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Natural killer (NK) cells are a type of innate lymphoid cell that are involved in the
progression of acute myocardial infarction and ischemic stroke. Although multiple forms
of programmed cell death are known to play important roles in these diseases, the
correlation between NK cells and apoptosis-related genes during acute myocardial
infarction and ischemic stroke remains unclear. In this study, we explored the distinct
patterns of NK cell infiltration and apoptosis during the pathological progression of acute
myocardial infarction and ischemic stroke using mRNA expression microarrays from the
Gene Expression Omnibus database. Since the abundance of NK cells correlated
positively with apoptosis in both diseases, we further examined the correlation between
NK cell abundance and the expression of apoptosis-related genes. Interestingly, APAF1
and IRAK3 expression correlated negatively with NK cell abundance in both acute
myocardial infarction and ischemic stroke, whereas ATM, CAPN1, IL1B, IL1R1,
PRKACA, PRKACB, and TNFRSF1A correlated negatively with NK cell abundance in
acute myocardial infarction. Together, these findings suggest that these apoptosis-related
genes may play important roles in the mechanisms underlying the patterns of NK cell
abundance and apoptosis in acute myocardial infarction and ischemic stroke. Our study,
therefore, provides novel insights for the further elucidation of the pathogenic mechanism
of ischemic injury in both the heart and the brain, as well as potential useful
therapeutic targets.
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INTRODUCTION

Cardiovascular and cerebrovascular diseases are associated with
high mobility and mortality and are the leading causes of death
worldwide (1). It was recently reported that cardiovascular
diseases (CVDs), which include coronary heart disease, heart
failure, stroke, and hypertension, have a prevalence of 49.2% in
adults which increases with age in both males and females (2). It
is therefore highly important to study the mechanisms
underlying CVDs in order to develop improved methods of
treatment and prevention.

Both acute myocardial infarction (AMI) and ischemic stroke
(IS) are characterized by ischemia and hypoxia in the target
organ, as well as inflammation and multiple forms of cell death.
Immune cells play important roles in the occurrence,
progression, and outcome of CVDs (3, 4). In particular, studies
have reported that natural killer (NK) cells are crucially involved
in AMI and IS (5, 6). NK cells are type I innate lymphoid cells
that exhibit a lymphoid cellular morphology without antigen
specificity, express the transcription factor T-bet, and produce
IFN-g, perforin, and granzyme B (7). Patients with coronary
artery disease showed a significant reduction in the number of
circulating NK cells compared with healthy controls (4, 8, 9). In
IS, NK cells display distinct patterns of infiltration characterized
by an increased accumulation in the brain and decreased
accumulation in the peripheral blood (5). However, few studies
have compared the differences in immune cell infiltration during
AMI and IS. Furthermore, the role of NK cells in AMI and IS
remains poorly characterized.

Since the mid-1980s, when apoptosis was the only well-
defined form of regulated cell death, more than 10 other
mechanistically distinct forms of programmed cell death have
been recognized (10). Most recently, Gasdermin D(GSDMD)-
mediated cardiomyocyte pyroptosis was reported to contribute
toward heart damage during myocardial infarction and
reperfusion injury (11). Although various therapies targeting
these different forms of cell death have produced favorable
results in preclinical studies and can effectively reduce adverse
remodeling after AMI (12, 13), the correlations between immune
cell infiltration and programmed cell death in AMI and IS and
their pathological mechanisms remain unclear.

In this study, we performed bioinformatics analyses to
compare the patterns of immune cell infiltration and cell death
in patients with AMI or IS at the transcriptional level. Moreover,
we identified correlations between NK cell infiltration and the
expression of specific apoptosis-related genes. Together, the
novel analyses performed in this study may provide new
avenues for the study of AMI and IS, as well as the
development of beneficial clinical treatments.
MATERIALS AND METHODS

Data Collection and Processing
The overall design of our study is illustrated in Figure 1. First, we
acquired the gene expression profiles of patients with AMI and IS
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from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo). Five mRNA microarray datasets
were downloaded: GSE59867, GSE22255, GSE58294,
GSE48060, and GSE16561. These datasets met the following
criteria: (1) data acquired using microarray platforms detecting
>15,000 genes; (2) ≥ 40 patients recruited; (3) all samples from
Homo sapiens.

