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Prior knowledge promotes hippocampal separation
but cortical assimilation in the left inferior frontal

gyrus

Oded Bein® !, Niv Reggev® 2 & Anat Maril>4™

An adaptive memory system rarely learns information tabula rasa, but rather builds on prior
knowledge to facilitate learning. How prior knowledge influences the neural representation of
novel associations remains unknown. Here, participants associated pairs of faces in two
conditions: a famous, highly familiar face with a novel face or two novel faces while under-
going fMRI. We examine multivoxel activity patterns corresponding to individual faces before
and after learning. The activity patterns representing members of famous-novel pairs
becomes separated in the hippocampus, that is, more distinct from one another through
learning, in striking contrast to paired novel faces that become similar. In the left inferior
frontal gyrus, however, prior knowledge leads to integration, and in a specific direction: the
representation of the novel face becomes similar to that of the famous face after learning,
suggesting assimilation of new into old memories. We propose that hippocampal separation
might resolve interference between existing and newly learned information, allowing cortical
assimilation. Thus, associative learning with versus without prior knowledge relies on radi-
cally different computations.
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ARTICLE

hen Madonna releases a new album or starts dating a

new person, one cannot avoid the deluge of ads and

media posts, and so novel information is added to our
knowledge about Madonna. How do we form such new associa-
tions? How is learning different when the person is less familiar to
us? To be adaptive, learning cannot start de novo each time we
form a new association. Rather, we cast our already-existing
knowledge to facilitate new learning!~. Indeed, robust behavioral
findings demonstrate that prior knowledge facilitates memory of
novel associations>4>?-11, For example, it is easier to learn that a
highly familiar person, such as Madonna, has a new lover than to
learn that two unfamiliar people have become loversh®1213,
However, while existing memory representations can serve as
scaffolding for the assimilation of new information!l14-19,
they can also at the same time produce interference, as multiple
existing associations may render the acquisition of new memories
more difficult320-22, In the case of Madonna dating a new
person, our previous associated memories—e.g., knowledge about
Madonna’s previous lovers—might potentially come to mind and
interfere with learning the novel association. In the face of this
conundrum, the question arises: when forming a new memory,
how do we successfully utilize prior knowledge while also pro-
tecting against interference?

One possibility is a division of labor, such that prior knowledge
biases the cortical memory system toward assimilation of novel
information!®, while shifting hippocampal processes to resolve
interference?3. Across rodents and humans, studies demonstrate
that during new learning, prior knowledge enhances cortical
activation and cortico—cortical functional connectivity, while also
modulating hippocampal activation and functional connectivity
with the cortex!1:18:19:24-34 (for reviews, see refs. 16:35:36)  Criti-
cally, however, univariate activation and functional connectivity
studies cannot address how prior knowledge modulates the
neural representation of novel associations in these memory
systems. As such, in this study, we asked whether the cortical
system might support the beneficial effects of prior knowledge on
novel learning through assimilation, while the hippocampus
defends against potential interference from the same knowledge.

Theoretical frameworks propose that hippocampal processes
mitigate interference between novel and existing memories?3.
Indeed, univariate activation in the hippocampus during learning
of a novel association reduces forgetting of a previously learned,
related association3”. But how does the hippocampus resolve
interference between competing memories? Research in humans
and rodents has shown that the hippocampus separates over-
lapping memories by allocating a distinct activity pattern to each
in a process known as pattern separation®8-42 (for a potential role
of the hippocampus in pattern completion, namely, the recovery
of a complete activation pattern from a partial cue, see Discus-
sion). Pattern separation processes could potentially mitigate
proactive interference from existing associations when a novel
association is added to a previously known item. If so, we would
expect that learning about Madonna’s new friend would cause the
representations of Madonna and her friend to become more
distinct.

While prior knowledge might bias the hippocampus toward
pattern separation, it might also lead to assimilation of novel
information in cortical regions!73¢. As noted above, prior
knowledge increases univariate activation and cortico-cortical
interactions!132:33:43.44  lending some support to cortical invol-
vement in prior knowledge influences on learning. However, it
remains unclear how assimilation occurs at the level of neural
representation. If new information is indeed woven into an
existing cortical representation!4-16, we propose that when sup-
ported by prior knowledge, the learning of novel associations
leads to asymmetric cortical effects. To illustrate, since a cortical

representation of Madonna has been stabilized over a lifetime of
exposure, it might only change slightly to incorporate the novel
association with her friend. The representation of the friend,
however, will undergo a disproportionately larger transformation
during learning, in order to be assimilated into our existing
representation of Madonna.

Of a cohort of cortical regions that are involved in prior
knowledge influences on new learning!®, noteworthy are the left
inferior frontal gyrus (left IFG), the angular gyrus (AG), and the
medial-prefrontal cortex (mPFC). We propose that the left IFG
may be a good candidate to mediate the assimilation of novel
information. Univariate activation in the left IFG has been con-
sistently shown to promote memory of new information that is
related to existing semantic knowledge3343:44, The left IFG is also
known to be involved in semantic processing more broadly*>—48,
The AG and mPFC have also been proposed to reinstate sche-
matic knowledge and mediate prior knowledge influences on
encoding, and thus might also be cortical sites for assimilation
(for reviews, see refs. 16:36),

To test these ideas, we had human participants learn associa-
tions between different pairs of faces. One type of pair comprised
a famous and a novel face, whereas the other type of pair com-
prised two novel faces. Critically, we presented each face alone
both before and after associative learning*®->1. Using a repre-
sentational similarity analysis®>>3 (RSA), we assess how the
multivoxel-pattern representations of individual faces change as a
function of learning, and of whether or not they included an
association with a famous face, that is, whether or not the pair
contained an element of prior knowledge. A final associative
memory test is used to determine whether learning-related
representational changes contribute to subsequent memory. We
show that prior knowledge differentially modulates associative
learning in the hippocampus versus the cortex. Namely, prior
knowledge leads to representational separation in the hippo-
campus, but assimilation in the cortex. Together, these findings
suggest a candidate mechanism for assimilating new information
into existing knowledge structures while reducing memory
interference.

Results

During the associative learning task, participants repeatedly
observed two types of face pairs: either a famous and a novel face
(prior knowledge, PK) or two novel faces (no prior knowledge, n-
PK). Before and after learning, each face was presented alone on
the screen to enable the capture of its multivoxel-pattern repre-
sentation (Methods, Fig. 1). In both tasks, participants performed
orthogonal gender judgments about the faces. Accuracy during
learning and during the pre- and post-learning scans was above
96%, demonstrating that participants complied with task
instructions (see Supplementary Fig. 1 and Supplementary Note 1
for further details).

