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Efficient enumeration‑selection 
computational strategy 
for adaptive chemistry
Yachong Guo1, Marco Werner2 & Vladimir A. Baulin3*

Design problems of finding efficient patterns, adaptation of complex molecules to external 
environments, affinity of molecules to specific targets, dynamic adaptive behavior of chemical 
systems, reconstruction of 3D structures from diffraction data are examples of difficult to solve 
optimal design or inverse search problems. Nature inspires evolution strategies to solve design 
problems that are based on selection of successful adaptations and heritable traits over generations. 
To exploit this strategy in the creation of new materials, a concept of adaptive chemistry 
was proposed to provide a route for synthesis of self‑adapting molecules that can fit to their 
environment. We propose a computational method of an efficient exhaustive search exploiting 
massive parallelization on modern GPUs, which finds a solution for an inverse problem by solving 
repetitively a direct problem in the mean field approximation. One example is the search for a 
composition of a copolymer that allows the polymer to translocate through a lipid membrane at a 
minimal time. Another example is a search of a copolymer sequence that maximizes the polymer 
load in the micelle defined by the radial core‑shell potentials. The length and the composition of the 
sequence are adjusted to fit into the restricted environment. Hydrogen bonding is another pathway 
of adaptation to the environment through reversible links. A linear polymer that interacts with water 
through hydrogen bonds adjusts the position of hydrogen bonds along the chain as a function of the 
concentration field around monomers. In the last example, branching of the molecules is adjusted to 
external fields, providing molecules with annealed topology, that can be flexibly changed by changing 
external conditions. The method can be generalized and applied to a broad spectrum of design 
problems in chemistry and physics, where adaptive behavior in multi‑parameter space in response to 
environmental conditions lead to non‑trivial patterns or molecule architectures and compositions. 
It can further be combined with machine learning or other optimization techniques to explore more 
efficiently the parameter space.

Finding a structure or a pattern among numerous possibilities that fits to a certain environment or performs a 
given function is an attractive target for predictive theoretical methods leading to profusion of scientific crea-
tivity. In general, problems of optimal design of materials that mimic, adapt or possess a controlled affinity to 
external conditions are examples of inverse  problems1. Each inverse problem is associated with a direct problem, 
consisting in repetitively solving or simulating a well-defined model system for a concrete set of parameters and 
 conditions2. These optimal design or inverse problems can be rather  challenging2 and in real situations can be 
computationally expensive without additional conditions or  regularization3, or require computationally expensive 
heuristic optimization methods, e.g. genetic  algorithms4 and neural  networks5,6.

The examples of such optimal design problems in chemistry and physics include the understanding of adap-
tiveness or binding affinity in the molecular recognition process within the lock-and-key  paradigm7,8, which 
turns out to be very sensitive to molecular  parameters9; the search for polymer sequence design in protein 
 folding10, the interaction potentials for optimal self-assembly11, the search for dynamic exchange of components 
in response to environmental  conditions12, the prediction of a sequence of cell-penetrating  peptides13, inverse 
design problems in  nanophotonics14,15.

A concept of Dynamic Combinatorial Chemistry (DCC) was  introduced16 to address reversible connections 
and conformations of basic elements and chemical components that can rearrange and dynamically adapt to 
changes in the environment, which contrasts with static libraries of prefabricated molecules and compounds. 
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Reversible and adaptive connections between elements can be grouped in virtual combinatorial libraries, while a 
search through libraries of connections in a changeable environment is another example of inverse problem that 
needs an efficient solution. This idea of experimentally creating adaptive molecules was proposed even before 
computational design algorithms were widely used to discover new materials.

Among computer simulation methods, one of them, the Reverse Monte Carlo (RMC)  method17,18, pro-
duces three-dimensional structure of a molecular system that fits a given experimental data that originate from 
unknown molecular structure, such as, for example, diffraction and scattering data in the problems of inverse 
scattering or reconstruction from neutron diffraction  patterns19. This is achieved by direct Monte Carlo simula-
tion of these data from a structural model, in which parameters are adjusted in order to fit the experimental data. 
Since it is not practical in many situations to explore all possible combinations of parameters of the molecular 
structure unless the model is very simple, the resulting structure is not unique or exact and there is no guarantee 
that it produces the best fit of the data. Ideally, a method that exhaustively explores all parameter space tests all 
possible combinations would provide a guaranteed best solution.

Finding a solution to an inverse problem by exhaustively solving the direct problem in a complete parameter 
space resembles a brute-force password screening in computer science. However, in contrast to password genera-
tion, direct computer simulations can be very computationally expensive, thus making this approach too slow 
and almost impractical. Meanwhile, explosive  growth20 of computer power provided by parallel computation 
on modern Graphical Processing Units (GPUs) can be game-changing in the field of inverse search problems, 
including direct sampling of the parameter space, thus providing a basis for adaptive chemistry basis on the 
level of computer simulations.

Nevertheless, many existing GPU implementations of Molecular Dynamics and Monte Carlo simulations 
are, in fact, adaptations of sequential codes to parallel environments, that cannot fully benefit from the potential 
speed-ups on modern parallel GPU architectures counting thousands of cores. Limitations in scalability come 
from the Amdahl  law21 stating that even a small fraction of sequential code or unavoidable synchronization 
between cores would dramatically impact the scale-up. Hence, to get a full advantage of a parallel hardware archi-
tectures, conceptually new scientific methods that are fully parallel in nature have to be invented or re-discovered.

The architecture of a new generation of processors that are still to come dictates a completely different design 
of methods for solving the optimization problems. As an example, parallel architecture and explosive increase 
of computational power was the reason why neural networks, invented in the 80s were computationally too 
expensive to solve any real problem at that time and became so popular and efficient in the 00s. Despite being 
computationally more expensive than other direct methods, they scale well with the number of units and weights 
in the network permitting a large number of layers unless other stochastic methods, mentioned by the reviewer, 
that scale  combinatorially22. This could be a similar trend with exact enumeration for inverse search problems 
in the near future when the number of parallel units would increase even more significantly, although it may be 
difficult to imagine it now, taking into consideration all limitations present in the modern parallel architectures 
such as limited shared memory and bandwidth of communication with the global memory. New methods should 
not only scale well with the number of units, but they should be perfectly scalable.

In the following, we report a theoretical method of solving optimal design problems using highly parallel 
technique taking advantage of massive parallelization on GPUs. After introducing the method, we demonstrate its 
performance on two examples: the search for a copolymer sequence that translocates through a lipid membrane 
at a minimal time and a copolymer sequence that maximizes the load by a copolymer micelle.