GSE59867 was based on the Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]; 111 AMI and 46 control
samples derived from peripheral blood mononuclear cells
(PBMCs) were analyzed. GSE22255, GSE58294, and GSE48060
were based on Affymetrix Human Genome U133 Plus 2.0 Arrays.
For GSE22255, gene expression profiling was performed on
PBMCs from 20 patients with IS and 20 sex-and age-matched
controls. For GSE58294, 23 control samples and 69
cardioembolic stroke samples were assayed. For GSE48060,
blood samples from 31 patients with AMI and 21 controls
were analyzed. GSE16561 was based on the Illumina
HumanRef-8 v3.0 expression beadchip analysis of total RNA
extracted from the whole blood of 39 patients with IS and 24
healthy controls. GSE22255, GSE59867, and GSE58294 were
used as basic datasets for screening differentially expressed
genes (DEGs), immune cell infiltration analysis, and functional
enrichment analysis. GSE48060 and GSE16561 were used as the
validation cohorts. The details of these datasets are provided
in Table 1.

Data Merging
The GEO datasets were merged using the “sva” R package (19).
GSE22255 and GSE58294 were merged as the input data for
DEG analysis, whereas GSE22255, GSE58294, andGSE59867
were merged as the input data for weighted gene co-expression
network analysis (WGCNA) and to evaluate immune
cell infiltration.

DEG Screening
DEG analysis was performed on the GEO array data using the
“Limma” R package (20). Genes with a P-value < 0.05 and
|log2fold change (FC)| > log2(1.2) were considered DEGs.

Functional Enrichment Analysis
Gene ontology (GO) analysis, Kyoto encyclopedia of genes and
genomes (KEGG) analysis, and gene set enrichment analysis
(GSEA) (21) were performed using the “clusterProfiler” (22) and
“GSEABase” R packages.

WGCNA
WGCNA was performed using the “WGCNA” (23) R package
with the top 5000 DEGs as input genes. Hub genes in the
WGCNA modules were identified using Cytoscape (24).

Evaluation of Immune Cell Infiltration
The infiltration of 22 immune cell types in the AMI and IS
samples used in this study was analyzed using CIBERSORT (25).
The expression data were imported into CIBERSORT using R
and then iterated 1000 times to estimate the relative proportion
of each immune cell type.
April 2022 | Volume 13 | Article 817377
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GSEA
GSEA was performed to find enriched terms in four cell death
pathways. Differences were considered statistically significant if
p < 0.05 or FDR (false discovery rate) < 0.25 and |NES| >1.
Frontiers in Immunology | www.frontiersin.org 3
Gene Set Variation Analysis (GSVA)
GSVA (26) was performed to transform the GEO gene
expression matrices into programmed cell death enrichment
matrices to detect subtle pathway activity changes over
TABLE 1 | GEO dataset information.

GEO accession ID Disease Platform Samples (total no.) No. of cases No. \of controls Country Reference

Basic analysis datasets
GSE59867 Acute myocardial infarction GPL6244 Peripheral blood mononuclear cells (157) 111 46 Poland (14)
GSE22255 Ischemic stroke GPL570 Peripheral blood mononuclear cells (40) 20 20 Portugal (15)
GSE58294 Ischemic stroke GPL570 Whole blood samples (92) 69 23 USA (16)
Validation datasets
GSE48060 Acute myocardial infarction GPL570 Whole blood samples (52) 31 21 USA (17)
GSE16561 Ischemic stroke GPL6883 Whole blood samples (63) 39 24 USA (18)
April 2022 | Volu
me 13 | Art
FIGURE 1 | Study flowchart. AMI, acute myocardial infarction; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis;
GSEA, gene set enrichment analysis; NK cells, natural killer cells.
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a sample population. And the results were used to analyse the
relationship between immune infiltration and the cell death.
RESULTS