Associative memory test. After the post-learning scan, partici-
pants were tested for associative memory for all face pairs in a
three-alternative forced choice task. Accuracy rates for both types
of face pairs (PK, n-PK) were significantly above chance (33%;
PK: M = 0.46, SD = 0.18, t(14) = 2.89, P = 0.01, Cohen’s d = 0.66;
n-PK: M =0.44, SD = 0.14, t(15) = 3.24, P =0.005; Cohen’s d =
0.74). Overall accuracy rates did not reliably differ between pair
types (t1s) = 0.41, P = 0.69). Importantly, participants had more
high-confident hits (“sure” and “possibly” responses, excluding
“maybe” responses) for PK pairs compared to n-PK pairs
(PK: M=0.35, SD=0.18, n-PK: M =0.23, SD =0.15, t44 =
2.88, P=0.01, Cohen’s d =0.66; Fig. 1d). Thus, our results are
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Fig. 1 Design and behavior. a Experimental conditions: participants learned
pairs of faces, either a famous and a novel face in the prior-knowledge
condition (PK), or two novel faces in the no-prior-knowledge condition (n-
PK). b While in the scanner, participants viewed the pairs 12 times in 12
cycles; each cycle included all pairs in a random order. Before and after
associative learning, participants in the scanner also viewed each face
presented alone, in random order. This allowed us to capture the multivoxel
activity pattern of each face, for pattern similarity analysis (see Methods).
¢ After the post-learning scan, participants performed an associative
memory test, in which they indicated which of the three bottom faces
appeared with the face on the top and rated their confidence (sure/
possibly/maybe). d Behavioral results of the associative memory test. High-
confidence hits include “sure” and “possibly” responses. **P = 0.01, the
results of a paired-sample two-tailed t test between PK and n-PK pair type.
Data are presented as mean values, error bars reflect +/— SEM. To protect
copyrights, all faces in the figures are of novel faces, and we obtained
permission to use these photos. Participants in the study saw famous and
novel faces, as detailed in Methods.

consistent with previous findings showing that prior knowledge
enhances new learning?®12.13.32,

Hippocampus: Prior knowledge leads to representational
separation. We tested whether the hippocampal representations
of two associated items become more distinct when learning
involved prior knowledge. This is in contrast to novel items that
do not involve prior knowledge. In this case, a prior study using
novel visual fractals has shown that after learning, the hippo-
campal representations of paired fractals became more similar to
each other®0. Due to the known role of the hippocampus in
supporting associative memory (e.g., refs. *4->7), we predicted
that representational changes would be specific to remembered
face pairs. To that end, we examined how learning altered the

similarity between the multivoxel BOLD activity patterns of items
in a pair by computing the change in similarity from before to
after learning. We then compared learning-related changes in
similarity between members of PK and n-PK pairs, and depen-
dent on whether the association between faces was later
remembered (high-confidence hits) or forgotten in the final
associative memory test (Fig. 2a).

Similarity differences were submitted to a 2 (prior knowledge:
PK, n-PK) by 2 (memory: remembered—high-confidence hits
only, forgotten) repeated-measure ANOVA. As shown in Fig. 2,
there was a significant interaction between prior knowledge and
memory in the left anterior hippocampus (F(; 17y =10.12, P=
0.0055, n,2 = 0.37; survives Bonferroni correction for four regions
of interest (ROIs), namely, left/right hemisphere by anterior/
posterior hippocampus, P <0.0125). This interaction stemmed
from face representations in PK pairs becoming more distinct
(less similar) from one another after learning, in contrast to
representations in n-PK pairs, which became more similar to each
other after learning (remembered, PK vs. n-PK: t1;) =2.98, P=
0.008, CI: [—0.24-(—0.04)], Cohen’s d=10.70). Interestingly,
similarity changes only occurred for pairs that were later
remembered (significant for PK pairs, remembered vs. forgotten:
taz) =248, P=002, CI: [—0.14-(—0.01)], Cohen’s d=0.58;
approaching significance for n-PK pairs, remembered vs.
forgotten: t;7y=1.92, P=0.07, CI: [-0.008-0.17], Cohen’s d =
0.45). Neither significant interactions nor main effects were
observed elsewhere in the hippocampus. The data from the other
hippocampal ROIs are reported in Supplementary Fig. 5 and
Supplementary Note 8.

While this study is suitable to examine the differences from
before to after learning®®>!, we did not aim to specifically look at
each of the pre-learning or post-learning phases separately, as
these similarity values might be tainted by several factors like
correlations between the regressors in the general linear model
(GLM) used to analyze fMRI data®®>°. Notably, since the scans
before and after learning scans were identical, subtracting
similarity values and looking at the differences, as was done in
previous studies, solves these issues (see Methods and refs. 49-1),
Nevertheless, to facilitate future research, we examined these
values, and we note these results here and in full in
Supplementary Note 5. As expected, we found that for
remembered pairs, similarity values after learning were qualita-
tively lower in PK pairs compared to n-PK pairs. We additionally
found that before learning, similarity values for remembered PK
pairs were qualitatively higher than those of the remembered n-
PK pairs, suggesting that prior knowledge might influence the
preconditions that render associative learning successful and lead
to subsequent memory of associations (see Supplementary
Note 5). Future research, using a suitable design that enables a
careful examination of the before and after learning values
separately, potentially a slow event-related design, or other
imaging techniques, could better elucidate these results.

For robustness, and to further ensure that the reported effects
in the left anterior hippocampus were specific to pairs that were
learned together, rather than a general effect of observing faces
with prior knowledge versus without prior knowledge, we
compared remembered pairs to shuffled pairs (items from the
same PK/n-PK pair type that did not appear together at learning,
see Methods). As above, we looked at the difference in similarity
from before to after learning. Once again, remembered PK pairs
were significantly less similar to each other than were PK-shuffled
pairs (f;7)=3.05, P=10.007, CI: [—0.10-(—0.02)], Cohen’s d =
0.72; PK-shuffled: M = —0.004, SD = 0.04). Remembered n-PK
pairs were more similar than n-PK-shuffled pairs (n-PK: ¢, =
2.09, P =0.052, CI: [0.00-0.16], Cohen’s d = 0.49; n-PK-shuffled:
M = —0.001, SD =0.015). Thus, in the n-PK condition, our
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Fig. 2 Representational changes in the hippocampus are modulated by prior knowledge and mediate memory. a Pairs were grouped based on memory
in the later associative memory test (remembered pairs include high-confidence hits), and prior knowledge (PK/no prior knowledge, n-PK). The multivoxel
activity patterns of items in each pair were correlated before and after learning, and the pre- to post-learning difference in correlation values (Fisher-
transformed) was calculated. b The results from the left anterior hippocampus. Similarity after learning was lower between members of PK pairs, in
contrast to an increase in similarity in n-PK pairs. Similarity differences were specific to remembered pairs. A Similarity: difference in similarity values from
before to after learning. N =18. Data in the bar graphs are presented as mean values, error bars reflect +/— SEM. ® Interaction of pair type (PK/n-PK) by
memory (remembered/forgotten) in a repeated- measure ANOVA: P=0.0055. **P=0.008, *P =0.02, ~P =0.07, the results of a paired-sample two-
tailed t test between pairs of conditions, as depicted by the black lines. ¢ Dots reflect individual participants’ A Similarity reduction due to prior knowledge
(PK-remembered pairs minus n-PK-remembered pairs). To protect copyrights, all faces in the figures are of novel faces, and we obtained permission to use
these photos. Participants in the study saw famous and novel faces, as detailed in the Methods.
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Fig. 3 Functional connectivity with the left anterior hippocampus. Regions
demonstrating significantly higher functional connectivity (PPI) with the left
anterior hippocampus for prior-knowledge (PK) pairs compared to no-prior-
knowledge (n-PK) pairs during associative learning (see also
Supplementary Table 1). N=19.

results are consistent with previous research demonstrating
increased similarity for novel pairs of items®0. Critically, our
results show the opposite pattern when novel information
becomes associated with prior knowledge due to learning—in
this case, the items’ representations became more separated.