Enumeration‑selection strategy
Exhaustive search through parameter space implies running massive simulations corresponding to a direct 
problem in efficient way. This is possible if these simulations are completely independent and do not require 
communications between the cores and thus would be a subject only to hardware limitations on the number of 
available cores. For example, such independence of tasks can be realized in the quasi-instantaneous field approxi-
mation, where individual molecules interact between each other through fixed or rarely updated mean  fields23. 
It was shown that maintaining fields at most recent values and updating them at a certain frequency introduces 
correlations between the molecules. In such a case, the composition of a molecule, force fields and conformations 
of a single molecule can be strictly decoupled between each other, thus allowing to generate a molecule compo-
sition from building blocks, composition and force fields suitable for massive parallel implementation, Fig. 1. 
The workflow of the method is depicted in Fig. 2. Once the target parameters are identified: molecule properties 
and constraints, macroscopic material properties and the restrictions from external fields and conditions; the 
molecule is digitalized into building blocks (monomers), which are characterized by its size, connections and 
interactions. This object with annealed structure and parameters is placed in the fixed fields that are dictated 
by the design target. The fields can be physical fields or chemical gradients/concentrations. Then this adaptive 
molecule with unknown shape and structure needs to adjust to external conditions and the fields in the inverse 
enumeration of all conformations search, that can be combined with heuristic methods.

The concept of adaptability implies the external fields as a driving force for the change of the composition or 
the topology of the adaptive molecules. It can be a concentration fields of monomers, external physical fields, 
chemical gradients. The building blocks of this method are the monomers that have distinct colors representing 
interactions with the fields.

This concept is demonstrated in three distinct examples: (i) a linear copolymer of fixed length whose com-
position is adapted for translocation through a lipid membrane with a minimal time and the composition of a 
block copolymer in a micelle is optimized for the maximal load; (ii) adaptive linear polymer interacting with 
the surrounding through reversible links such as hydrogen bonding. The probability of forming a hydrogen 
bond depends on the concentration field surrounding the monomer; (iii) a branched molecule with annealed 
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topology, where the probability of branching is influenced by the surrounding. Concentration fields of certain 
components can control the gelification or branching of the molecules, while the concentration fields can be 
tuned by external environments.

Basic principles. The method is similar in spirit to Single Chain Mean Field (SCMF)  theory24 for polymers, 
where correlations between conformations of a single polymer chain are decoupled and each conformation 
of the polymer chain is interacting with mean fields independently. Soft matter objects such as micelles and 
lipid bilayers are, in fact, close to liquids, where molecules move independently and uncorrelated between each 
over. Thus, in most cases, such an approximation is valid and provides a good results for mechanical properties 
and self-assembly25. Since building blocks in this method are entire molecules with full sampling of confor-
mations, the correlations between monomers inside the molecule are exactly calculated. Density Functional 
theory (DFT)26 has a similar spirit for atoms and small molecules. There are however particular cases, when this 
approximation is not valid: ion pairs, when two molecules are correlated and move together, movements in gel 
phase, crystallization, strong electrostatic interactions beyond mean field.

As an example of application of the method, let us consider a linear copolymer chain of a given length N and 
consisting of monomers of types a. The monomers of different types differ in interactions between each other 
and with external fields, which represent the environment. The aim of the method is to find a sequence of mono-
mers that satisfy a given design criteria based on the fields, e.g. the affinity with the external fields. The sequence 
consists of monomers from the library, where a color corresponds to a given interactions with concentration and 
external fields, further denoted by � . These monomers are connected between each other by freely joint bonds 
of fixed length, which can be represented by a cube on a cubic lattice. With such construction, each sequence of 
monomers can be in many conformational states, described by relative position of monomers in space.

We assume that each conformation Ŵ corresponding to a given sequence is independent when placed in fixed 
fields �i(r) , where r is a point in space, Fig. 3. With this, the Hamiltonian of a conformation Ŵ is described by a

(1)H(Ŵ) = H
intra(Ŵ)+

∑

i

∑

a

∫

drUa
i (Ŵ, r)�i(r),

Figure 1.  Top: Building blocks and topology of molecules that are created with the enumeration-selection 
strategy. Conformations are built from monomers connected by bonds and interacting with the fields: 
concentration fields or external fields. Various types of topology can be addressed. Bottom: three practical 
examples studied in detail: linear polymer with the composition adjusted to a lipid membrane translocation; 
linear polymer with hydrogen bonds adapting to the concentration gradient; branched polymer with a field of 
distributed branching points.
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where the integration is over the whole space, Hintra(Ŵ) is the intra-molecular interaction energy resulting 
from interactions between monomers inside the same molecule; Ua

i (Ŵ, r) is the interaction potential between 
monomers of type a with the field i of conformation Ŵ at the position r. With this, the total partition function 
of the system, Z, can be written as:

where wŴ are the weights of the conformational distribution, if it was generated with a  bias27,28. Partition func-
tion Z provides all thermodynamic properties of the system, while the free energy is given by F = −kBT lnZ , 
where kB is the Boltzmann constant and T is the temperature.

Thus, by introducing independent conformations Ŵ placed in fixed fields we provide a basis for a very efficient 
parallelization scheme, but for the price of neglecting correlations and limiting application to the mean field 
description. Each conformation Ŵ of a given sequence can be generated independently on a single GPU core with 
strictly no communication with other cores. This can be realized with an efficient algorithm, such as reported 
GPU realization of the Rosenbluth  algorithm29. The weights of the distribution wŴ and the Hamiltonian H(Ŵ) 
can be calculated on-the-fly without a need to keep them in memory. The resulting H(Ŵ) can be used for clas-
sification and ordering of the sequences according to a given design criteria. Thus, such an approach allows for 
a fast screening of the sequences using full power of parallel architecture of modern GPUs with no limitations 
of the Amdahl  law21.

Realization on a cubic lattice. For numerical purposes, it is convenient to discretize the space and con-
sider sums instead of space integrals in Eq. (1). We assume that the simulation box is divided into three fields as it 

(2)Z ∝
∑

Ŵ

wŴe
−H(Ŵ),

Figure 3.  One dimensional fields on a 3D cubic lattice corresponding to (A) planar geometry of a lipid 
membrane, (B) spherical geometry of a core-shell micelle. (C) Lattice representation of a copolymer sequence: 
black PT and white PH cubes represent hydrophobic and hydrophilic blocks, respectively. (D) Map of 
interactions between monomers PH , PT and fields T, H and S.