Identifying DEGs in AMI and IS
To identify DEGs in the basic datasets obtained from the GEO,
we first merged the expression matrices to eliminate between-
batch differences. For AMI, 1002 DEGs were obtained, 429 of
which were significantly upregulated and 573 of which were
downregulated. Meanwhile, 2488 DEGs were obtained for IS, of
which 1133 were significantly upregulated and 1355 were
significantly downregulated. Volcano plots and heatmaps of
these DEGs are shown in Figures 2A, B, D, E. To further
investigate the functions of these DEGs, we conducted GO and
KEGG enrichment analyses. The top 10 enriched terms are listed
(Figures 2C, F). Notably, the DEGs in both AMI and IS were
mainly associated with immune system activation, immune cell
activities, inflammatory cytokine release, and inflammation-
related pathways. Together, these findings suggest that the
DEGs are likely to be associated with inflammatory processes
(Figures 2C, F).
Frontiers in Immunology | www.frontiersin.org 4
WGCNA and Identification of Key Modules
Next, we performed WGCNA to identify key modules and hub
genes in AMI and IS. After the outliers had been removed, we drew
a sample clustering tree (Figure 3A) and constructed a scale-free
network (Figures 3B, C) with a soft threshold of 9 (R2 = 0.98). An
adjacency matrix was then built and a topological overlap matrix
was constructed. A total of 13 modules were identified based on
average hierarchical clustering and dynamic tree clipping
(Figure 3D). The yellow module was strongly and positively
related to both AMI and IS, whereas the red module was
positively and negatively related to AMI and IS, respectively.
Although the pink and green-yellow modules correlated
significantly with AMI, they did not correlate significantly with IS.
Conversely, the tan and magenta modules correlated significantly
with IS but not AMI. Consequently, these six modules were selected
as clinically important modules for further analysis.

GO enrichment analyses for cell component (CC), biological
process (BP), and molecular function (MF) in these modules were
performed using clusterProfiler. In the yellow module, the BP
were mainly associated with neutrophil activation, the CC were
mainly associated with multiple cellular granules and membranes,
and the MF were significantly related to the receptor for advanced
glycation end products (RAGE). Together, these results suggest
that the yellow module is mainly involved in the activation of
A B C

D E F

FIGURE 2 | Data preprocessing, DEG identification, and enrichment analyses. (A) Volcano plots of DEGs in AMI. (B) Heatmaps of DEGs in AMI. (C) GO and KEGG
enrichment analyses in AMI. (D) Volcano plots of DEGs in IS. (E) Heatmaps of DEGs in IS. (F) GO and KEGG enrichment analysis in IS. Statistical significance was
determined by hypergeometric distribution analysis and the P-values were calculated by Fisher’s exact test. CC, cell component; BP, biological process;
MF, molecular function.
April 2022 | Volume 13 | Article 817377
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inflammation. In the red module, the BP were mainly related to
the electron transport chain and ATPmetabolic processes, the CC
were related to mitochondrial activities, and the MF were
associated with electron transfer activity, which demonstrated
that the genes of the red module were mainly involved in the
regulation of mitochondrial activities. Further information about
each module and its hub genes are included in the
Supplementary Data. Taken together, the findings of these
Frontiers in Immunology | www.frontiersin.org 5
analyses suggest that these six modules are highly associated
with clinical situations and that the activation of inflammation
and mitochondrial activity could play important roles in the
development of AMI and IS.

Immune Cell Infiltration Analysis
To further analyze the immune cell infiltration characteristics of
AMI and IS, we compared the patterns of immune cell
A B