Prior knowledge enhances hippocampal-cortical functional
connectivity. If semantic knowledge is represented in the
cortex!647:60 and hippocampal processes resolve interference
between this knowledge and new learning, we reasoned that there
should be higher hippocampal-cortical functional connectivity
during learning in PK pairs compared to n-PK pairs. Such
crosstalk might reflect input of cortical information about the
famous faces to the hippocampus, or top-down control signaling

4

the need for interference resolution. To test this, we examined
functional connectivity between the left anterior hippocampus,
where multivoxel-pattern similarity differences were observed,
and the rest of the brain using a psychophysiological interaction
analysis®! (PPI). We compared all PK pairs to n-PK pairs during
the associative learning task. Consistent with our prediction, we
found a host of cortical regions that demonstrated higher func-
tional connectivity with the anterior hippocampus for PK com-
pared to n-PK pairs, including the left IFG, the AG, and the left
middle temporal gyrus (see Fig. 3 and Supplementary Table 1 for
detailed results). All of these regions are involved in the proces-
sing of famous faces, or more broadly in semantic
processing?7:60:6263 No significant differences in functional
connectivity were observed in the opposite n-PK > PK contrast.
These results show that prior knowledge enhances communica-
tion between cortical regions and the hippocampus during new
associative learning, consistent with our predictions.

We note that no mPFC clusters emerged in this analysis. While
not all prior knowledge studies report medial-prefrontal findings
(for a review, see ref. 1), a recent study did find slightly higher
hippocampus-mPFC connectivity when participants associated
pairs of famous faces and houses, as compared to novel faces and
houses32. Given the broad interest in hippocampus-mPFC
interactions>%4, and specifically in relation to prior
knowledge!6-252%36, we examined whether an mPFC cluster
would emerge using a more liberal threshold of P < 0.01, voxel
level. Indeed, a region showing higher connectivity in PK pairs
compared to n-PK pairs emerged in the ventral and anterior part
of the mPFC ([2, 52, —24], 163 voxels). The opposite contrast of
n-PK>PK did not reveal any mPFC cluster at this statistical
threshold.

Left IFG: new information is assimilated into cortical knowl-
edge structures. Next, we tested whether prior knowledge led to
assimilation in the cortex!7-19:36:65 Specifically, we asked whether
cortical representations showed evidence of asymmetric updating,
in which the representation of a novel face after learning became
more similar to the original (pre-learning) representation of the
famous face it was associated with. This could indicate that the
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Fig. 4 Asymmetric similarity changes in the left inferior frontal gyrus (left IFG). a Asymmetry in learning reflects the extent to which the representation
of the B face after learning became more similar to that of the A face before learning than the representation of the A face that became similar to that of the
B face (By). In accordance, the multivoxel activity pattern of the B face post learning (Bp,s) was correlated with the pattern of the A face pre-learning
(Apre), and the pattern of the A face post learning (A,ost) Was correlated with the pattern of the B- face pre-learning (By.). Then, the latter similarity value
was subtracted from the former as shown above, to reflect the extent to which the B face became more similar to the A face than the A face became to the
B face. We interpreted asymmetry as assimilation of the B face into the representation of the A face. b Asymmetry was observed in the left IFG in the prior
knowledge (PK) pair type for paired faces only, but not in the no-prior-knowledge (n-PK) pair type. N =19. Data in the bar graphs are presented as mean
values, error bars reflect +/— SEM. **P = 0.01, results of a one-sample two-tailed t test against zero. ***P =.002, results of a paired-sample two-tailed t
test between PK-paired and PK-shuffled pairs, as depicted by the black lines. € Dots reflect individual participants' PK asymmetry difference (PK-paired vs.
PK-shuffled). To protect copyrights, all faces in the figures are of novel faces, and we obtained permission to use these photos. Participants in the study saw

famous and novel faces, as detailed in Methods.

representation of the novel face was woven into the representa-
tion of the famous face (see Introduction and Methods). To the
extent that assimilation co-occurs with, or even depends on,
hippocampal interference resolution, we reasoned that this should
be observed in regions that communicated with the hippocampus
during learning. Thus, we chose an ROI that showed higher
functional connectivity with the anterior hippocampus for PK
than for n-PK pairs (functional connectivity analysis, Fig. 3). We
focused on the left IFG due to its roles in mediating the effects of
prior knowledge on new learning334344 (see Introduction).
Although we targeted asymmetric changes in the representa-
tional patterns from before to after learning, we first examined
whether any changes in representational similarity occurred
from before to after learning. To that end, we asked whether
there was evidence of learning-related similarity changes from
pre- to post learning in the left IFG. For each pair type (PK/n-
PK), we compared the change in representational similarity
between pairs of faces that appeared together during the
learning task to the shuffled-pair baseline (faces from the same
PK/n-PK pair type that did not appear together at learning, see
Methods). This comparison allowed us to specifically examine
changes due to associative learning, controlling for similarity
differences due to item familiarity or type of pair0. A repeated-
measure ANOVA with prior knowledge (PK/n-PK) and pairing
(paired/shuffled), revealing a main effect of Pairing (F(;,s) =
11.44, P=0.003, n,2=0.39), and no main effect of prior
knowledge or prior knowledge by pairing interaction (F's < 1.2,
p’s>0.29). Pairwise comparisons showed a highly significant
increase in similarity in PK pairs (PK: paired: M =0.03, SD =
0.04; shuffled: M = —0.01, SD =0.02; t3 = 4.1, P=0.0007,
CI: [0.018-0.058], Cohen’s d=0.94). N-PK-paired faces also
became qualitatively more similar compared to shuffled base-
line (paired: M =0.02, SD = 0.06; shuffled: M =0.00, SD =
0.02 fus=1.16, P=0.26, CL: [—.014-0.049]). Thus, we
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obtained greater increase in similarity specifically for paired
faces, but not for shuffled faces, indicating that there was a
change in similarity from before to after learning.

When comparing the representational similarity of items after
learning, we only get one measure of the magnitude of similarity
between the neural representations of faces in the pairs. It is thus
unclear whether similarity increase reflects changes in the
representations of both items, such that they both become more
similar to each other (symmetric changes), or in one item, which
becomes more similar to the other (asymmetric changes). To test
our main hypothesis regarding asymmetry in learning, we
reasoned that comparing the post-learning pattern of the novel
B face to the pre-learning pattern of its paired famous A face
would give us a pure measure of how much the representation of
the novel B face became more similar to the representation of the
famous A face during learning (we performed an identical
procedure for novel-novel n-PK pairs). Thus, we compared the
representational similarity between the B face after learning
(always novel) and the A face (famous or novel) before learning,
as well as the representational similarity between the A face after
learning and that of the B face before learning. We then
subtracted the latter from the former to get an asymmetry
measure: if both face representations became equally more similar
to one another, there would be no difference between these two
values. If, however, the B face after learning became more similar
to the A face before learning, while the A face did not become
more similar to the B face before learning, then we should observe
a positive value, indicating asymmetry®? (see Methods and Fig. 4).
Consistent with our prediction, positive and significant asym-
metry was observed only for PK pairs (compared to zero: t;5 =
2.71, P=10.01, CI: [0.006-0.046], Cohen’s d = 0.62, or compared
to asymmetry in the shuffled pairs: t4) =3.53, P=0.002, CI:
[0.014-0.054], Cohen’s d=0.81, Fig. 4). No asymmetry was
found for n-PK pairs (either relative to zero or to asymmetry in
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shuffled pairs, f(5)’s <0.25, p’s > 0.8). Interestingly, we also find
some preliminary evidence that asymmetry in the left IFG might
be correlated with hippocampal separation (Supplementary Fig. 2
and Supplementary Note 2).