Figure 2.  Inverse design workflow.
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shown in Fig. 3, hydrophobic field, �T , hydrophilic field, �H and the solvent, �S . Thus, on a cubic lattice, where 
each monomer occupies one lattice site, the Hamiltonian, Eq. (1), is written as

where UPT
H (Ŵ, x, y, z) is the number of contacts of the conformation Ŵ of the PT polymer at the lattice site (x, y, z), 

interacting with the field �H . Similar definition is applied to UPH
T (Ŵ, x, y, z) and UPT

S (Ŵ, x, y, z) , interacting with 
�T and �S ,  correspondingly27,28. The lattice number (the maximum number of neighbors of a lattice site) is 
z = 26 for a cubic lattice. Thus, if one of these sites is occupied by a monomer T or H, or a solvent S, it is con-
sidered as a contact with a corresponding energy ε.

The incompressibility condition is imposed by the requirement that each lattice site can only be occupied 
either by a monomer or by a solvent. The lattice site, occupied by a polymer does not interact with other mono-
mers. We assume that all units, PT , PH , T, H and S, have the same size of one lattice unit and the same interac-
tion range (nearest neighbors only) and differ only in corresponding interaction energies: ǫPT−H = 0.1 kBT , 
ǫPH−T = 0.1 kBT , ǫPT−S = 0.1 kBT . All other interactions are set to zero (Fig. 3C and D). They are chosen in such 
a way that if the polymer chain is composed entirely of PT , it would be fully hydrophobic, and if it is composed 
entirely of PH , it would be fully hydrophilic.

Statistical segments of chain-like molecules are represented as connected unit cubes on a simple cubic 
lattice. The distance between bonded monomers is constrained to a bond vector set of 26 bond vectors by 
(1,0,0),(1,1,0),(1,1,1), for each monomer, interacting maximum with the 26 nearest neighbor sites. The excluded 
volume is implemented via the exclusion of overlap between monomer on the same lattice site, while the distances 
are expressed in terms of the number of lattice sites. The simulation details and the algorithm can be found in 
Supplementary Materials.

The calculation efficiency depends mainly on the polymer length and sampling of conformations. The fol-
lowing estimates were obtained for a machine equipped with NVIDIA Tesla V100 GPU and Intel Xeon Gold 
6248 CPU. The calculation of the translocation time through a lipid membrane in the planar geometry, typical 
simulation time for a polymer chain of length N = 12 is 0.0384± 0.0004 s per million of conformations and 
for a chain of length N = 16 is 0.0784± 0.0004 s per million of conformations. This typical time allows for 
the generation of a significant statistical sampling for each pattern/sequence. For the spherical geometry of a 
core-shell micelle, the typical simulation time for the polymer of length N = 16 is similar to planar geometry: 
0.0834± 0.0003 s per million of conformations.

Adaptive copolymer sequence
In this section we describe linear polymers which composition (sequence of monomers) is adapted to a given 
design criteria. Two examples are considered: the problem of optimization of passive translocation time through 
a lipid membrane represented by one dimensional energy barriers, and the problem of confined and constrained 
polymers on the example of the localization of a linear polymer in a concentric field of a spherical micelle.

Translocating polymers. The problem of finding the composition of translocating polymer that mini-
mizes the time of diffusive translocation through a lipid bilayer was studied in detail for  homopolymers30–32 and 
amphiphilic  copolymers33. Thus, we use these results as a reference to benchmark the predictions and the results 
of the enumeration-selection strategy.

A lipid membrane is represented by a one dimensional hydrophobic field of lipid tails �T with a thickness of 
6 lattice units, surrounded by a hydrophilic field of lipid heads �H of two lattice units as shown in Fig. 3A. The 
rest of the box is filled by the solvent �S . We take for the measure of the design criteria the translocation time of 
a polymer with given sequence through the lipid membrane. The mean first escape time, τ,

is defined between z− and z+ designating the position of the top and the bottom of the simulation box, corre-
spondingly. Here, F (z) is the free energy of a layer z of conformations Ŵ , which have the center of mass, z̄(Ŵ) , 
lying at a distance z from the bilayer’s mid-plane:

Here, wŴ is the bias of the distribution (in case of Rosenbluth generation it is a Rosenbluth  weight34), and H(Ŵ) 
is the Hamiltonian of a configuration, Eq. (3). In the following, the lattice constant 1 is used. It is important to 

(3)

H(Ŵ) =H
intra(Ŵ)

+ εPT−H

∑

x,y,z

U
PT
H (Ŵ, x, y, z)�H

(

x, y, z
)

+ εPH−T

∑

x,y,z

UPH
T (Ŵ, x, y, z)�T

(

x, y, z
)

+ εPT−S

∑

x,y,z

U
PT
S (Ŵ, x, y, z)�S

(

x, y, z
)

,

(4)τ ∝

∫

z+

z−

dze
F (z)/kBT

∫

z

z−

dz
′
e
−F(z′)/kBT ,

(5)
F (z) = −kBT ln

∑

Ŵ with

|z̄ − z| < 1
2

wŴe
−H(Ŵ)
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note, that the polymer length-dependent diffusion constant is not considered in the expression (4) and thus, the 
following results represent timescales with respect to the self-diffusion time.

For simplicity of understanding the method, we assume that the monomers in a linear polymer chain can 
be of two types: hydrophobic ( PT , black) and hydrophilic ( PH , white). More types of monomers, branching of 
polymers and even gradual change between hydrophobic and hydrophilic monomers are possible extensions 
of the model. Each polymer sequence or pattern is thus a sequence of monomers of two kinds. The polymer 
properties are expected to be invariant under reversion of the sequence between both ends.

At a given ratio between hydrophobic and hydrophilic monomers, NT/(NT + NH ) , the total number of pos-
sible sequences is N !/(NT !NH !) , where N = NT + NH . It grows exponentially with the length of the polymer 
N. For each polymer sequence the exhaustive search method consists of the sampling of 107 independent self 
avoiding random walks that are uniformly distributed in the box and thus, samples sufficiently precise the free 
energy F (Eq. (4)) of conformations at each position z. Technically, the conformations are not stored in memory, 
but are only used to sample the free energy in parallel on GPU on-the-fly such that billions of conformations 
can be generated in a reasonable time.

During the generation process, the mean escape time τ is calculated taking into account all generated con-
formations. The process is performed for each sequence and each polymer length up to N = 24 . As a result, 
sequences can be ranked with respect to the time τ.

The results for polymer length N = 12 are presented in Fig. 4 and in Table S1. It shows that the transloca-
tion time is very sensitive to the sequence of the polymer. The most efficient translocation is found for the 
balanced hydrophobicity, NT/N = 6/12 . This is consistent with the previous systematic findings using Monte 
Carlo  simulations30,31. The difference of the mean escape time between different sequences is several orders 
of magnitude. At the balanced point, sequences with shortest hydrophilic/hydrophobic blocks show smallest 
translocation times only due to weak localization at the bilayer-solvent interfaces as compared to sequences 
with larger blocks. In accordance with a recent  work35, we also see in Fig. 4 for slightly hydrophilic sequences, 
NT/N < 6/12 , that formation of larger hydrophobic blocks near the center of the sequence leads to the smallest 
translocation times in this case.