C D

FIGURE 3 | Determination of WGCNA soft-threshold power and identification of modules associated with AMI and IS. (A) Dendrogram of DEGs clustered on the
basis of the measurement of dissimilarity (1-TOM). The color band indicates the results from automatic single-block analysis. (B) Scale-free index analysis for various
soft-threshold powers. (C) Mean connectivity analysis for various soft-threshold powers. (D) Heatmap of the correlation between modules and diseases. TOM,
topological overlap matrix; ME, module eigengene. Statistical significance was determined by t-test.
April 2022 | Volume 13 | Article 817377
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infiltration. Monocytes, NK cells, CD8+T cells, CD4+ memory T
cells, CD4+ naïve T cells, neutrophils, and naïve B cells were the
main immune cell types in both AMI and IS according to the
estimated profiles (Figure 4A). However, the distribution of
some immune cell subsets with low abundance was not fully
revealed due to the limitations of the CIBERSORT algorithm. As
reported previously (3, 24, 25), the proportion of monocytes,
which play crucial roles in inflammation and tissue repair,
increased greatly after both IS and AMI (3, 27, 28). Most
immune cell types displayed similar patterns and infiltration
extent between AMI and IS, except for NK cells. As shown in
Figure 4A, despite the estimated proportions of NK cells being
lower in both AMI and IS than in the controls, the difference
between patients with AMI and the controls is much more
Frontiers in Immunology | www.frontiersin.org 6
significant. The general distribution of immune cells in each
sample is shown in Figure 4B, in which each immune cell type is
represented by a different color and the height represents the
percentage of cells in the sample. We also calculated the
correlations between these immune cells (Figure 4C), finding
that monocytes correlated positively with plasma cells, CD4+ T
memory cells, dendritic cells, mast cells, and neutrophils, but
correlated negatively with naïve B cells, CD8+T cells, NK cells,
and M2 macrophages. Furthermore, NK cells correlated
positively with CD8+ T cells and M2 macrophages (data not
shown). The alterations in NK cell abundance were significantly
different between AMI and IS, while other cell types showed no
or smaller differences. Consequently, we decided to examine the
patterns of NK cell infiltration in AMI and IS in more detail.
A

B C

FIGURE 4 | Profiles of immune cell infiltration patterns in the basic datasets. (A) Estimated proportions of 22 immune cell types in AMI and IS. Statistical significance
was determined by Kruskal test analysis. * P-value < 0.05; *** P-value < 0.001, **** P-value < 0.0001. NS, not significant. (B) Heatmap of the immune cell proportions
in each sample. (C) Correlation heatmap of 19 immune cell types (three were excluded as their proportion was zero).
April 2022 | Volume 13 | Article 817377
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Programmed Cell Death Analysis
Besides inflammation, the GO analyses of the DEGs indicated that
programmed cell death may also participate in the pathology of AMI
and IS (Supplementary Material Figure 1), as reported previously
(11, 29–31). Therefore, we conducted GSEA to explore the
mechanisms underlying cell death in AMI and IS. Due to their
prevalence, we decided to focus on apoptosis, ferroptosis, necroptosis,
and pyroptosis. As shown in Figure 5, apoptosis appeared to play
an important role in IS (p < 0.05) but not in AMI (Figures 5A, B)
(p > 0.05). Ferroptosis was not involved in either AMI or IS
(Figures 5C, D) (p > 0.05), whereas necroptosis and pyroptosis
were significantly involved in both (Figures 5E–H) (p < 0.05).

To further explore the DEGs in each of these forms of cell death,
we collected genes related to apoptosis, necroptosis, ferroptosis, and
Frontiers in Immunology | www.frontiersin.org 7
pyroptosis from the Molecular Signatures Database (MSigDB) and
conducted GSEA. A total of 88 necroptosis-related genes, 69
apoptosis-related genes, and 17 pyroptosis-related genes were
found to be significantly differentially expressed between AMI
and IS (Figures 5I–L). To narrow the scope down, we decided to
validate the expression patterns of these genes before further
investigating their relationship with NK cells.

External Validation of Alterations in
Apoptosis-Related Genes
To confirm the relationship between these DEGs and apoptosis,
we analyzed their expression in the validation datasets and
selected genes with the same patterns of alterations in the basic
datasets (Figure 6). In particular, APAF1, CAPN1, IL1B, IRAK3,
A I J K LB

C D

E F

G H

FIGURE 5 | GSEA of apoptosis, necroptosis, ferroptosis, and pyroptosis. (A) GSEA of apoptosis in AMI. (B) GSEA of apoptosis in IS. (C) GSEA of ferroptosis in
AMI. (D) GSEA of ferroptosis in IS. (E) GSEA of necroptosis in AMI. (F) GSEA of necroptosis in IS. (G) GSEA of pyroptosis in AMI. (H) GSEA of pyroptosis in IS.
Statistically significant associations were determined by permutation test. (I) Heatmaps of DEGs in apoptosis. (J) Heatmaps of DEGs in necroptosis. (K) Heatmaps of
DEGs in ferroptosis. (L) Heatmaps of DEGs in pyroptosis.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Feng et al. Genes in AMI/IS
A B