Regarding memory, in the left IFG, the similarity differences
from pre- to post learning were not related to subsequent
memory in the current study, as no main effect or interaction was
obtained in the prior knowledge (PK/n-PK) by memory
(remembered/forgotten) ANOVA (all F's <246, p’s>0.13). The
asymmetry analysis for remembered and forgotten pairs is
reported in Supplementary Note 7.

We further examined whether asymmetry in learning was
observed in other cortical regions that demonstrated functional
connectivity with the left anterior hippocampus. We chose the
AG, since it was recently proposed to bind aspects of schematic
knowledge and mediate schema influences on encoding!6-26:66:67,
In the AG, we found no similarity differences from pre- to post
learning, with or without respect to subsequent memory
(ANOVAs of prior knowledge by paired/shuffled, or of prior
knowledge by memory, F’'s <2.08, P’s > 0.16). For completeness,
we have directly targeted asymmetry, which did not differ from
zero or from shuffled pairs in either PK or n-PK pairs (all £(;5)’s <
1.46, P’s > 0.16).

As an exploratory analysis, we have examined the other cortical
regions that demonstrated functional connectivity with the left
anterjor hippocampus. The data from these regions are reported
in Supplementary Fig. 6 and Supplementary Note 9. Interestingly,
even though some of the regions showed an overall increase in
similarity from before to after learning, no other region that we
examined has shown asymmetry in the direction of representa-
tional changes, as was observed in the left IFG.

Ruling out alternative explanations. We emphasize that our
results are unlikely to reflect some general response to famous
faces during the pre- or post-learning scans. First, we report the
difference between the pre- and post scans, and pattern similarity
was computed with famous faces in both. Second, critically, our
control comparisons in all of the similarity analyses were within
condition: shuffled pairs in the PK condition only included pairs
in the PK condition, and likewise for the n-PK condition.
Nevertheless, the results were specific to paired faces. Another
possibility is that the novel faces that were paired with famous
faces in PK pairs carry with them some unique status due to
becoming associated with famous faces, or that merely being
paired with famous faces led to some overall change in the
representation of these faces. However, again, any such status that
is unrelated to associative learning would have been observed in
the shuffled pairs as well. Regarding the hippocampal results,
pairs were separated to remembered versus forgotten associations
within each pair type, and our results were specific to the
remembered faces, alleviating the above concerns for the memory
analysis as well.

We further controlled for potential differences in univariate
activation during the pre- and post-learning scans®-70. As
mentioned above, differences in univariate responses between PK
and n-PK pairs, if they arose, should have influenced paired and
shuffled items alike. Nevertheless, we performed an additional
control analysis, in which we included the univariate activity
together with the factors of prior knowledge (PK/n-PK) and
pairing (and memory, where relevant) in a multiple linear
regression. All of the analyses reported here hold when
controlling for univariate activation (Supplementary Note 3).
Thus, our representational similarity effects are unlikely explained
by univariate activity.

Discussion

Here, we asked how new associations are represented in the
human brain, and how individual associations are different when
adding new to old memories versus learning thoroughly novel
associations. Decades of behavioral research have shown the
power of prior knowledge to facilitate new learning, such that
adding a novel piece of information to existing knowledge is
typically easier than thoroughly new learning!~%1271 In recent
years, research has shown that prior knowledge increases cortical
activation and functional connectivity, and modulates hippo-
campal activation and hippocampal-cortical functional con-
nectivity (for reviews, see refs. 1>16:3536) However, as previous
studies only looked at the strength of brain activation and lesions,
they could not address the neural representations of new asso-
ciations. Thus, the question of whether prior knowledge promotes
separation versus assimilation in different neural systems
remained unexplored to date.

Theoretically, prior knowledge could facilitate new learning
through multiple processes. Prior knowledge is thought to serve
as scaffolding for learning by providing an existing cortical
representation into which new information can be assimilated.
However, existing associations can also interfere with new
learning, causing difficulty to associate an item with novel
information (ie., fan effect®20-22), Thus, prior knowledge may
promote mechanisms aimed at mitigating interference, such as
hippocampal pattern separation. To address this possibility, we
examined how prior knowledge altered the neural representations
of newly learned associations between either a famous and a novel
face or two novel faces.

We found that prior knowledge led to greater separation of the
underlying neural representations in the hippocampus. Multi-
voxel activity patterns of members of famous-novel pairs became
less similar to each other after associative learning, whereas
representations of novel-novel face pairs became more similar to
each other after associative learning. Importantly, these learning-
dependent changes in similarity were specific to face pairs that
participants later remembered, and did not occur for forgotten
pairs. We note that the result in the novel-novel face pairs is
consistent with a previous study that found increased similarity in
the hippocampus after learning of pairs of novel visual fractals>.
Critically, this previous study did not address prior knowledge,
nor were the previous findings related to subsequent memory in
that study. In contrast to the hippocampus, prior knowledge led
to cortical assimilation, expressed in asymmetric representational
changes in the left IFG. Specifically, we found that the neural
representations of novel faces following learning became more
similar to the representations of their associated famous faces
before learning. Together, these findings show a flexible and
directional creation of associations in the human brain that is
specific to memory systems and is highly modulated by the state
of prior knowledge.

We found that associative learning processes in the hippo-
campus were highly dependent on prior knowledge. Consistent
with previous findings, the representations of novel pair members
became more similar to one another after associative learning
(ref. °9). In contrast, we found that famous—novel pair members
became more separated after learning. This increased separation
supports the idea of interference resolution, in line with previous
research on pattern separation (e.g., refs. 40-4272). Importantly,
separation mediated successful associative memory specifically
when prior knowledge was involved, and there was a need to
overcome interference from previous associations. Future
research can investigate precisely how previous associations
interfere with new learning, and how separation processes might
facilitate resolution of this interference.
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The exact manner by which prior knowledge drives the hip-
pocampus toward separation versus similarity, or integration,
is currently unknown. One possibility is that top-down control
signals in the prefrontal cortex shift hippocampal computations
toward separation. A wealth of research suggests that prefrontal-
hippocampal interactions mediate cognitive control processes
that select representations for encoding or retrieval from memory
(see, e.g., refs. 7374 for reviews). These control processes might
promote interference resolution by biasing hippocampal repre-
sentations’>~78, Supporting this possibility, we saw that prior
knowledge leads to greater hippocampal-prefrontal interactions
during learning and greater subsequent separation in hippo-
campal representations thereafter.

Another possibility is that differential neuromodulatory input
to the anterior hippocampus’®80 biases the hippocampus toward
separation versus similarity3!-83. Kafkas and Montaldi’® recently
proposed that different types of novelty, such as absolute or
contextual, are both detected in the anterior hippocampus, but
with different neurotransmitters mediating each type. In our
study, novel-novel pairs may evoke an absolute novelty signal,
because neither image has ever been seen before. In contrast, new
associations involving prior knowledge might promote a con-
textual novelty signal, because the novel face is novel in the
context of the highly familiar face. It has been proposed that
absolute novelty enhances acetylcholine input to the hippo-
campus, while contextual novelty involves the release of dopa-
mine and norepinephrine’®84-86 Different neurotransmitters
might further lead to separation versus similarity in the hippo-
campus (e.g., refs. 81:87-89) ag was observed here.

