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ABSTRACT: The ability to recognize molecular patterns is
essential for the continued survival of biological organisms, allowing
them to sense and respond to their immediate environment. The
design of synthetic gene-based classifiers has been explored
previously; however, prior strategies have focused primarily on
DNA strand-displacement reactions. Here, we present a synthetic in
vitro transcription and translation (TXTL)-based perceptron
consisting of a weighted sum operation (WSO) coupled to a
downstream thresholding function. We demonstrate the application
of toehold switch riboregulators to construct a TXTL-based WSO
circuit that converts DNA inputs into a GFP output, the
concentration of which correlates to the input pattern and the
corresponding weights. We exploit the modular nature of the WSO
circuit by changing the output protein to the Escherichia coli σ28-factor, facilitating the coupling of the WSO output to a downstream
reporter network. The subsequent introduction of a σ28 inhibitor enabled thresholding of the WSO output such that the expression
of the downstream reporter protein occurs only when the produced σ28 exceeds this threshold. In this manner, we demonstrate a
genetically implemented perceptron capable of binary classification, i.e., the expression of a single output protein only when the
desired minimum number of inputs is exceeded.
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■ INTRODUCTION

Fundamental to the survival of living organisms is their ability
to process a wide variety of information, continuously sensing,
and, in turn, adapting to their surroundings. Synthetic biology
employs the use of naturally occurring biological parts
implemented in synthetic networks designed to either mimic
existing or introduce novel functionalities to both living cells
and artificial platforms.1−5 The parallels in information
processing between living systems and electronic devices
have led to the development of numerous synthetic biological
logic circuits inspired by their counterparts in the field of
electrical engineering.6−13 While the development of such
circuits can be seen as a purely scientific exercise,14−16 these
systems are increasingly being applied toward practical
applications such as biomarker recognition for medical
diagnostics,17−21 the detection of pollutants,22,23 and a variety
of cell therapies.24−27 Herein, the ability to differentiate
between various unique biomarkers, as well as combinations
thereof, and the subsequent categorization of biomarker
patterns into identifiable classes is critical.
Due to their innate ability to function as classifiers, there has

been broad interest in the development of synthetic biological
neural networks.28−35 Perceptrons (Figure 1a), the most basic

building block found in neural networks, act as linear
classifiers, accepting a range of inputs, each with a
corresponding weight, and provide a single binary output.36,37

Perceptrons compute a weighted sum of the inputs and their
weights, which undergoes thresholding using an activation
function to return a single output value corresponding to the
classification of the inputs provided. In addition to the
simplistic design of a perceptron, it is their ability to accept
analog input signals and return a single digital output to
perform binary classifications that has led to the prominence of
perceptron-based classifiers within the field of synthetic
biology.20,31,33,38 Furthermore, the possibility to expand the
basic perceptron circuit by introducing additional layers and
the inclusion of memory devices39−42 in the system is pushing
the development of biological neural networks that combine
molecular pattern classification and molecular data storage.43
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The versatile and highly programmable nature of DNA and
RNA has proven to be exceptionally useful when performing
biomolecular computations.25,43−53 This widespread usage
stems from the ability to rationally design novel DNA and
RNA strands, which hybridize predictably with complementary
constructs. A majority of the previously published classification
networks utilize single-stranded DNA templates and rely upon
binding competition and DNA strand displacement reac-
tions.38,44,54 However, designs based solely on DNA strand
displacement reactions, where DNA strands are prepared
synthetically and subsequently combined, lack the information
storage capabilities and the broader ability to integrate the
circuits into larger, more complex biological systems due to a
lack of transcriptional and translational control. Here, we

present a genetically implemented perceptron based on in vitro
transcription and translation (TXTL) reactions.55−59

The cell-free genetically implemented perceptron acts as an
ON/OFF binary classifier, with the expression of a reporter
protein correlating to an ON signal. The final perceptron
design consists of two distinct elements: a weighted sum
operation (WSO) implemented at the RNA level and a post-
translational thresholding reaction. The TXTL-based WSO
utilizes toehold switch riboregulators, a class of de novo
designed translational riboregulators comprising a cognate pair
of RNAs60−62 (Figure 1b). A transducer strand is implemented
to regulate translation, with a cognate trans-acting RNA
serving to modulate its biological activity.60 In the context of
our implemented WSO, the transducer strands and trans-

