IR-Neph
podocytes was observed (Fig. 8e). Overproduction of
nephrin alone did not rescue insulin-stimulated Akt phos-
phorylation or glucose uptake (Fig. 8d, f).

As nephrin has a key role in regulating the podocyte actin
cytoskeleton [44], and the insulin-stimulated trafficking of glu-
cose transporters (in GLUT storage vesicles) to the plasma
membrane relies on the actin cytoskeleton [45], we
hypothesised that the requirement of nephrin for glucose up-
take in podocytes might also be related to actin modulation. As
such, we next investigated insulin-stimulated actin
reorganisation in these cells, using automated microscopy and
image analysis. Cells positive for actin remodelling were de-
fined as those with a loss of defined (central) F-actin structures,
as this is generally considered to indicate reorganisation [46].

Representative images of podocytes stimulated with
100 nmol/l of insulin for 10 min are presented in Fig. 9a,
which were quantified using an IN Cell Analyzer. In WT-IR-
Neph podocytes, insulin caused a rapid dose-dependent in-
crease in F-actin remodelling (Fig. 9b). In contrast, insulin
stimulation had no effect on actin reorganisation in WT cells
orWTcells producing nephrin (WT-Neph), and only a modest
effect in WT-IR podocytes (Fig. 9c, e). We also found that the
actin remodelling observed in WT-IR-Neph podocytes was
completely blocked when these cells were exposed to a dia-
betic environment (Fig. 9d, e).
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Discussion

Hyperinsulinaemia is a major metabolic abnormality associa-
ted with systemic insulin resistance [47]. In addition to the
association between insulin resistance and albuminuria
[4–6], hyperinsulinaemia per se is related to albuminuria in
type 2 diabetes [48] and in type 1 diabetes, where nephropathy
is associated with higher therapeutic doses of insulin [49].

At a cellular level, hyperinsulinaemiamay exacerbate insulin
resistance, disrupting insulin action at several points within the
signalling cascade, in a cell-specific manner [50]. At the level of

the IR, chronic insulin stimulation can promote receptor down-
regulation in classically insulin-responsive tissues such as ske-
letal muscle and liver [26–28], as well as other cell types includ-
ing pancreatic alpha cells [25] and cultured neurones [29, 30].

The present study demonstrates, for the first time, that
the glomerular podocyte is also subject to insulin-induced
IR degradation, resulting in an attenuation of insulin sig-
nalling responses. Given that we [16] and others [17] have
shown the podocyte-specific knockdown of the IR in-
duces albuminuria and glomerular disease, it is reasonable
to predict that this insulin-induced IR loss could further
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Fig. 8 Stable IR and nephrin
expression rescues insulin
signalling in insulin-resistant
human podocytes. Human (WT)
podocytes were stably transfected
with lentiviral particles containing
human IR (WT-IR), human
nephrin (WT-Neph) or both (WT-
IR-Neph), and insulin responses
were investigated. (a)
Representative western blots and
matched densitometry
demonstrating increased
phosphorylation of Akt (S473,
T308) in WT-IR podocytes.
*p < 0.05, **p < 0.01,
***p < 0.001, one-way ANOVA,
Tukey’s multiple comparison;
n = 4. Insulin-stimulated glucose
uptake experiments showed no
significant increase in this
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WT-IR podocytes. (d)
Representative western blots
demonstrating stable expression
of nephrin and IR in appropriate
cell lines, and insulin-stimulated
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WT-Neph cells have no
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contribute to renal disease in settings of diabetes and in-
sulin resistance.

Mechanistically, we demonstrated that insulin-induced IR
degradation occurs via a proteasome-dependent and
bafilomycin-sensitive pathway. In contrast to studies per-
formed in other cell systems [26, 27], we found that chronic
insulin stimulation of podocytes had no significant effect on

IR mRNA. We did, however, demonstrate that the relative
abundance of IR-A mRNA is greater than that of IR-B in
podocytes. As IR-A is the isoform thought to be responsible
for IR-mediated IGF-II signalling, this may be of relevance in
IGF-II signalling to this cell [32, 51].

Although we found that the insulin-induced degradation of
IRS-1 [29] and IRS-2 [52] observed in other cell systems does
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not occur in podocytes, in agreement with previous studies
performed in a rat model of streptozotocin-induced diabetes
and glomerular endothelial cells [53], we detected a reduction
in podocyte IRS-1 content as a consequence of high glucose
exposure. Our finding that there was no significant reduction
in the insulin-stimulated phosphorylation of Akt or glucose
uptake under these conditions is in line with our recent studies
suggesting that IRS-2, as opposed to IRS-1, is the principal
isoform facilitating podocyte insulin signal transduction to
stimulate Akt phosphorylation and glucose uptake [54].
However, this does not eliminate the possibility that IRS-1
could mediate other insulin responses in podocytes, or selec-
tively modulate individual Akt isoforms.