While we found neural signatures of both separation and
integration in the anterior hippocampus, it has recently been
proposed that these different computations may be localized to
the posterior versus anterior hippocampus, respectively?%91.
Following a previous recent study showing separation in the
anterior hippocampus®?, we interpret our findings within a fra-
mework embedding the hippocampus in a larger functional
network. Anatomically, the anterior hippocampus receives pre-
ferential input from the perirhinal cortex (via the entorhinal
cortex?374), The perirhinal cortex supports conceptual semantic
knowledge and is involved in the processing of items and their
features?>100, potentially as a part of a larger antero-temporal
network!0L, In this context, it is not surprising that in our study,
which involved associating items and incorporated semantic
knowledge, we found representational changes in the anterior
hippocampus. Our findings thus suggest that the anterior hip-
pocampus might mediate both separation and integration,
dependent on internal knowledge.

The type of prior knowledge involved in new learning could be
critical in shifting the hippocampus toward a separation versus an
integration mode. Using an associative inference paradigm, a
previous study showed that after an A-B pair was learned,
learning of an overlapping A-C pair resulted in greater pattern
similarity between the B and the C items in the anterior hippo-
campus®! (letters represent different items). Interestingly, this
was only true if A-B pairs were repeated multiple times prior to
learning the A-C pairs. If the learning of the A-C and A-B pairs
was interleaved, the anterior hippocampus showed separation.
Although they used merely visual associations, one can con-
ceptualize the A-B association as some prior knowledge to which
a novel A-C association is added. As one could also think about
the famous faces as have been learned over multiple repetitions
prior to our study, our separation finding might seem to diverge
from the previous results, showing similarity when A-B pairs
were repeatedly learned prior to the A-C learning. This might
point toward factors that bias hippocampal representations. For
example, the A-B pairs form a single association learned over

only a few repetitions, whereas the knowledge about the famous
faces that we used in this study is highly learned and involves a
rich network of strong associations. Thus, one or a few weaker
prior associations as in the case of the A-B pairs might not
interfere with new learning and result in similarity®!, while
multiple strong associations require interference resolution and
necessitate separation. However, it may also be the case that our
presentation was more similar to the interleaved learning in
Schlichting et al.>!, since we reactivated the prior knowledge by
presenting the famous face, along with presenting the novel face.
Future research could examine how the type of knowledge as well
as the learning protocol modulate hippocampal computations.

Another potentially interesting factor is consolidation, or time.
Here, we used knowledge that was acquired long before our study
and was well consolidated, while in the associative inference
study, the A-B associations were learned immediately before the
A-C associations. Indeed, a 24-h delay between learning the old
A-B and the novel A-C association reduces associative infer-
ence!02, Previous studies have further shown that prior knowl-
edge established immediately before new learning does not
enhance associative memory to the same extent as long-held, pre-
existing knowledge!3. Future research should elucidate how the
time difference between the initial acquisition of knowledge and
the addition of novel associations modulates associative learning
in the hippocampus.

In light of the finding discussed above it is interesting to
consider that prior knowledge might promote pattern completion
to retrieve previous related memories, but then separation pro-
cesses encode the novel association84104105 Pattern completion
refers to the retrieval of a previously encoded activity pattern
from a partial cuel%-109, Prior knowledge may facilitate hippo-
campal pattern completion to mediate the retrieval of pre-
existing-related association. Indeed, univariate activation is typi-
cally observed for famous faces compared to novel faces in the
hippocampus (for reviews see refs. 9-63). Nonetheless, this might
not necessarily indicate that pattern completion occurs in the
hippocampus. It is plausible that hippocampal activation drives
pattern completion in other cortical regions where information
might be stored!10-113, It is further important to distinguish
between pattern completion of a previous association and
encoding of novel associations. Here, we have shown that
separation might underlie the addition of a novel association to
prior knowledge. One interesting possibility is that pattern
completion may mediate the retrieval of previous associations
and drive the hippocampal representations of the famous face,
and then pattern separation may come into play and mediate the
encoding of the novel association—to distinguish the novel
association from the previous memories. Otherwise, had the
hippocampus remained in pattern completion “state,” inter-
ference with previous memories could have happened. Previous
theoretical models and empirical work has shown that the switch
from a retrieval “state” that is potentially mediated by pattern
completion, to an encoding “state” that might require pattern
separation, can be rapid in the hippocampus, and might be driven
by the relative novelty elicited by the novel face in comparison to
the famous face83:104.114-116,

Researchers have investigated the processes as well as the
timeline that characterizes cortical learning for decades (e.g.,
refs. 19:23:47.117-122) Here, we investigated the content of indivi-
dual associations in the cortex”?, and whether the existence of
knowledge changes the direction of association, in a specific and
predictable way. Theoretical accounts suggest that through
learning, new information becomes assimilated into cortical
knowledge structures!41>17:36, We hypothesized that assimilation
should manifest as asymmetric learning, in which the cortical
representation of this new information becomes similar to prior

51,102
b
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knowledge after learning, while the prior knowledge changes to a
lesser extent. Critically, while previous empirical findings of
cortical activation and functional connectivity lend some support
to the cortical assimilation ideall:32:334344  they could not
address whether and how assimilation occurs at the level of the
neural representation. Consistent with our predictions, we found
that in the left IFG, representations of the novel faces after
learning became more similar to representations of the famous
faces before learning (see Methods and Fig. 4), more so than
representations of the famous faces after learning became to
representations of the novel faces before learning. Importantly,
we did not observe such asymmetry in learning when both faces
were novel (see also ref. 123 for a related behavioral finding,
suggesting that prior knowledge facilitates asymmetrical associa-
tions). We propose that asymmetry in learning reflects the
assimilation of new information into existing knowledge. This
semantic knowledge is acquired across multiple encounters, so
existing representations are not modified as strongly when
learning additional novel information. Meanwhile, representa-
tions of novel information undergo large transformations as they
become woven into existing schemas.

Cortical assimilation might be influenced by whether novel
information is consistent, inconsistent, or arbitrary with respect
to prior knowledge. Here, we show assimilation based on arbi-
trary associations. Thus, our results are consistent with theories
implicating assimilation as a general mechanism for knowledge-
supported learning!-1>16:65.124 Note, however, that others have
proposed that assimilation specifically mediates learning of
information that is consistent with prior knowledge!7:18:36,
Similar to our view, these latter frameworks rely on the
assumption that the hippocampus is required to prevent inter-
ference between new information and cortical knowledge?3. Thus,
when novel information is consistent and elicits less conflict with
cortical knowledge structures, cortical assimilation can occur, and
hippocampal involvement is reduced!”-3¢. In this study, we show
that cortical assimilation can occur in parallel with hippocampal
involvement. We thus propose that interference resolution occurs
either because the novel information elicits less interference to
begin with, as in the case of schema-consistent information, or
because the hippocampus contributes to the resolution of inter-
ference, as in our study. How neural systems may cooperate to
determine the neural representation of new memories, and how
these processes are shaped by consistency with prior knowledge,
are fascinating questions for future research.

While in the current study, we employed a memory test in which
participants explicitly indicated the paired faces from the learning
phase, other measures of memory might be more suitable for
unveiling the benefits of neural assimilation. We note that using an
explicit memory test, assimilation in the left IFG did not differ
between subsequently remembered and forgotten famous-novel
pairs (see Results and Supplementary Note 7). This is a null result
and thus should be interpreted with caution. However, an inter-
esting possibility is that other, potentially more implicit measures
might better uncover the advantages of assimilation. For example,
in associative priming paradigms, a presented item leads to a
facilitation in the response to an ensuing item, as a result of these
items being associated in memory!2°. If the neural representation of
the novel face is assimilated into that of the famous face, it might be
that upon encountering the famous face, the novel face is sponta-
neously reactivated, due to the similarity in their neural repre-
sentation. That could potentially facilitate the response to that novel
face. Indeed, we have recently shown that prior knowledge
enhances associative priming, using a similar learning paradigm to
the one employed here!?. The explicit memory judgments that
participants made in the current study likely relied on hippocampal
representations and benefited from retrieval strategies that might

overshadow the potential spontaneous reactivation that may have
happened in the left IFG. This is consistent with the view that
implicit and explicit forms of memory might rely on different
mechanisms, and are potentially mediated by different neural
systems®7126127 The neural mechanisms by which prior knowl-
edge might influence different forms of learning and memory are an
exciting avenue for future research!2.