Mean escape times show equivalent behavior as a function of the sequence for the various chain lengths inves-
tigated as shown in Fig. 5. There, the fraction of hydrophobic units is fixed to 1/2 for various polymer lengths. 
The results demonstrate that the sequences with alternating hydrophobic and hydrophilic monomers provide the 
fastest translocation time at balanced hydrophobicity. Both maximum and minimum data for τ(N) corresponding 
to alternating and diblock sequences can be approximated by an exponential increase with N (Fig. 5b). While 
there is only marginal increase of translocation time for alternating sequences which only weakly interact with the 
given diffusion barrier, for the slowest sequences (diblock copolymers) the slope is significantly larger, see Fig. 5b 
and Table S2. Assuming that the rate limiting process is the detachment of the hydrophobic block into solvent, 
the contact energy contribution is written as zeff ǫPT−S(N/2) with zeff  being an effective coordination number 
counting the number of lattice contacts of PT monomers with solvent. The ratio ∼ 107 between the maximum 
translocation time for N = 24 (Fig. 5a), and the corresponding free diffusion result τ ∼ |2z±|

2 ∼ 103 reflects an 
excess free energy barrier of Fbarrier = 18kBT for desorption of the diblock. An effective coordination number 
is then estimated as zeff ≈ 15 , which is slightly smaller as compared to the result zeff ≈ 19.6 given in Ref.35. 
There, also contributions from conformational entropy change upon desorption as well as much shorter chains 
have been considered only. A more precise consideration will also take into account conformational entropy of 
confinement of the PT-block into a slit-geometry given by the membrane thickness.

Constrained and confined polymers. In this example, we address the problem of finding an optimal 
polymer sequence that can fit the best to a core-shell structure. It can be a problem of a maximum load of a 
block-copolymer micelle with a polymer or a packing problem of a polymer in a field of concentric layers. More 
generally, this can be an inverse problem of finding the molecular structure of the compound that creates a given 
field. In the following, we describe an example of inverse localization problem, i.e. a problem of finding a linear 
polymer sequence that is at a given position in space.

We consider spherical symmetry in such a way that a given field represents concentric core-shell layers and 
we impose that a given monomer in the chain (hydrophilic or hydrophobic) has a maximum concentration in 

Fastest

Slowest

τ

21/1121/7 21/8 21/9 21/0121/621/521/421/321/221/1

Figure 4.  Predicted sequences sorted according to their time of translocation through a lipid bilayer for 
a copolymer consisting of 12 monomers. Top: Mean escape time τ as a function of polymer chain sequence 
number sorted from fastest to slowest. Bottom: the three fastest and three slowest sequences. The color 
(from blue to red) corresponds to the average hydrophobicity, defined by the fraction of hydrophobic blocks 
NT/(NT + NH ) and ranging from 1/12 to 11/12. For comparison, translocation times for homopolymers, 0/12 
( 9.90× 1010 ), 12/12 ( 4.96× 1012 ) show two orders of magnitude difference.
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the chosen layer. To formulate this criteria for the localization problem, we define average concentrations of the 
i-monomer C̄i(x, y, z) at a given position in space Ci(x, y, z) as

where H(Ŵ) is the effective Hamiltonian, defined in Eq. (3), Z is the normalization constant, Eq. (2), and 
Ci(x, y, z) is the concentration of the i-monomer of a conformation Ŵ at a given point on space (x, y, z).

With a radial symmetry, (x, y, z) is reduced to concentric layer of radius r and the layer thickness σ . Addition-
ally, we can fix the number of monomers M ≤ N to be located in the concentric layer. The design criteria for 
the localization of i-monomer in the concentric layer D = (r, r + δ) can thus be formulated as the maximum 
of the fitting function θMD

To illustrate this concept, we consider a concrete example of the micelle given by two concentric fields, hydropho-
bic in the core and hydrophilic in the corona. We fix the concentric field since we impose a polymer composition 
to adjust to that field. The field is defined as a hydrophobic layer with the radius LT = 13 lattice units in the 
center and the hydrophilic shell of thickness LH = 3 lattice units. The composition of amphiphilic copolymer of 
length N = 16 with equal ratio between hydrophobic and hydrophilic monomers (hydrophobicity 50%), have 
to be adjusted to the given field in different variations, Fig. 6.

For such a polymer, the total number of sequence combinations is 12870. The predicted sequences that 
obey the localization criteria are sorted according to θMD . Imposing different monomer localization criteria, 
the resulting sequence pattern can be very different. A) A central monomer i = 8 of the sequence M (purple) 
should be localized in the core of the core-shell structure (0 < r < 2) . The best sequences correspond to strictly 
alternating copolymers, where the polymer passes through the core, thus allowing the central monomer to be 
located in the middle. Tri-block copolymers with hydrophobic ends are the worse rated according to this criteria. 
B) Monomers on both ends ( i = 1 and i = 16 ) should be localized at the the border between hydrophobic and 
hydrophilic regions (10 < r < 13) of a micelle. In this case the most adapted sequence is the the triblock polymer 
with two hyrdophilic ends and hydrophobic block in the middle. C) The ends should be located in the hydrophilic 
region (13 < r < 16) of the micelle. A tri-block copolymer with hydrophilic ends is the most adapted sequence. 
D) The whole polymer should be located in the hydrophilic region (13 < r < 16) . Tri-block copolymer with a 

(6)C̄i(x, y, z) =
1

Z

∑

Ŵ

wŴe
−H(Ŵ)Ci(Ŵ, x, y, z)

(7)θMD ∝

M
∑

i=1

∑

r∈D

C̄i(r)

8 10 12 14 16
Fastest

Slowest

Figure 5.  (A) Predicted fastest patterns (Min) and slowest patterns (Max), according to the mean escape time 
τ for a fixed ratio of hydrophobic (black) and hydrophilic (white) monomers, NT/(NT + NH ) = 1/2 . Shown up 
to length N = 16 , while similar alternating patterns are observed for longer polymers (up to N = 24 , not shown 
for clarity). (B) The corresponding mean escape time τ of the slowest and fastest patterns as a function of the 
polymer length N for a fixed ratio, NT/(NT + NH ) = 1/2.
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amphiphilic block in the middle and two hydrophobic ends are the most adapted sequences, while alternating 
copolymer is the less adapted.

Reversible links and adaptive topology
In this section we introduce more complex molecular structures such as reversible links between molecules and 
hierarchical branching of molecules.