Figure 1. (a) Overview of a perceptron. A range of inputs, each with a unique weight, are summed, with the weighted sum output serving as the
input of an activation function, which determines the perceptron output. (b) RNA toehold switch. The transcription of RNA from DNA inputs
yields trans-acting RNAs that activate the RNA riboregulator, resulting in the translation of a gene. The DNA templates encoding the trans-acting
and transducer RNA strands are designated as the input and weight, respectively. Binding of the trans-acting strand to the toehold of the transducer
strand initiates toehold-mediated RNA−RNA strand displacement, whereby the hairpin sequence is unfolded and the ribosome-binding site is
exposed, allowing for the expression of the output gene: deGFP. TA and H refer to the trans-acting strand and the hairpin sequence of the
transducer strand, respectively. TX: transcription and TL: translation. (c) deGFP expression levels achieved when combining a single input and
weight pair, for a range of concentrations. The bar height corresponds to the average of two data points (dots). (d) Normalized relative expression
for each input in the presence of on- and off-target toehold switches. Each unique input (5 nM) is exposed to each of the weights (with the
concentration corresponding to the weight pattern) in isolation, and the end-point expression level is recorded following a batch expression
experiment, as described in the Methods section. The bar height corresponds to the average of three data points (dots). For each input, the data
were normalized by dividing the average expression level by the average expression level determined for the on-target (i.e., cognate input and
weight pair) reaction. * p < 0.001, ** p < 0.006, and *** p < 0.02. (e) Expression of each unique input (5 nM) in the presence of all three weights
(1, 5, and 7.5 nM, respectively, for weights 1, 2, and 3). The control was performed in the presence of the weight pattern, without the addition of
any inputs. Input and weight concentrations were optimized to ensure approximately equal expression levels for all inputs. Bars depict the average
expression level of at least three experiments (dots). ns = not significant and * p < 0.0001. All experiments were conducted using linear DNA
constructs in a self-made cell lysate solution under batch conditions, as specified in the Methods section.
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acting strands serve as the weights and inputs, respectively.
Inputs initiate toehold-mediated RNA−RNA strand displace-
ment reactions upon the weights, which have been designed to
form a hairpin such that bases in the regions surrounding the
ribosome-binding site (RBS) and start codon are sequestered.
The expression of genes encoded on the weight construct is
thereby inhibited until a complementary input is provided,
which first binds to a single-stranded toehold sequence at the
5′ end of the hairpin before completing a branch migration
process exposing the RBS and start codon, enabling ribosome
binding and subsequent gene expression. The WSO output is
determined as the sum of the total concentration of protein
expressed by all of the unique input and weight pairs.
The toehold switch technology allows us to couple the

output of a WSO at the RNA level to the production of a
protein. To realize a TXTL-based perceptron, we implemented
an ultrasensitive sink at the protein level based on molecular
titration, resulting in a tunable threshold of the WSO
output.63,64 In this way, the perceptron only presents an
output signal (ON state) when the WSO output concentration
exceeds that of the threshold set by the concentration of the
titrant. By tuning the concentration of the titrant, the
classification boundary of the perceptron can be controlled,
with higher titrant concentrations requiring greater concen-
trations of the WSO output to be produced before the ON
state of the perceptron is reached. Increasing the WSO output
is achieved by increasing the overall concentration of inputs
provided to the WSO, either by increasing the concentration of
individual inputs or by increasing the number of unique inputs
provided. The determination and selection of a specific
threshold allow the perceptron to perform a classification of
the number of inputs provided to the WSO; only displaying
the ON state when a specified minimum number of inputs has
been provided.
Here, we present the successful in vitro implementation of a

novel three-input TXTL-based perceptron, utilizing both
RNA- and protein-level regulation technologies to construct
a DNA input classifier. Although the addition of transcriptional
and translational processes increases the overall complexity of
the network design when compared to systems relying solely
upon DNA strand displacement reactions,38,44,54 it also offers
significant advantages. The application of genes encoding
protein sequences, as opposed to designing DNA templates
solely for strand displacement, enables the up- and down-
stream usage of these proteins, greatly expanding the
functionality of these circuits. Furthermore, the interchange-
ability of both the DNA inputs and the protein outputs
facilitates the implementation of this perceptron in larger
complex synthetic genetic networks.