While we interpret our asymmetry finding as assimilation, it is
also possible that after learning, the second face in the pair (B face)
brings to mind the first face (A face) more so than vice versa. A
previous study found that after sequential learning, the repre-
sentation of the first item in a pair following learning became more
similar to the representation of the second item in the pair before
learning®?. This was interpreted as the first item bringing to mind,
or predicting, the second item due to their temporal contingency. In
contrast, we found that the second face after learning became
similar to the first face before learning. However, applying Schapiro
et al’s*0 interpretation to our findings does raise the possibility that
the asymmetry effect we observed reflects the B face bringing to
mind the A face. We find this interpretation less likely in our case,
because asymmetry was observed in the opposite direction from the
temporal order of learning. Moreover, for asymmetry to arise, the B
face should elicit the A face more so than the A face elicits the B
face. While intriguing, it seems less reasonable that the B face, both
novel and temporally second, would make a stronger cue than the A
face, which is a famous face and was temporally first in the pair
during learning. We thus find the assimilation interpretation more
plausible, but acknowledge that the alternative retrieval interpreta-
tion should be tested.

Another possibility is that the novel B face brings to mind the
famous A face because it is well-known and namable, while the
novel B face is not nameable and harder to bring to mind upon
seeing the A face. For example, it may be that during the post-
learning scans, when seeing the B face that was paired with
Madonna, the participants thought “Madonna,” but in contrast, the
novel and unnamable B face was not recalled upon seeing
Madonna. In our view, this possibility is less likely. First, if the
participants were bringing to mind Madonna when they saw the B
face that was paired with Madonna, that should have reflected on
the overall similarity changes from pre- to post learning. However,
differences in similarity changes from pre- to post learning between
PK and n-PK were far from being significant in the left IFG. Sec-
ond, if indeed participants recalled Madonna’s name upon seeing
the B face, we would expect to see asymmetry in other regions as
well. For example, in the left AG, or the hippocampus-brain regions
known to be involved in recollection (e.g,, refs. 128-130), However,
these regions did not exhibit asymmetry, nor did the other cortical
regions we examined (see Supplementary Fig. 6 and Supplementary
Note 9). Thus, we believe that this interpretation is less likely than
the assimilation interpretation. Further, even if indeed the B face
brings to mind the famous A face, it might be that this process
facilitates assimilation, as it renders the B-face’s representation
similar to the famous A face. Future research could better elucidate
the processes by which assimilation arises.

To conclude, we asked what does it mean to say, “an association
was created”? Importantly, an adaptive learning system does not
start any learning experience tabula rasa, but rather it utilizes what
it already knows about the world. However, reliance on prior
knowledge is a double-edged sword, as existing memories can not
only enhance but also impair new learning!-20:8:20-227L131 ‘Whyile
many important questions remain open, our findings suggest a
novel putative mechanism for learning as it typically occurs in our
everyday lives: we usually add new information to what we already
know. In this case, we propose that new information is assimilated
into our prior knowledge in the cortex, while hippocampal pattern
separation mitigates interference between new and old memories.
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Thus, this study clearly demonstrates that associative learning is
flexible and directional, specific to memory systems, and highly
dependent on prior knowledge.

Methods

Participants. Nineteen right-handed native Hebrew speakers participated in the
study (nine women: mean age: 26.94 years, range: 22-31 years). Five additional
participants were excluded from the analysis: two due to excessive movement
(more than 3 mm across all pre-learning, post-learning, and associative learning
scans), two due to insufficient knowledge about the famous faces, as defined by
familiarity with fewer than two-thirds of the faces in a post-experiment ques-
tionnaire, and one due to poor compliance with the task instructions, leading to
lower-than-chance performance in the final memory test. All participants had
normal or corrected-to-normal vision, and no color blindness. They were screened
to ensure that they had no neurological conditions or any other contraindications
for MRI. Participants were paid 280 shekels (equivalent to ~$77) for the study.
They were recruited from the Hebrew University of Jerusalem community and
provided written informed consent prior to participating in the experiment, in a
manner approved by the Tel Aviv Sorasky Medical Center Ethics Committee and
The Hebrew University institutional review board.

Materials. Twelve faces of famous women and 36 faces of novel women were used
in this study. We used famous faces as our manipulation of prior knowledge
because famous faces were shown to elicit a rich representation of previous
knowledge (for reviews, see refs. ©%63) and were used in previous studies examining
prior knowledge influences on new associative learning!232. We further followed a
previous multivariate fMRI study using female faces to capture the representation
of knowledge about faces!32. The famous faces depicted well-known international
and Israeli individuals from a range of fields, including politicians, musicians,
actors, and fashion models. An extensive pilot study verified that these faces were
indeed familiar to the Hebrew University population, and that the participants
could identify them by name and provide details about them. The novel faces were
obtained from the Web and included foreign corporate executives, actors, and
models that were unfamiliar to our Israeli participants, while controlling for factors
such as attractiveness and image quality. Of the 36 novel faces, 12 were selected to
match the famous faces with respect to age. For convenience, we refer to the 12
famous faces and the 12 matched novel faces as A faces. The remaining 24 novel
faces are referred to as B faces. The experiment included pairs of face that were
presented together, each pair comprising one A face (either famous or novel, see
below) and one B face (always novel). The pairing of the each of the 24 novel B
faces with each of the 24 A faces (12 famous and 12 novel) was random for each
participant. Within each participant, the pairings were fixed throughout the
experiment (i.e., for each participant, each A face appeared with one B face, and the
same pair appeared in all the repetitions, see below). To enable the associative
learning task (see the section Procedure below), we added 6 female faces (3 famous)
and 12 novel male faces that comprised mixed-gender pairs.

All the stimuli were color photos of faces presented in the center of a gray
rectangle that was 290 pixels (width) by 320 pixels (height). The screen resolution was
set to 1024 by 768. To further control for potential visual differences between the
pictures, we equated pixelwise similarity (the correlation across the pixel values
between the stimuli!3>!34), Since we used color images, we correlated the RGB values
of the stimuli with one another, each color layer separately, and averaged the
correlation coefficient of each pair of stimuli across the three layers. We also
computed pixelwise similarity using grayscale versions of the images, in accordance
with previous studies. Overall, the correlation values did not differ between the two
measures, indicating the viability of pixelwise color similarity as a measure of
pixelwise similarity!2.

A few types of pixelwise similarity were equated across the stimuli. First, we
ascertained that the famous faces were equally distinct from one another and from
their matched novel A faces. We computed the pixelwise similarity between each of
the famous faces and the remaining famous faces and followed the same process for
the novel A faces. We obtained similar means and standard deviations for pixelwise
similarity across the conditions. Next, we verified that on average, the visual
similarity between the famous A- and B faces was equal to that of the novel A- and
B faces. To that end, we computed the pixelwise similarity of all the famous faces
with all the novel B faces and the similarity of the novel A faces with all the novel B
faces. Once again, we obtained similar means and standard deviations for pixelwise
similarity across the conditions.