The increased complexity of the topology of the molecules allows for more degrees of freedom for the molecu-
lar design and provides a flexibility for adapting the molecule structure and composition to the changes of 
the environment in the accordance with the concept of dynamic combinatorial libraries for supra-molecular 
 chemistry36. The range of complex structures that can be obtained with this strategy have received the name 
“dynamers”37,38 and some of them are depicted in Fig. 1. For example, reversible and dynamic links can be formed 
by hydrogen bonds or by recognition-directed reversible polyassociation through complementary interaction 
groups or reversible polycondensation and reversible functional groups. Classical example of a simple reversible 
system is a linear living  polymer39. These various types of the reversibility can be implemented in a mean field 
through effective interactions between monomers and the solvent, while the average composition, length distri-
butions, etc, are determined by the thermodynamic equilibrium. Shifting the equilibrium by changing external 
conditions leads to selectivity and responsiveness of a reversible self-assembled system.

Hydrogen bonding. One of the form of reversible links is hydrogen bonds either between components or 
between monomers and water molecules. One of well-known examples is a polyethylene oxide (PEO) in water, 
which is water-soluble due to the formation of dynamic hydrogen bonds with  water40–42. Hydrogen bonding can 
be described within a two-state model, where a monomer can be in two states: a monomer forming a hydrogen 
bond with water and a monomer without a hydrogen  bond43. These monomers have different interaction param-
eters with water, while their position and number are determined from chemical equilibrium. The origin of two 
states is the gauche-trans equilibrium of monomer conformations that have different probabilities to form a 
hydrogen bond with water. Higher polymer concentration makes it more difficult to form a hydrogen bond, thus 
the probability to be in one or another state is concentration dependent.
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Figure 6.  The localization problem of the given (purple) monomers in two concentric layers: hydrophobic core 
(red) and hydrophilic corona (blue). On the left: a schematic illustration of the criteria, on the right: three most 
probable and three less probable sequences obeying the criteria. Black is hydrophobic and white is hydrophilic 
monomers. (A) Central monomer i = 8 should be localized in the center of the micelle, 0 < r < 2 , boundaries 
sketched as  D- and  D+; (B) polymer ends i = 1 and i = 16 should be localized at the border between the core 
and the corona, 10 < r < 13 ; (C) Polymer ends i = 1 and i = 16 should be localized in the corona, 13 < r < 16 ; 
(D) All monomers i = 1, . . . , 16 should be localized in the corona 13 < r < 16.
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As an example, consider a linear polymer consisting of N = 16 monomers, where white monomers corre-
spond to hydrogen bonding (hydrophilic) and black blocks correspond to free monomers (hydrophobic). The 
fraction of blocks is fixed to 50% and controlled by external conditions, but the position is not fixed and is coupled 
with the polymer concentration: φp = 1.0− 1.0/(1.0+ exp(−r + 9.0)) corresponds to a dense globule, solid line 
in Fig. 7C and φp = 0.5− 0.5/(1.0+ exp(−r + 9.0)) for a sparse globule, dashed line. In turn, the conformation 
with exact sequence of white and black blocks, depends on the distribution of the hydrophilic and hydrophobic 
blocks along the chain, Fig. 7. Running the search for a composition of a polymer in its own concentration field 
in a radial symmetry leads to the following results: the fraction of hydrogen bonds increases as the polymer 
density decreases with the distance from the center. If the density gradient of a polymer concentration is shifted, 
for example, due to changing external conditions such as temperature or pH, the fraction of hydrogen bonds 
would adjust to the field and the hydrogen bonds would re-distribute to adapt to the field.

Hierarchical branching. Often molecules are not linear and can have a complex topology such as branches 
or side groups. Branching provides an additional degree of freedom for the design of adaptive polymers. Con-
sidering the probability of branching θ for each generated monomer during Rosenbluth generation, different 
branching topologies can be obtained, Fig. 8. With this, the total number of branching points and the functional-
ity of branches (number of branches at the branching point) can be controlled through external fields.

Hierarchical branching in Rosenbluth sampling is introduced as follows: the first monomer is placed at a ran-
dom position in the simulation box. Next monomers are added one after another following a classic Rosenbluth 
chain growth algorithm and checking their self-avoidance. Starting from the third monomer, the polymer can 
branch with a given probability of branching θ which is checked according usual Monte Carlo procedure. The 
branching functionality f is introduced as the number of branches per branching point. Each branch is then fol-
lowed in a recursive way and the random chain growth process continue until it reaches the given total polymer 
length. The resulting polymer provides the distribution of branches that follows the total density distribution, 
Fig. 8.

Such an approach allows to create molecules with adaptive topology that is controlled by external conditions. 
Examples could be  polyimines37,38 derived from various diamines and dialdehydes that are sensitive to changes 
in absorption and fluorescence spectra as well as in their solubility in organic and aqueous media.

Hybrid methods
Exact enumeration-selection computational strategy is a powerful tool for relatively small sets of conformation 
space. If the number of the building blocks increases, the number of conformations increases rapidly with the 
length N and generation of all conformations becomes impractical. One of the strategy is to use representative 
sampling, i.e. large enough sampling to ensure that the averages statistically do not depend on sampling, instead 
of a full sampling. This is also the solution for off-lattice models, where the method is readily generalized the 
same way as a standard SCMF theory with a representative  sampling27. Further, the enumeration method can 
be combined and complemented with heuristic methods for efficient search in the parameter space such as 
neural networks (NNs), genetic algorithms or any other method for exploration in large parameter space. This 

Figure 7.  Dynamic formation of hydrogen bonds between monomers and water of a linear PEO chain. (A) 
A model of a two-state polymer, where black monomers correspond to the formation of a hydrogen bond 
with wate and white monomers correspond to no bond. The probability to have a bond is coupled with the 
polymer concentration. (B) Most probable configuration in the field of a polymer concentration. (C) Polymer 
concentration and the fraction of hydrogen bonds (orange) versus the distance from the center r of a two-state 
polymer in the polymer concentration field (blue). Dashed lines correspond to a sparse globule; (D) Distribution 
of block sizes blocks in the concentration field and their relative frequency, f = fHB/(fHB + fno−HB). The 
corresponding H-bond distribution is proportional to solvent volume fraction.
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combination still relies on large conformational sampling to properly sample the statistical conformations of a 
single chain.

To illustrate such coupling and complementarity of the methods, a special neural network was designed to 
learn the relation between the structure (block copolymer sequence) and the translocation time through the 
membrane (target fitting function) with the same model parameters as we used for exact enumeration for the 
problem of finding a polymer sequence for optimal translocation through the membrane (first example). The 
method and the structure of the network is described in Ref.35.