■ RESULTS
Construction of the genetic perceptron occurred in several
distinct phases, with initial research focused on the develop-
ment of two WSO networks: the first incorporating the
reporter protein directly on the weight templates and the
second utilizing the WSO output to regulate the expression of
a downstream reporter construct. The latter of these WSO
circuits was subsequently used to implement the perceptron via
addition of a downstream ultrasensitive sink. The genetic
perceptron was designed for in vitro implementation, with all
experiments occurring under batch conditions using a self-
made cell lysate derived from bacteria (Escherichia coli, see the
Methods section).55,56 All of the genetic constructs for the

inputs, weights, and the independent reporter were con-
structed using a Golden Gate assembly-based cloning
method.57 The DNA constructs used were optimized for
RNA stability as well as the efficacy of the input−weight pair,
as reported by Pieters et al.62 Polymerase chain reactions
(PCR) were used to prepare linear DNA templates for use in
the experiments (see the Methods section).

Input−Weight Pair Characterization. Three unique
input−weight pairs were constructed to perform WSOs.
Initially, to investigate the behavior of input−weight pairs
and to investigate their ability to function in a WSO, a
fluorescent reporter protein (deGFP) was encoded down-
stream of the transducer construct hairpin sequence. In this
manner, binding of the trans-acting RNA strand (obtained via
transcription of the input DNA template) to the toehold of the
transducer RNA strand (obtained via the transcription of the
weight DNA template) allowed the direct expression of the
deGFP reporter (Figure 1b).
The independent expression levels for each of the three

inputs, solely in the presence of their cognate weight was
determined for a range of both input and weight concen-
trations (Figure 1c). Despite using identical promoter sites for
all inputs and weights, large differences in the reporter end-
point concentration of the different input−weight pairs can be
seen, revealing disparities in their relative expression strengths.
However, the end-point expression levels increased predictably
as the concentrations of both the input and weight were
increased (Figure S1).
To enable the classification of the number of inputs

provided, as opposed to the specific combination of inputs,
the end-point expression levels of each input−weight pair
should be approximately equal, such that the addition of any
input results in an equal and predictable increase in the overall
WSO output. Guided by the results provided in Figure 1c,
where the output expression for a range of input and weight
concentrations is analyzed, a standard input concentration (5
nM) was determined. Subsequently, a weight pattern was
determined, wherein the concentration of each of the unique
weights was adjusted according to the relative expression
strength of each input and weight pair. A weight pattern of
weight 1: 1 nM, weight2: 5 nM, and weight 3: 7.5 nM was
selected. Upon conducting WSOs, as well as when performing
input classification with the perceptron, all weights will be
present in concentrations equal to the weight pattern. As such,
the orthogonality of the unique input−weight pairs is critical,
ensuring that each input is only able to activate the reporter
expression of its own complementary weight. The orthogon-
ality of the input−weight pairs was determined by exposing
each input to each of the three weights in isolation. For each
input, the end-point expression levels of both on- and off-
target, where on-target indicates a cognate input−weight pair,
were divided by the end-point expression level of the on-target
reaction, revealing the relative expression levels of on- and off-
target input and weight combinations (Figure 1d). While
inputs 1 and 3 show moderate orthogonality, with both off-
target weights exhibiting at least a fivefold reduction in their
relative expression, input 2 reveals high background expression
levels in the presence of off-target weights, albeit approximately
halved with regard to the on-target expression level.
The prior determination of the orthogonality of the input−

weight pairs was conducted in isolation, as opposed to the
combination of weights provided by the weight pattern applied
during WSO experiments. Therefore, each of the inputs was
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individually exposed to the weight pattern, demonstrating the
ability of each input to activate reporter expression while
simultaneously being exposed to off-target weights (Figure 1e).
Furthermore, the end-point expression levels of the reporter
highlighted the efficacy of the chosen input concentration and
weight pattern, with each input eliciting satisfactory levels of
reporter protein expression, albeit with input 3-induced
expression presenting reduced end-point expression levels.
Direct-Expression WSO. Completing the development of

the WSO, combinations of inputs were provided to reactions
comprising all three weights in their respective concentrations.
Each additional input provided is expected to supplement the
overall pool of deGFP expressed, with the total expressed
concentration serving as a readout of the WSO (Figure 2a).
With the weight concentrations scaled relative to the
expression strength, it is expected that each additional input
will increase the total expressed concentration by an identical
amount, with the number of inputs provided determining the
expression level. Expression data revealed that the average

expression levels for single-, double-, and triple-input reactions
could be differentiated; however, the increases between these
averages were not uniform (Figure 2b). The additional
resource burden resulting from the addition of each additional
input could explain the nonlinear increase in expression
levels.65−67 Based on the reporter expression levels for single-
input reactions, a rudimentary model was developed
(Supporting Methods 1). Each input added to a WSO is
analogous to adding an additional term to the summation, with
a value equal to the input concentration (x) multiplied by the
weight concentration (w). By further multiplying each term
with a scaling factor, representing biological processes such as
transcription, translation, and RNA binding, it is possible to
predict expression levels. To determine the scaling factors α, β,
and γ, the rudimentary model function (eq 1) was fit to the
single-input expression data of the WSO experiments (Figure
2c, Supporting Methods 1).