Procedure. The experiment started with pre-learning scans, enabling us to capture
the multivariate activity pattern of each face alone prior to learning. This was followed
by an associative learning session and post-learning scans, to capture the stimuli
patterns after learning. Then, a surprise associative memory test was administered.
Critically, acquiring the post-learning scan before testing memory allowed us to
measure post-learning representations without interference from probing of memory.
The test was followed by an irrelevant task that was not analyzed. All phases were
performed in the scanner, and each phase was preceded by detailed instructions and a
few practice trials. The presentation of the stimuli was controlled by Presentation”
software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). Upon

completion of all tasks, the participants left the scanner and completed a knowledge
questionnaire about the faces that appeared in the experiment and a short debriefing
session.

Pre-/post-learning scans. The pre- and post-learning scans were identical**->!. All
faces that appeared in the learning phase appeared in these scans. In each trial, a face
appeared alone at the center of the screen for 1 s. Trials were jittered with 0.5-7.5 s of
a fixation-cross baseline, with an interval of 0.5 s, using optseq2 (https://surfer.nmr.
mgh.harvard.edu/optseq/!3°). Participants were asked to indicate by pressing a button
whether the person appearing on the screen was male or female.

Each phase (pre and post) was divided into two scans; in each scan, each face
appeared three times. The order of stimulus presentation was pseudorandomized to
maintain low autocorrelations between regressors, and to ensure that two faces that
appeared as a pair in the associative learning task appeared with a minimal gap of two
stimuli in the pre/post scans, to prevent additional learning during these scans. To
create the pseudorandomized order, placeholders of stimuli were fixed, e.g., a certain
face appeared in the triad of placeholders at locations 20, 150, and 180. Placeholder
triads were then paired such that two faces that would be associated later would each
appear in one placeholder triad of the pair (e.g., placeholders 20, 150, and 180 were
paired with placeholders 40, 105, and 240). We had two of these fixed orders
(determined by simulations to ensure low correlations), one for each scan, and the
order of the scans was counterbalanced across participants. To counterbalance the
conditions, the pairs of placeholders within each scan were divided into two groups of
12 placeholder pairs. The allocation of famous and novel A faces (and the
corresponding B faces) to placeholder groups was counterbalanced across
participants. Within each placeholder group, the allocation of placeholders to either A
or B faces rotated across participants. The allocation of the stimuli to placeholders was
randomized within each condition (famous/novel and A/B face) for each participant.
Critically, the pre- and post scans were identical within each participant (we also
repeated the same order of scans), and the pattern similarity before learning was
subtracted from the pattern similarity after the learning. Thus, differences in pattern
similarity cannot be attributed to differences in the correlations between regressors™.
All faces appeared once before a new cycle of repetition began. Although we analyzed
only female faces that appeared in the same-gender pairs during learning, the stimuli
from the mixed-gender pairs were included in the pre-/post scans as well, to equate
familiarity of the stimuli during the associative learning task, and to enable the male/
female gender task during the pre-/post scans. The placeholders of these additional
faces were fixed across participants to distribute the males throughout the task, but the
allocation of the faces to placeholders was randomized for each participant.

Associative learning task. Participants were presented with pairs of faces that were
composed of either a famous and a novel face (PK) or two novel faces (n-PK). In
each trial, the faces were presented at the center of the screen. The faces were
presented sequentially and not simultaneously to prevent participants from fixating
on one face more than the other. Each trial included a double repetition of the pair
(A-B-A-B), with each face appearing on the screen for 500 ms (this presentation
time ensured recognition of the famous faces!3-138) and an interstimulus interval
(ISI) of 100 ms. A fixation cross appeared at the end of each trial for 600 ms. As
before, trials were further jittered with 0.5-7.5-s fixation-cross baseline, with an
interval of 0.5s!3%. The participants had to indicate by pressing a button whether
the two faces were two females or a male and a female, and were instructed to
respond as quickly and as accurately as they could.

Throughout the learning phase, each pair was repeated 12 times (12 repetitions
of A-B-A-B trials). This task was divided into four scans, each of which included
three presentations of all pairs. Each cycle of repetition included all 24
experimental pairs and the additional 6 different-gender pairs, which also repeated
12 times throughout the experiment. In these filler trials, the male always appeared
second (as a B face). To allow enough males for the pre-/post-learning scans, each
female was paired with two males, and these appeared alternatively (such that each
male appeared six times in total during the associative learning task). In each cycle,
the order of stimuli was pseudorandomized in a similar manner to the pre-/post-
learning scans: placeholders were fixed and divided into two groups (for the two
conditions, PK and n-PK). The allocation of the groups was counterbalanced across
participants. Within each group, the allocation of a specific pair to the placeholders
was randomized for each participant. We had four such fixed orders (determined
again by simulations to ensure low correlations between regressors), one for each
scan, and the order of the scans was randomized for each participant. The
placeholders of the female-male pairs were fixed to allow distribution of these trials
throughout the task. All pairs appeared once before a new cycle of repetition began.

Associative memory test. Upon completing the associative learning phase, partici-
pants performed the post-learning scans. Then, a surprise memory test was given.
In each trial, participants were presented with an A face that appeared at the top of
the screen (either famous or novel) and three B faces that appeared at the bottom of
the screen, one of which had been paired with the A face during the learning
session. All three faces were intralist within the pair type (i.e., if an A face was
famous, the two distractors were B faces that appeared with other famous faces).
The allocation of the distractors was pseudorandomized such that a triad of the
same B faces could not appear twice throughout the test. One-third of the B faces
appeared as targets in their first presentation, one-third appeared as targets in their
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second presentation, and one-third appeared as targets in their third presentation.
Within each condition (PK/n-PK), the location of the target was equally divided
between the three possible locations, and each B face appeared once as a target and
twice as a distractor.

In each trial, participants were asked to choose the B face that had appeared with
the A face during the learning session. After a face was chosen, the other two faces
disappeared, and participants were asked to make a three-level confidence judgment
(sure, probably, or maybe, corresponding to high, medium, or low confidence that the
faces appeared together, respectively). Both stages of each trial were self-paced, but
each stage was limited to 10s. A 500-ms fixation cross appeared between trials. The
order of the trials was randomized such that no more than two trials of either the PK
or the n-PK condition appeared consecutively. Within each condition, trials were
randomized, and B faces were allocated as distractors such that no face would appear
in two consecutive trials, either as target or as distractor.

Knowledge questionnaire. After scanning, participants completed a knowledge
questionnaire. All faces appeared one after the other, and subjects had to say
whether they knew their names or were familiar with them before the experiment.
They were additionally asked to rate how many facts they knew about the person
whose face was presented. Since we piloted the famous faces to ensure that people
had knowledge about them, this questionnaire was only meant to crudely assess the
knowledge of the specific participant. Thus, we excluded subjects that did not
recognize (i.e., could not provide the person’s name or reported that the person was
not familiar to them) over a third of the famous people in the study (two parti-
cipants). We further excluded from all analyses specific famous faces that were not
familiar to a particular participant (six participants each had one face excluded, a
different famous face across these participants). Then, participants were debriefed
and asked whether they had suspected that there would be a memory test or tried
to memorize the pairs during the learning phase.

fMRI parameters and preprocessing. Participants were scanned in a 3T Siemens
Prisma scanner. The experiment included an MPRAGE anatomical scan (1X1X1mm
resolution), a fieldmap scan, and 12 whole-brain T2*-weighted EPI scans (TR = 2000
ms, 200 x 180-mm FOV, 64 x 58 matrix, TE = 28, flip angle =77, and phase-
encoding direction: anterior—posterior). In each volume, 39 slices were acquired tilted
minus 20° of the AC-PC, 3.125 x 3.125 x 3.1-mm (width x length x thickness) voxel
size, no gap, and in a top-down (bottom-up for two participants) interleaved order. In
each of the four sessions of the pre-/post task, 366 images were acquired. Each of the
four sessions of the learning task included 179 images.