The comparison allows to reveal the fundamental differences in the approaches and highlight the conceptual 
strengths and weaknesses of both approaches that can be combined. The enumeration-selection strategy implies 
direct exploration of the whole conformational and parameter space. This gives exact answer what is the optimal 
composition without the risk to be trapped in subset of parameters corresponding to a local minimum. In turn, 
NN provides the prediction for optimal solution based on training set and entirely depends on how large and 
complete this set is. Machine learning does not guarantee that the predicted solution is the true optimal solution 
corresponding to the global minimum, thus often called a black box without possibility to verify the predicted 
results. However, NNs are generally efficient in exploration of large sets of parameters, while the time of compu-
tation for achieving the optimal solution with enumeration strategy increases exponentially with the size of the 
system and number of parameters to explore, limiting its applicability. Thus, a combination of machine learning 
with exact enumeration-selection strategy with a balanced sampling generated by exact enumeration for training 
of NN could be the best strategy for solving design problems.

The comparison between the performances of enumeration-selection and neural network methods is dem-
onstrated on the example of a sequence of an amphiphilic polymer of length N = 14 monomers. In particular, 
the performance of NN depends on the size of the training set. This training set (training window) is generated 
by exact enumeration for which the result is known exactly. The prediction of NN is evaluated on a predicted 
set, while the performance of NN is defined as a ratio between predicted and training sets. NN can correctly 
predict much larger sets for the price of precision. In this example, the targeted precision for translocation time 
τ is given as a mean squared error (MSE) δ of the fitting function log τ , while the computational efficiency is 
measured as (1/δ)× (1/νclock) , where νclock is the total number of (parallel) clock cycles (in Tera-clocks) spent 
for the prediction, Fig. 9. The performance is evaluated as the fraction between predicted sequences to sequences 
used for training (sampling set obtained by exact enumeration).

Three conclusions can be made from the comparison with NN method: (i) A high precision of machine 
learning prediction can only be achieved by a large training set, which can be generated by exact enumeration, 
and as a counterexample, the yellow curve is larger than the red or pink or green(s) curves in Fig. 9. (ii) For a 
given precision, the NN reduces the computational effort most for the higher precision. (the slope of the orange 
curve is smaller than that of the blue). (iii) Computational efficiency of a hybrid method, which includes exact 
enumeration of the training set and NN for prediction for “unseen” conformations set, relies on the size of the 
training set. For any given precision, a higher fraction of NN contribution reduces the computational cost.

In brief, the exact enumeration can be used as a ground truth for creation of the training set for training 
the neural network, while machine learning can extend the method for exploration of large systems and large 
parameter space (heuristic exploration), thus providing a powerful combination of inter-related complementary 
methods.

Figure 8.  Adaptive branching of the molecules in the concentration field. (A) A model of a branched polymer, 
where black cubes designate hydrophobic monomers and white cubes designate hydrophilic monomers. The 
branching point is designated with two bonds to branches. (B) Most probable configuration of the branching 
polymer with a given probability of branching coupled with the field of polymer concentration. (C) Polymer 
concentration (blue) and the distribution of branching points of an adaptive polymer as a distance from the 
center r, with a given probability of branching θ = 0.2 . Dashed lines correspond to a sparse globule. (D) 
Example of a 3D structure of a branched polymer conformation used in the study.
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Conclusions
We presented exhaustive search method for design of composition of polymer sequences in the mean field 
approximation. This method allows to solve inverse (or design) problem with brute-force solution of direct 
problem. The key of performance is massive parallelization on GPUs which almost eliminates communication 
between cores which makes this method significantly more efficient than existing computationally expensive 
heuristic optimization methods such as deep learning, neural networks or genetic algorithms. The performance 
of the method was demonstrated on two examples: polymer sequence that translocate through lipid bilayer with 
a minimal time and the the sequence with best affinity to spherical core-shell structure, representing a micelle. 
This method is readily generalized to wide spectra of inverse (or design) and combinatorial search problems in 
chemistry and physics.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

Received: 30 March 2022; Accepted: 3 August 2022

References
 1. Inverse Problems in Engineering Mechanics III (Elsevier, 2002). https:// linki nghub. elsev ier. com/ retri eve/ pii/ B9780 08043 9518X 

50000.
 2. Stanley, M. B., Osher, S. J. & Yablonovitch, E. Inverse problem techniques for the design of photonic crystals. IEICE Trans. Electron. 

87, 258–265 (2004).
 3. Benning, M. & Burger, M. Modern regularization methods for inverse problems. Acta Numerica 27, 1–111 (2018). https:// www. 

cambr idge. org/ core/ journ als/ acta- numer ica/ artic le/ modern- regul ariza tion- metho ds- for- inver se- probl ems/ 1C84F 0E91B F20EC 
36D8E 846EF 8CCB8 30.

 4. Delsanto, S., Griffa, M. & Morra, L. Inverse Problems and Genetic Algorithms. In Delsanto, P. P. (ed.) Universality of Nonclassical 
Nonlinearity, 349–366 (Springer New York, New York, NY, 2006). http:// link. sprin ger. com/ 10. 1007/ 978-0- 387- 35851-2_ 22.

 5. Adler, J. & Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Problems 33, 124007 (2017). 
http:// stacks. iop. org/ 0266- 5611/ 33/i= 12/a= 124007.

 6. Kim, K. et al. Deep-learning-based inverse design model for intelligent discovery of organic molecules. npj Computational Materials 
4, 67 (2018). https:// www- nature- com. sabidi. urv. cat/ artic les/ s41524- 018- 0128-1.

 7. Behr, J.-P. (ed.) The lock-and-key principle: The state of the art–100 years on. No. v. 1 in Perspectives in supramolecular chemistry 
(Wiley, Chichester [England] ; New York, 1994).

 8. Conrad, M. Molecular computing: The lock-key paradigm. Computer 25, 11–20 (1992).
 9. Thalmann, F. A schematic model for molecular affinity and binding with Ising variables. Eur. Phys. J. E 31, 441–454. https:// doi. 

org/ 10. 1140/ epje/ i2010- 10600-9 (2010).
 10. Yue, K. & Dill, K. A. Inverse protein folding problem: Designing polymer sequences. Proc. Natl. Acad. Sci. USA89, 4163–4167 

(1992). https:// www. ncbi. nlm. nih. gov/ pmc/ artic les/ PMC52 5653/.
 11. Torquato, S. Inverse optimization techniques for targeted self-assembly. Soft Matter5, 1157 (2009). http:// xlink. rsc. org/? DOI= 

b8142 11b.
 12. Osypenko, A., Dhers, S. & Lehn, J.-M. Pattern generation and information transfer through a liquid/liquid interface in 3D Con-

stitutional dynamic networks of imine ligands in response to metal cation effectors. J. Am. Chem. Soc. 141, 12724–12737. https:// 
doi. org/ 10. 1021/ jacs. 9b054 38 (2019).