α β γ= · · + · · + · ·x w x w x wWSO 1 1 2 2 3 3 (1)

Figure 2. (a) Schematic overview of a weighted sum operation (WSO) utilizing three unique inputs and their corresponding weights. Inputs take
the form of DNA constructs encoding trans-acting RNAs and can either be added or omitted from experiments. Transducer strand encoding DNA
constructs form the weights, with all three switches being present during all experiments. Addition of an input to the system will result in the
expression of deGFP contributing to the total sum of deGFP produced. The increase in expression because of input addition is dependent on the
weight concentration. TA and H refer to the trans-acting strand and the hairpin sequence of the transducer strand, respectively. TX: transcription
and TL: translation. (b) Average expression curves of all single-, double-, and triple-input reactions. Bold lines indicate the average of these
experiments, with the shaded regions indicating the standard deviation. For each unique combination of inputs, (3× single input, 3× double input,
and 1× triple input) a minimum of two batch experiments were conducted, as described in the Methods section. All inputs provided were 5 nM in
concentration, and all three weights were present during all reactions with the weight pattern as follows: weight 1: 1 nM, weight 2: 5 nM, and
weight 3: 7.5 nM. The expression levels were recorded every 5 min for a duration of 15 h. The average expression level per input class was
determined as the average of all reactions conducted with the specified number of inputs for each class. * p = 0.02, ** p < 0.02, and *** p = 0.001.
Figure S2 specifies the expression curve for each of the unique input combinations. (c) Model-predicted expression levels plotted against
experimentally determined values. Model parameters α, β, and γ were fit to single-input end-point expression data and subsequently used to predict
the system behavior for additional inputs (see Supporting Methods 1). Expression data were obtained from batch experiments conducted as per the
Methods section. All inputs were provided at a concentration of 5 nM, with all weights present according to the specified weight pattern. At least
three batch experiments were conducted for each unique combination of inputs.
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Due to the simplicity of the model, with a single variable for
each of the input−weight pairs, the model fit aligned with the
average expression determined from a series of triplicate
experiments. Implementing the model optimized scaling
factors, predictions of the expression levels for multi-input
experiments were made. In each case, the model prediction
exceeds the experimentally determined expression levels,
reiterating the nonlinear behavior of the WSO upon increasing
the number of inputs. The model assumes expression levels
identical to those achieved with single-input reactions,
regardless of the burden placed on the system via the
introduction of additional inputs.

Coupling WSO to a Downstream Network. Computa-
tionally, it is possible to classify single-, double-, and triple-
inputs from the results of the described WSO; however, a
biological implementation of a perceptron or a classifier using
this network is nontrivial. Instead, to facilitate a gene-based
classifier network, the deGFP reporter protein serving as the
WSO output was exchanged for the E. coli sigma factor σ28.68

In doing so, the WSO output could be coupled to the
expression of downstream genes while also allowing thresh-
olding of the WSO output, providing perceptron-like behavior.
To construct the σ28-coupled WSO network, each of the
weight constructs was altered to encode for the σ28 gene.

Figure 3. (a) Coupling of the WSO is achieved by replacing the WSO output with the σ28 sigma factor. Here, the WSO output is the total amount
of produced σ28, which serves as an activator for the downstream expression of the deGFP reporter protein. TA and H refer to the trans-acting
strand and the hairpin sequence of the transducer strand, respectively. TX: transcription and TL: translation. (b) End-point deGFP expression
levels of the reporter protein for each of the unique input and weight pairs, across a range of concentrations. The reporter DNA template
concentration was 7.5 nM. Bars indicate an average measurement of two reactions (dots). (c) End-point expression levels of each unique input in
the presence of all three weights (0.6, 0.6, and 0.8 nM for weights 1, 2, and 3, respectively). Two input concentrations (1 and 5 nM) were tested,
and a reporter template concentration of 15 nM was used. In each case, the bar represents the average expression of two individual experiments
(dots). A Grubbs outlier test was used to eliminate a statistical outlier present in the 5 nM input 1 data set. ns = not significant. (d) Experimentally
determined deGFP expression levels plotted against the model-predicted values (see Supporting Methods 2). The rudimentary model parameters
were fit to single-input end-point expression data and subsequently applied to predict expression levels for multiple-input reactions. Experimental
expression data were acquired via batch reactions where the end-point expression levels of all unique combinations of inputs (5 nM) were
determined in the presence of all weights (corresponding to the specified weight pattern) and the reporter construct (15 nM). At least three batch
experiments were conducted for each unique combination of inputs. * p < 0.0001, ** p < 0.007, and *** p < 0.02. All experiments were conducted
using linear DNA templates in a self-made cell lysate solution under batch conditions, as specified in the Methods section.
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Additionally, a reporter construct was designed, coding for the
deGFP reporter protein, which was placed under transcription
control of the P28a promoter. In the resulting system, σ28