The imaging data were preprocessed using SPM8 (Wellcome Department of
Cognitive Neurology) for MATLAB (Mathworks, Natick, MA), FSL (http://www.
fmrib.ox.ac.uk/fsl), and in-house scripts for the similarity analysis. Images were
corrected for differences in slice acquisition timing and realigned to the mean
image across all scans to correct for movement. Neither smoothing nor registration
to standard space was performed, as all analyses were made in subject space. For
group-level analyses of functional connectivity during the learning task, subject-
level t-stats maps were smoothed and registered to MNI space (see below).

Regions of interest (ROIs). The hippocampus was defined anatomically for each
participant using FSL’s automatic subcortical segmentation protocol (FIRST). The
hippocampus was segmented along its long axis by dividing the number of coronal
slices in each hemisphere into three sections. The anterior third of the coronal
slices was designated as anterior hippocampus, and the posterior third of the
coronal slices was designated as posterior hippocampus®2. We further divided the
hippocampus a priori to the left and right hemisphere. We examined these four
hippocampal ROIs (left/right by anterior/posterior), as previous findings on prior
knowledge in the hippocampus do not coincide with respect to the specific locus of
influence’%-33. The left IFG and the AG were defined functionally, based on the
group-level contrast of PK > n-PK in the PPI analysis detailed below. Then, for
representational similarity analyses, we brought the peak voxel to each participant’s
native space and constructed a 12-mm sphere (10-mm sphere yielded similar
results). Note that for the left AG, the peak voxel was located at the edge of the
brain; thus, we chose the second peak (MNI coordinates: [—52, —48, 20]) for the
representational similarity analysis.

Representational similarity analysis. For each subject, one GLM was constructed
for the two pre-learning scans and one for the two post-learning scans. To model
the response for each face in each session, the canonical hemodynamic response
was convolved with the onset of the three presentations of the face in a session
(time- derivative regressors were added, as well as a constant for each scan and a
128-s high-pass filter). This yielded a beta value for each stimulus in each of the
four scans. We then converted these beta values into t statistics and averaged, for
each stimulus, the two t-stats of the pre-learning scans, to obtain the multivoxel
activity pattern before learning. The same was done for the two t-stats from the
post-learning scans, to obtain the pattern of that face after learning. These mul-
tivoxel activity patterns were then correlated to obtain a similarity measure, and the
Pearson’s correlation coefficient was averaged (according to the specific analysis, as
detailed below) and Fisher- transformed for statistical analysis. All the analysis
steps after obtaining the t statistics were performed using a costume code in

MATLAB R2018b (The MathWorks Inc), or in R (version 3.5.2!39), where men-
tioned. More details can be found in the documentation at https://github.com/
odedbein/SEL_public, where all the costume code is available.

We conducted three types of representational similarity analyses:

1. Memory-related pre-to-post similarity differences: We examined similarity
differences that mediated explicit memory by computing for each
participant the average similarity difference between pre- and post learning
in each pair type (PK/n-PK), and within each memory outcome. That is,
within each pair type, we averaged similarity differences for pairs that were
remembered with high confidence in the subsequent memory test (high
confidence included “certain” and “probably” responses; excluding low-
confidence trials is a common practice used in fMRI studies to exclude
guesses, 40 one participant with no high-confidence hits in the PK condition
was removed from this analysis). We then compared this average to the
average similarity for pairs that were forgotten (misses), within each pair
type. To that end, differences in similarity from pre to post were entered
into a repeated-measure ANOVA of pair type (PK/n-PK) by memory
(remembered/forgotten). This ANOVA was followed up by two-tailed
paired-sample ¢ test, addressing simple effects.

2. Learning-related pre-to-post similarity differences: Prior to examining
asymmetry in representational changes (see Introduction and below), it is
important to know whether any change in similarity occurred from before
to after learning. To that end, we computed for each participant, and for
each pair type (PK and n-PK), the average similarity difference between pre-
and post learning for pairs of items that appeared together during the
learning task. As a control, we compared these similarity differences to the
shuffled-pair baseline. The shuffled-pair baseline was obtained by pairing
each A face with all other B faces of the same pair type, computing the
similarity differences for each pair, and averaging across all pairs in each
pair type. Note that this within-pair-type shuffling controls for any
differences the B faces may have due to their appearance with famous
versus novel pairs, since for each condition, all faces in the shuffled baseline
appeared with A faces of the same pair type.

3. Asymmetry in representational changes: To assess whether cortical learning
was asymmetric (see Introduction), for each pair that appeared together
during learning, we subtracted the similarity of the A face post learning to
that of the B face pre-learning, from the similarity of the B face post learning
to the A face pre-learning®. This gave us a measure of how much more
similar the B-face representation after learning became to that of the A face
before learning, as compared to the extent to which the A face became
similar to the B face. We then computed the average for each participant
across all pairs per pair type (PK/n-PK). As control baseline, we further
computed the same asymmetry index for shuffled pairs. Shuffled pairs were
obtained by pairing each A face with all other B faces that did not appear
with that A face during learning, but critically, appeared in the same pair
type. We then averaged for each participant all shuffled pairs per pair type to
obtain a baseline asymmetry index. Asymmetry was compared to 0 or to
shuffled pairs using two-tailed paired-sample ¢ tests.

Functional connectivity analysis. We conducted PPI analysis (SPM8 gPPI tool-
box%!) during the associative learning task, with the left anterior hippocampus ROI as
a seed region (in pre- to post-learning similarity differences, this region showed
separation for remembered PK pairs, but similarity for remembered n-PK pairs, see
Results). Thus, for each participant, the times series of the left anterior hippocampus
during the associative learning task was used as the physiological regressor. To reflect
the nature of our task, the psychological regressors included a regressor for all pairs in
each pair type, in each cycle of repetition (a total of 24 regressors, 12 repetitions by
PK/n-PK pair type). The psychophysiological regressors were the interaction of each
psychological regressor with the physiological regressor. As before, a high-pass filter of
128 s and constant scan regressors were added for each scan. We then computed, for
each participant, the contrast of all repetitions of the PK pair type versus all repeti-
tions of the n-PK pair type. Analyses were performed in each participant’s native
functional space. The resulting t maps were then smoothed (8-mm HFWM kernel)
and registered to the MNI space for group-level analysis. At the group level, the PK
versus n-PK contrast was compared to zero using a one-sample two-tailed ¢ test. The
resulting t map was thresholded at a voxel level of P < 0.005 due to low power in PPI
designs!'#!, accounting for the reduced voxel-level threshold by maintaining a cluster-
level threshold of P < 0.05%0 (cluster size >61 voxels, Monte Carlo simulations!42).

Reproducibility. This is a single fMRI experiment. We did not repeat the
experiment, and no replication attempts have been made to date.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data and single-trial t-statistic maps that support the findings of this study are
available online (https://osf.io/u2h3s/). A reporting summary for this article is available
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as a Supplementary Information file. Additional data are available from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
The costume code that was used for data analysis in this study is available at https:/
github.com/odedbein/SEL_public.
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