Figure 9.  Evaluation of the performance of the hybrid prediction method, based on convolutional neural 
network (CNN) with exact enumeration used as a training set. δ is the mean square error (target precision) and 
νclock is the number of processor clock cycles multiplied by the number of parallel threads employed in units of 
 1012 cycles.

https://linkinghub.elsevier.com/retrieve/pii/B9780080439518X50000
https://linkinghub.elsevier.com/retrieve/pii/B9780080439518X50000
https://www.cambridge.org/core/journals/acta-numerica/article/modern-regularization-methods-for-inverse-problems/1C84F0E91BF20EC36D8E846EF8CCB830
https://www.cambridge.org/core/journals/acta-numerica/article/modern-regularization-methods-for-inverse-problems/1C84F0E91BF20EC36D8E846EF8CCB830
https://www.cambridge.org/core/journals/acta-numerica/article/modern-regularization-methods-for-inverse-problems/1C84F0E91BF20EC36D8E846EF8CCB830
http://link.springer.com/10.1007/978-0-387-35851-2_22
http://stacks.iop.org/0266-5611/33/i=12/a=124007
https://www-nature-com.sabidi.urv.cat/articles/s41524-018-0128-1
https://doi.org/10.1140/epje/i2010-10600-9
https://doi.org/10.1140/epje/i2010-10600-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC525653/
http://xlink.rsc.org/?DOI=b814211b
http://xlink.rsc.org/?DOI=b814211b
https://doi.org/10.1021/jacs.9b05438
https://doi.org/10.1021/jacs.9b05438


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14664  | https://doi.org/10.1038/s41598-022-17938-x

www.nature.com/scientificreports/

 13. Holton, T. A., Pollastri, G., Shields, D. C. & Mooney, C. CPPpred: Prediction of cell penetrating peptides. Bioinformatics29, 
3094–3096 (2013). https:// acade mic. oup. com/ bioin forma tics/ artic le/ 29/ 23/ 3094/ 246449.

 14. Molesky, S. et al. Inverse design in nanophotonics. Nature Photonics12, 659 (2018). https:// www- nature- com. sabidi. urv. cat/ artic 
les/ s41566- 018- 0246-9.

 15. Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. Machine learning inverse problem for topological photonics. Commun. Phys. 
1, 57 (2018). https:// www- nature- com. sabidi. urv. cat/ artic les/ s42005- 018- 0058-8.

 16. Lehn, J.-M. Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries. Chem. A Eur. J.5, 2455–2463 (1999). https:// 
onlin elibr ary. wiley. com/ doi/ abs/ 10. 1002/% 28SICI% 291521- 3765% 28199 90903% 295% 3A9% 3C2455% 3A% 3AAID- CHEM2 455% 
3E3.0. CO% 3B2-H.

 17. McGreevy, R. L. & Pusztai, L. Reverse Monte Carlo Simulation: A new technique for the determination of disordered structures. 
Mol. Simul. 1, 359–367. https:// doi. org/ 10. 1080/ 08927 02880 80809 58 (1988).

 18. McGreevy, R. L. Reverse Monte Carlo modelling. J. Phys.: Condens. Matter 13, R877 (2001). http:// stacks. iop. org/ 0953- 8984/ 13/
i= 46/a= 201.

 19. Playford, H. Y., Owen, L. R., Levin, I. & Tucker, M. G. New insights into complex materials using reverse Monte Carlo modeling. 
Annual Review of Materials Research 44, 429–449 (2014). https:// doi. org/ 10. 1146/ annur ev- matsci- 071312- 121712.

 20. Nobile, M. S., Cazzaniga, P., Tangherloni, A. & Besozzi, D. Graphics processing units in bioinformatics, computational biology 
and systems biology. Brief Bioinform 18, 870–885 (2017). https:// acade mic. oup. com/ bib/ artic le/ 18/5/ 870/ 25627 73.

 21. Hill, M. D. & Marty, M. R. Amdahl’s Law in the Multicore Era. Computer 41, 33–38 (2008).
 22. Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. PNAS 117, 30039–30045 (2020). https:// www. pnas. org/ 

conte nt/ 117/ 48/ 30039. Publisher: National Academy of Sciences Section: Colloquium on the Science of Deep Learning.
 23. Daoulas, K. C. & Muller, M. Single Chain in Mean Field Simulations: Quasi-Instantaneous Field Approximation and Quantitative 

Comparison with Monte Carlo Simulations. J. Chem. Phys. 125, 184904 (2006).
 24. Szleifer, I., Ben-Shaul, A. & Gelbart, W. M. Chain organization and thermodynamics in micelles and bilayers. II. Model calcula-

tions. J. Chem. Phys. 83, 3612 (1985). http:// link. aip. org/ link/ JCPSA6/ v83/ i7/ p3612/ s1& Agg= doi.
 25. Muller, M., Katsov, K. & Schick, M. Biological and synthetic membranes: What can be learned from a coarse-grained description? 

Phys. Rep. 434, 113–176 (2006). http:// linki nghub. elsev ier. com/ retri eve/ pii/ S0370 15730 60029 24.
 26. Jones, R. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys.87, 897–923 (2015). https:// link. 

aps. org/ doi/ 10. 1103/ RevMo dPhys. 87. 897.
 27. Pogodin, S. & Baulin, V. A. Equilibrium insertion of nanoscale objects into phospholipid bilayers. Curr. Nanosci. 7, 721–726 (2011).
 28. Pogodin, S. & Baulin, V. A. Coarse-grained models of phospholipid membranes within the single chain mean field theory. Soft 

Matter 6, 2216–2226 (2010).
 29. Guo, Y. & Baulin, V. GPU implementation of the Rosenbluth generation method for static Monte Carlo simulations. Comput. Phys. 

Commun.216, 95–101 (2017). http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0010 46551 73009 29.
 30. Sommer, J.-U., Werner, M. & Baulin, V. A. Critical adsorption controls translocation of polymer chains through lipid bilayers and 

permeation of solvent. EPL (Europhysics Letters)98, 18003 (2012). http:// stacks. iop. org/ 0295- 5075/ 98/i= 1/a= 18003? key= cross ref. 
f866c b2ca6 bf608 47686 dcf7d b2acb fe.

 31. Werner, M., Sommer, J.-U. & Baulin, V. A. Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and 
enhance local solvent permeability. Soft Matter8, 11708 (2012). http:// xlink. rsc. org/? DOI= c2sm2 6008e.