We also demonstrate that while initial insulin signalling
events leading to Akt phosphorylation in podocytes do not
require nephrin, the stable expression of both IR and nephrin
is necessary to mediate insulin-stimulated glucose transport
downstream of Akt. Interestingly, it is well documented that
nephrin production is also lost early in human diabetic ne-
phropathy [43] and experimental models of diabetes [41, 42].

We hypothesised, given the importance of actin regulation
in the insulin-stimulated glucose uptake response [45], that the
requirement for nephrin in glucose uptake might also be
linked to the role of nephrin in modulating the podocyte actin
cytoskeleton [44], a process that is closely related to podocyte

function at the filtration barrier. As such, we investigated how
insulin-stimulated actin remodelling was affected in our mod-
el systems, and found that podocytes with stable over expres-
sion of both nephrin and IR were more responsive to insulin in
terms of F-actin remodelling, compared with podocytes over-
expressing IR alone.

Others have shown nephrin may also interact with the IR
[34], investigating whether nephrin also affects localisation of
IR, or indeed IR binding to downstream targets, may be of
interest. Whether this may also be linked to the ability of
nephrin to preferentially phosphorylate selective Akt isoforms
remains to be investigated, as Akt2 has been suggested to
differentially modulate the podocyte actin cytoskeleton in
comparison to Akt1 [55]. In addition, we found that the actin
remodelling downstream of insulin was blocked following
exposure of these podocytes to a diabetic environment, sug-
gesting that these cells may still become insulin resistant follo-
wing further challenge with a diabetic environment.

Aside from enhancing cellular glucose uptake and promot-
ing the reorganisation of F-actin structures, podocyte IR sig-
nalling has the capacity to regulate vascular endothelial
growth factor (VEGF)-A production [56], cell viability [20],
reactive oxygen species (ROS) production and autophagy
[57], all of which are key in maintaining glomerular filtration
and are dysregulated in diabetes. Recently, the importance of

Hyperinsulinaemia

Direct modulation 
of podocyte IR

IR
recycling

IR
endocytosis

Early
endosome

MG132

Proteasome

IR
degradation

Late
endosome

Lysosome/
endosome

hybrid

Lysosome

Bafilomycin
F-actin

GSVs

VA
M

P2

Nck

Nephrin

GLUT4

Disrupted ER stress and UPR
Reduced viability

Decreased glucose uptake
Changes in VEGF secretion

Disrupted autophagy
Changes in ROS 

Implications for podocyte 
biology

Normal insulin stimulation

IRS-1/2

Akt

P

P

P P

mTOR
P

IR/nephrin 
interaction

P

αα

ββ

αα

ββ

αα

ββ α
α β

β

αα

ββ
α α

β
β

Fig. 10 Proposed mechanism of podocyte IR degradation and its conse-
quences. Normal insulin signalling to podocytes leads to phosphorylation
of IRS proteins, predominantly IRS-2 [54], and activation of downstream
signalling events, including the phosphorylation of Akt and mTOR.
Nephrin is also required for insulin-stimulated glucose uptake (in part
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VEGF-A secretion [56], ROS production [57], autophagy [57], cell via-
bility [20] and actin remodelling, and reducing glucose uptake. ER, en-
doplasmic reticulum; GSV, GLUTstorage vesicle; UPR, unfolded protein
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IR signalling in the adaptation of podocytes to endoplasmic
reticulum stress and the unfolded protein response in diabetes
has further highlighted the physiological importance of this
pathway in disease responses [17]. A further study has also
linked podocyte IR signalling to mitochondrial function,
which may be related to the modulation of mTOR signalling
[58], which is also crucial in the maintenance of podocytes in
health and disease.

As insulin has the capacity to modulate a number of factors
vital in podocyte function, we propose that hyperinsulinaemia,
via a direct regulation of podocyte IR levels, may directly
influence podocyte biology and, subsequently, glomerular
function, as depicted in Fig. 10.

In summary, this study demonstrates that podocytes ex-
posed to a diabetic environment become insulin resistant.
This response is, at least in part, mediated by chronic exposure
to elevated insulin levels promoting podocyte IR degradation.
Moreover, we demonstrated that the expression of both IR and
nephrin is required for full podocyte insulin sensitivity. Thus,
hyperinsulinaemia may further accentuate the progression of
renal disease in states of insulin resistance, including diabetic
nephropathy, and the maintenance of podocyte nephrin and IR
expression and function in these settings may be therapeuti-
cally beneficial.
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