expressed as the WSO output competes with the σ70 present in
the cell lysate for binding with core RNA polymerase (RNAP),
each forming their respective holoenzymes necessary for the
transcription of genes.69 Subsequently, the σ28 holoenzyme can
initiate transcription of the reporter construct, providing a
fluorescent readout, which is both dependent on and
correlated to the outcome of the WSO (Figure 3a).
Each of the inputs was exposed to its complementary weight

in isolation across a range of input and weight concentrations
to confirm the downstream coupling pathway while also
indicating the relative expression strengths of each of the
redesigned input−weight pairs (Figure 3b). Again, each input−
weight pair possessed a unique expression strength while
displaying predictable responses to increases in the weight
concentration. The weight concentrations applied here were
significantly reduced compared to the previous system, with
end-point expression levels decreasing at weight concentrations
above 0.8 nM in almost all cases. Similarly, the expression

levels achieved using an input concentration of 5 nM were
often comparable to those achieved using a higher 10 nM input
concentration, indicating diminishing returns when using
elevated DNA input concentrations (Figure S3). Guided by
data from Figure 3b, an updated weight pattern was
determined so as to ensure similar expression levels for each
input: weights 1 and 2: 0.6 nM and weight 3: 0.8 nM. Exposing
each input individually to the aforementioned weight pattern
resulted in statistically equal levels of reporter expression
(Figure 3c). Here, an input concentration of 5 nM resulted in
superior expression levels when compared to 1 nM input
concentrations, further indicating optimal expression con-
ditions when using 5 nM inputs.
Conducting WSOs with the coupled network showed

predictable increases in deGFP expression levels when
increasing the number of inputs provided (Figure 3d).
Appending the rudimentary model, such that the WSO output
is used as an activator for the expression of the reporter, once
more enables the computational prediction of expression levels
for multiple inputs. As with the direct-expression WSO, the
model was first fit to expression data from single-input

Figure 4. (a) Application of a thresholding mechanism, in the form of anti-σ28 allows for the creation of a TXTL-based perceptron. The anti-σ28

competitively binds to the σ28 produced during the WSO, inhibiting it from activating the expression of the reporter protein deGFP. Altering the
concentration of the anti-σ28 changes the WSO output concentration required for reporter expression to occur. (b) For each unique input
combination, the desired perceptron output or target can be determined for a range of logic functions. A ‘0’ target indicates no expression of the
reporter and a ‘1’ target indicates reporter expression. (c) Variations in the anti-σ28 concentration allowed for the experimental realization of each of
the classification functions. Expression is said to be ‘OFF’ when the expressed deGFP concentration is below 0.5 μM. The inputs (5 nM) added to
each of the batch reactions are indicated by the green circles. All three weights were present in each reaction with the following weight pattern:
weights 1 and 2: 0.6 nM and weight 3: 0.8 nM. Additionally, a 12.5 nM deGFP reporter construct was added to each reaction. The end-point
expression was determined following a batch reaction performed as described in the Methods section. The negative control (white bar) was
obtained in the presence of all weights and the reporter but lacked any of the inputs. The height of the bars corresponds to the average of at least
three experiments (dots). Significance was determined based on a one-sided t-test to determine if the mean of each unique reaction was
significantly greater than the threshold value of 0.5 μM. * p < 0.05, ** p < 0.003, *** p < 0.002, and ns = not significant.
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experiments to determine the system-specific scaling factors
(see Supporting Methods 2). Hereafter, predictions of the
expression levels were compared to the experimentally
acquired results of multi-input reactions. Despite predicting
higher expression levels, the model predictions closely replicate
the experimentally determined expression levels, which were
marginally lower than predictions in all cases. The clear
grouping of single-, double-, and triple-input expression levels
allows the classification of the system into single-, double-, or
triple-input classes by analyzing only the reporter expression
levels.
Genetically Implemented Perceptron. To demonstrate