 32. Werner, M., Bathmann, J., Baulin, V. A. & Sommer, J.-U. Thermal Tunneling of Homopolymers through Amphiphilic Membranes. 
ACS Macro Lett. 247–251 (2017). http:// pubs. acs. org/ doi/ abs/ 10. 1021/ acsma crole tt. 6b009 80.

 33. Werner, M. & Sommer, J.-U. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid 
bilayer membranes. Biomacromol 16, 125–135. https:// doi. org/ 10. 1021/ bm501 266x (2014).

 34. Rosenbluth, M. N. & Rosenbluth, A. W. Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23, 
356–359 (1955).

 35. Werner, M., Guo, Y. & Baulin, V. A. Neural network learns physical rules for copolymer translocation through amphiphilic barriers. 
npj Comput. Mater.6, 72 (2020). https:// www. nature. com/ artic les/ s41524- 020- 0318-5. Number: 1 Publisher: Nature Publishing 
Group.

 36. Fujii, S. & Lehn, J.-M. Structural and functional evolution of a library of constitutional dynamic polymers driven by Alkali Metal 
Ion recognition. Angewandte Chemie Int. Edition 48, 7635–7638. https:// doi. org/ 10. 1002/ anie. 20090 2512 (2009).

 37. Lehn, J.-M. Dynamers: Dynamic molecular and supramolecular polymers. Progress Polym. Sci. 30, 814–831 (2005). http:// www. 
scien cedir ect. com/ scien ce/ artic le/ pii/ S0079 67000 50007 30.

 38. Lehn, J.-M. Dynamers: From supramolecular polymers to adaptive dynamic polymers. In Percec, V. (ed.) Hierarchical Macromo-
lecular Structures: 60 Years after the Staudinger Nobel Prize I, vol. 261, 155–172 (Springer International Publishing, Cham, 2013). 
http:// link. sprin ger. com/ 10. 1007/ 12_ 2013_ 267.

 39. Cates, M. E. & Candau, S. J. Statics and dynamics of worm-like surfactant micelles. J. Phys.: Condens. Matter 2, 6869–6892 (1990). 
https:// doi. org/ 10. 1088% 2F0953- 8984% 2F2% 2F33% 2F001 Publisher: IOP Publishing.

 40. Karlstroem, G. A new model for upper and lower critical solution temperatures in poly(ethylene oxide) solutions. J. Phys. Chem. 
89, 4962–4964. https:// doi. org/ 10. 1021/ j1002 69a015. Publisher: American Chemical Society (1985).

 41. Dormidontova, E. Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macro-
molecules 35, 987–1001 (2002).

 42. Bekiranov, S., Bruinsma, R. & Pincus, P. Solution behavior of polyethylene oxide in water as a function of temperature and pres-
sure. Phys. Rev. E 55, 577–585 (1997).

 43. Baulin, V. A. & Halperin, A. Concentration dependence of the flory chi parameter within two-state models. Macromolecules 35, 
6432–6438 (2002). http:// pubs. acs. org/ doi/ abs/ 10. 1021/ ma020 296o.

Acknowledgements
The authors gratefully acknowledge Prof. Jean-Marie Lehn for valuable comments that improved the manu-
script. VAB acknowledges financial assistance from the Ministerio de Ciencia, Innovación y Universidades 
of the Spanish Government through research project PID2020-114347RB-C33, financed by MCIN/ AEI 
10.13039/501100011033. YG acknowledges funding from Natural Science Foundation of Jiangsu Province 
(BK20221437), Science and Technology Innovation 2030 (2021ZD0201301) and Academic Consortium 21 (SPF).

Author contributions
Y.G. performed the calculations of the pattern search; M.W. performed the benchmark with neural network; 
V.A.B. designed the research. All authors contributed with writing and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

https://academic.oup.com/bioinformatics/article/29/23/3094/246449
https://www-nature-com.sabidi.urv.cat/articles/s41566-018-0246-9
https://www-nature-com.sabidi.urv.cat/articles/s41566-018-0246-9
https://www-nature-com.sabidi.urv.cat/articles/s42005-018-0058-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3765%2819990903%295%3A9%3C2455%3A%3AAID-CHEM2455%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3765%2819990903%295%3A9%3C2455%3A%3AAID-CHEM2455%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3765%2819990903%295%3A9%3C2455%3A%3AAID-CHEM2455%3E3.0.CO%3B2-H
https://doi.org/10.1080/08927028808080958
http://stacks.iop.org/0953-8984/13/i=46/a=201
http://stacks.iop.org/0953-8984/13/i=46/a=201
https://doi.org/10.1146/annurev-matsci-071312-121712
https://academic.oup.com/bib/article/18/5/870/2562773
https://www.pnas.org/content/117/48/30039
https://www.pnas.org/content/117/48/30039
http://link.aip.org/link/JCPSA6/v83/i7/p3612/s1%20&Agg=doi
http://linkinghub.elsevier.com/retrieve/pii/S0370157306002924
https://link.aps.org/doi/10.1103/RevModPhys.87.897
https://link.aps.org/doi/10.1103/RevModPhys.87.897
http://www.sciencedirect.com/science/article/pii/S0010465517300929
http://stacks.iop.org/0295-5075/98/i=1/a=18003?key=crossref.f866cb2ca6bf60847686dcf7db2acbfe
http://stacks.iop.org/0295-5075/98/i=1/a=18003?key=crossref.f866cb2ca6bf60847686dcf7db2acbfe
http://xlink.rsc.org/?DOI=c2sm26008e
http://pubs.acs.org/doi/abs/10.1021/acsmacrolett.6b00980
https://doi.org/10.1021/bm501266x
https://www.nature.com/articles/s41524-020-0318-5
https://doi.org/10.1002/anie.200902512
http://www.sciencedirect.com/science/article/pii/S0079670005000730
http://www.sciencedirect.com/science/article/pii/S0079670005000730
http://link.springer.com/10.1007/12_2013_267
https://doi.org/10.1088%2F0953-8984%2F2%2F33%2F001
https://doi.org/10.1021/j100269a015
http://pubs.acs.org/doi/abs/10.1021/ma020296o


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14664  | https://doi.org/10.1038/s41598-022-17938-x

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 17938-x.

Correspondence and requests for materials should be addressed to V.A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-17938-x
https://doi.org/10.1038/s41598-022-17938-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficient enumeration-selection computational strategy for adaptive chemistry
	Enumeration-selection strategy
	Basic principles. 
	Realization on a cubic lattice. 

	Adaptive copolymer sequence
	Translocating polymers. 
	Constrained and confined polymers. 

	Reversible links and adaptive topology
	Hydrogen bonding. 
	Hierarchical branching. 

	Hybrid methods
	Conclusions
	References
	Acknowledgements