a TXTL-based perceptron, thresholding of the WSO output
was implemented. The binding of σ28 with the core RNAP was
inhibited via the addition of the anti-σ28 protein to the system,
which competitively binds to free σ28. Furthermore, the
addition of anti-σ28 can also promote the dissociation of σ28

from the core RNAP.70 The addition of sufficient anti-σ28 is
therefore able to inhibit the expression of the deGFP reporter
(Figure 4a). By tuning the concentration of anti-σ28 supplied to
each reaction, it is possible to tune the perceptron threshold
such that the expression of the reporter requires at least one,
two, or three inputs. As shown in Figure 4b, this is analogous
to implementing “OR”, “MAJORITY”, and “AND” functions
with the perceptron. Furthermore, it highlights the ability of
the perceptron to act as a molecular classifier, which can
distinguish the number of inputs, only returning an output
when the number of provided inputs matches the desired logic
function. Experimentally, each of these classification functions
was realized by varying the concentration of anti-σ28 added to
each of the reactions (Figure 4c). As expected, by omitting the
anti-σ28, deGFP reporter expression occurred in all cases where
at least a single input was provided, correlating with the desired
OR function. Increasing the anti-σ28 concentration to 0.5 μM
resulted in reactions with fewer than two unique inputs being
unable to exceed 0.5 μM deGFP expression, the minimum
expression level required for the network output to qualify as
ON. At the same anti-σ28 concentration, reactions with at least
two inputs (i.e., the majority of inputs being present) were able
to express sufficient deGFP to classify the output signal as ON
and thereby realize the MAJORITY function. Upon increasing
the anti-σ28 concentration to 1 μM, only the three-input
reaction was able to express over 0.5 μM deGFP to provide the
ON signal, in accordance with the AND function. The
concentration of anti-σ28 required to demonstrate each of
these classification functions was found experimentally, initially
by increasing the concentration of anti-σ28 added to three-
input reactions (Figure S4), providing an upper limit for the
inhibitor concentration beyond which no deGFP expression
would occur regardless of the number of inputs. Hereafter, the
concentration was lowered incrementally until the one- and
two-input reactions were successfully inhibited. Due to the
variations in expression strength for each of the unique input
and weight pairs, it was possible to achieve scenarios wherein
only one or two of the single-input reactions was successfully
repressed (Figure S5), highlighting the importance of adjusting
the weight pattern such that each of the input and weight pairs
expressed similar levels of the reporter, thereby minimizing the
effort required to find a suitable anti-σ28 concentration.

■ DISCUSSION AND CONCLUSIONS
With this work, we demonstrate a TXTL-based perceptron,
utilizing toehold switch regulators to compute the necessary

weighted sum operations. Central to the behavior of a
perceptron is the ability to perform a binary classification of
the given inputs by applying an activation function to the
output of the WSO; in our case, a thresholding function. This
was achieved experimentally via the introduction of a σ28

inhibitor, the concentration of which determined the
classification boundary of the perceptron. The mathematical
equivalent hereof is the adaptation of the bias term within the
perceptron threshold function (eq 2).
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From eq 2, it follows that the addition of anti-σ28 to the
reactions functions as the implementation of the bias term b.
Without the inclusion of this term, the weighted sum output of
any input x with its corresponding weight w results in a greater
than zero outcome, and thus a “1” or ON output of the
thresholding function f. To obtain three unique classifiers, the
bias term of each perceptron was altered by varying the anti-σ28

concentration, whereby the overall output of the WSO
required to induce an ON state output was also altered. As
such, we have demonstrated the ability to engineer a TXTL-
based perceptron, capable of conducting three unique
classifications via changes in the inhibitor concentration.
Unique to our genetic perceptron design is the incorporation

of both transcription and translation reactions. Alternative
designs have shown the effectiveness of toehold strand
displacement reactions for the conducting of WSOs; however,
such approaches are limited with regard to the outputs they
can offer. The addition of translation enables the production of
fluorescent proteins for the straightforward readout of the
classification. Alternatively, when applied to theragnostics, the
system can be utilized to directly couple the classification of
biomarkers with the production of therapeutics specific to the
detected input pattern, providing immediate personalized
treatment for each unique patient.71 Furthermore, the
TXTL-based approach presented here offers the ability to
incorporate the perceptron design into larger genetic networks,
in particular, due to the versatility of the input and output
constructs. By substituting the current promoter site, any
upstream networks expressing transcription factors or tran-
scription inhibitors could be used to (in-)activate the
transcription of the DNA inputs. Similarly, when incorporating
the perceptron into larger complex networks, the fluorescent
reporter protein used here to quantify the perceptron output
can be replaced with an alternative, functional protein.
Similarly, both the WSO output and the reporter output
protein can be substituted for a functional RNA sequence.72

The broad range of functionalities available to RNA, including
the activation and repression of transcription, the control of
riboswitches, and fluorescence labeling via aptamers such as
spinach,73 allow for the design of transcription-only networks.
In doing so, the metabolic burden of the system can be
reduced while retaining the ability to couple multiple
perceptrons, either using RNAs to serve as the input of a
downstream perceptron, binding directly to the weights, or via
the use of RNA transcriptional activators.74−76

In addition to the versatility of our gene-based approach, the
application of RNA toehold reactions allows for the
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introduction of additional input−weight pairs, with the highly
programmable nature of DNA ensuring that orthogonality
between the unique pairs is maintained. However, the inherent
variability in the transcriptional and translational efficiency
between unique input and weight pairs makes the correct
identification of distinct input classes a nontrivial exercise. In
an attempt to minimize the variations in transcriptional
efficiency, the DNA constructs used within this study were
kept identical outside of the specific input and weight
sequences; however, due to the placement of the RBS and
start codon within the hairpin of the weight construct, this was
difficult to achieve on a translational level, an issue further
compounded by the inherent differences in the kinetics of each
of the unique toehold−switch pairs. Moreover, with each
additional input−weight pair, the resource depletion increases,
reducing the overall output of the system,67 in turn, minimizing
the differences in the overall output concentration between
classes. In both cases, careful tuning of the weight pattern to
ensure near-identical expression levels for each pair can
minimize this issue, while reducing the individual expression
levels of all input−weight pairs can further reduce the resource
burden. Furthermore, continuous flow reactions can be
implemented to provide sufficient transcription and translation
resources over prolonged durations.62,77

Ultimately, the perceptron is regarded as a basic building
block of larger neural networks that are capable of learning.
The cell-free, genetically implemented perceptron presented in
this work can implement a linear classification boundary
between two groups of input sets, distinguishing between input
sets with the desired minimum number of inputs and those
without. Manually, we were able to alter the position of this
classification boundary by varying the anti-σ28 concentration.
However, for our perceptron to be capable of learning, a means
of autonomously altering the weight pattern based on the
perceptron output and the given inputs is required. A
combination of experimental and computational methods has
previously been used to train synthetic networks.33,35 Here, the
experimental output was compared to a desired target output,
with the difference being used to determine the updated
weight pattern for each iteration, until the difference between
the desired and measured outcomes is minimized. In a similar
manner, continuous flow reactions could be implemented to
update the weight pattern at set intervals following the real-
time monitoring of the output concentration, providing semi-
autonomous perceptron behavior. Alternatively, to achieve a
fully biological implementation of the perceptron, an
enzymatic approach can be applied, where specific RNA
sequences are amplified or cleaved based on the current
perceptron output.78 By engineering such sequences to
competitively bind to the transducer strands, and in doing
so, blocking the toehold site, the effective weight pattern can
be adapted without altering the concentration of weights added
to the system. The current implementation of the perceptron
presented here lacks this learning functionality, instead relying
on the manual tuning of the classification threshold. As such,
our perceptron functions as a tunable classifier, targeted toward
implementation within larger complex genetic networks.
However, the versatile design of our system should allow for
the introduction of learning, thus enabling the development of
multilayer neural networks capable of responding to
perturbations of the environment while retaining functionality.
Furthermore, autonomous learning alleviates the efforts
required to optimize the perceptron weight patterns,

facilitating the usage of a single system toward multiple
applications, wherein the system trains itself to function on a
per-application basis.

■ METHODS
DNA Template Preparation. DNA constructs were

assembled via the Golden Gate Assembly (GGA) methods,
using overlapping sequences previously described by Sun et
al.57 The assembly vector used (pBEST vector) was gifted by
Richard Murray and Vincent Noireaux (Addgene plasmid
#45779). The vector was adapted for GGA using Gibson
assembly (NEB Gibson Assembly Master Mix) with PCR
products of the vector (NEB Phusion High-Fidelity DNA
Polymerase) using primers pBEST_GA_1_F, pBEST_-
GA_1_R, pBEST_GA_2_F, and pBEST_GA_2_R (Table
S1). The transducer (switch) and trans-acting (trigger)
sequences used were obtained from previous studies by the
group of Dr. P. Yin (switches 1 and 2 are unpublished, and
switch 3 is identical to switch 1 of the second generation of
switches published by Green et al.60). All switch sequences are
around 67 nucleotides in length; however, triggers 1 and 2 are
significantly shorter (55 nucleotides) than trigger 3 (105
nucleotides), which was designed to include a hairpin
architecture to enable NOT-gate computations. This addi-
tional functionality was not investigated within the scope of
this study, with trigger 3 being applied in an identical manner
to triggers 1 and 2. Transcription of all inputs and weights was
regulated by a σ70sigma factor specific P70a promoter derived
from the lambda phage,79 which was edited to remove the
OR3 binding site as per the sequence provided by Richard
Murray and Vincent Noireaux (Addgene plasmid #45779). σ28

transcription was regulated using an E. coli ptar promoter
sequence,80 where the noncritical −44 to −37 region was
adapted from the wild type to match the sequence provided by
Richard Murray and Vincent Noireaux (Addgene plasmid
#45780). All other additions to the vector construct, such as
promoters, coding sequences, and terminators, were ordered as
gBlocks from IDT or amplified from the pBEST vector using
PCR. Gene sequences can be found in Table S1, alongside the
complete vector sequence of the σ28-producing weight 1
construct. PCR products of all of the required components
were purified using the QIAquick Gel Extraction Kit (Qiagen)
and equimolar amounts of each were added to GGA reactions
together with BsaI-HF (NEB), T4 ligase (Promega), and T4
ligase buffer (Promega). The GGA reactions were conducted
in a thermocycler following a standard GGA protocol.81

Completed vectors were transformed into NovaBlue cells
(Merck). Plasmid purification was performed using the
QIAprep Spin Miniprep Kit (Qiagen), and DNA sequences
were confirmed using Sanger sequencing. For TXTL reactions,
linear DNA templates were used throughout. The prepared
vectors were linearized and amplified by PCR (Phusion High-
Fidelity DNA Polymerase, NEB) using the pBEST_LinL2_F
and pBEST_LinL2_R primers (Table S1). Final purification of
the DNA templates was conducted using the QIAquick PCR
Purification Kit (Qiagen).

Preparation of TXTL Reactions. The cell lysate, energy
mixture, and amino acid solutions used to prepare the TXTL
reaction solution were prepared identically to the protocol
described by Pieters et al.62 To prepare a master mix of all
reaction components, excluding the DNA templates, the
following were combined (with the final concentration given
in brackets): cell lysate (33% of the final reaction volume),
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energy mixture55 (7.1% of the final reaction volume), a
constant distribution amino acid solution82 (37.5 mM),
magnesium L-glutamate (10 mM), potassium L-glutamate (40
mM), PEG-8000 (2%), and GamS protein (3 μM). When
combined, this solution comprised 69% of the total reaction
volume, with the linear DNA templates supplemented with
Milli-Q water accounting for the remaining 31%. For
experiments requiring the use of anti-σ28, the required
concentration thereof was incorporated into 31% of the
remaining volume alongside the DNA templates. The anti-σ28

was purchased (Gentaur) in purified form following expression
by an E. coli host, and was provided with an N-terminal 10×
His-tag and a C-terminal Myc-tag.
Batch Reactions. All experiments presented here were

performed as batch TXTL reactions, with a total volume of 9.5
μL. A total of 10 μL of each TXTL reaction was prepared (6.9
μL of the master mix solution and 3.1 μL of the DNA template
solutions), of which 9.5 μL was transferred to a 384-well,
round-bottom, NBS-treated microplate (VWR). A Synergy
H1M (Biotek) plate reader was used to incubate the
microplate at 29 °C, while the deGFP expression was
measured (excitation: 470 nm, emission: 510 nm) every 5
min, for a duration of 16 h. The plate reader was calibrated
using a titration range of purified deGFP protein. The
concentration of the expressed reporter was calculated using
the calibration data.
Statistical Analysis. A two-tailed Welch’s t-test was used

to compare data sets for which the hypothesis was that the data
sets were significantly different (Figures 1d, 2b, and 3d). A
one-way ANOVA test was used in cases where the hypothesis
was that the data sets would be equal (Figures 1e and 3c). A
one-sided t-test was used to determine if the mean of a data set
was significantly greater than a given threshold value (Figure
4c).
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