C D

E F

G H

I J

K

FIGURE 6 | Verification using validation datasets. (A–K) Verification of APAF1, CAPN1, IL1B, IRAK3, PRKACA, BAX, TNFRSF1A, IL1R1, PRKX, PRKACB, and ATM
expression in the validation cohort. Statistical significance was determined by t-test. P-values of < 0.05 were considered statistically significant.
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and PRKACA were significantly upregulated in IS but not in
AMI (Figures 6A–E), whereas BAX and TNFRSF1A were
markedly upregulated in AMI but not in IS (Figures 6F, G).
Meanwhile, the expression of IL1R1 was elevated in both IS and
AMI (Figure 6H), and that of PRKX was reduced in IS but not in
AMI (Figure 6I). Conversely, PRKACB expression was
suppressed in AMI but not in IS (Figure 6J). Additionally,
ATM expression was decreased in both IS and AMI
(Figure 6K). As such, these genes are likely to be involved in
the distinct patterns of NK cell infiltration and apoptosis between
AMI and IS.

Correlation Between Immune Infiltration
and Cell Death
Based on our observations, monocytes, NK cells, CD8+ T cells,
CD4+ memory T cells, CD4+ naïve T cells, neutrophils, and naïve
B cells were the main immune cell types in both AMI and IS. The
Frontiers in Immunology | www.frontiersin.org 9
remaining cell types were estimated to have a low abundance.
Then the GEO gene expression matrices were transformed into
programmed cell death enrichment matrices by using the GSVA
package. We next analyzed the relationship between the patterns
of immune cell infiltration, particularly for NK cells, and the types
of programmed cell death in AMI and IS (Figure 7). Although the
proportions of monocytes and neutrophils correlated positively
with all four types of cell death, their changing patterns in
Figure 4 show no difference between AMI and IS. Moreover,
the proportion of NK cells was positively correlated with
apoptosis and negatively correlated with the other three types of
cell death. Figures demonstrating the exact correlations and their
corresponding P-values are included in the Supplementary
Materials (Figures 2, 3) Thus, the lack of NK cells in AMI
appears to be consistent with the deficiency in apoptosis in AMI,
meaning that the number of NK cells may be associated with
apoptosis in cells within the target organ.
A

B

FIGURE 7 | Pearson correlation coefficient between immune cells and cell death in (A) AMI and (B) IS. The Pearson correlation coefficient was determined by
Pearson correlation analysis and the P-values were calculated by t-test.
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Correlation Between NK Cells and
Apoptosis-Related Genes
To further explore the relationship between NK cells and genes
related to cell death, we calculated the Pearson correlation
coefficient between immune cells and apoptosis-related genes
(Figure 8). The values of the Pearson correlation coefficient
between each gene and NK cell abundance in AMI and IS as
well as the corresponding P-values are shown in the
Supplementary Materials (Figures 4–9). The following genes
were negatively related to NK cell abundance in AMI and IS:
TNFRSF1A (AMI: p < 0.05, IS: p > 0.05), PRKACA (AMI: p <
Frontiers in Immunology | www.frontiersin.org 10
0.05, IS: p > 0.05), IRAK3 (AMI: p < 0.05, IS: p < 0.05), IL1R1
(AMI: p < 0.05, IS: p > 0.05), and APAF1 (AMI: p < 0.05, IS: p <
0.05). Conversely, the following genes were positively related to
changes in NK cell abundance in both AMI and IS: PRKX (AMI:
p > 0.05, IS: p > 0.05), PRKACB (AMI: p < 0.05, IS: p > 0.05),
IRAK3 (AMI: p > 0.05, IS: p > 0.05), and ATM (AMI: p < 0.05,
IS: p > 0.05). The expression of several genes also correlated
negatively with NK cell abundance in AMI but positively in IS:
IL1B (AMI: p < 0.05, IS: p > 0.05), CAPN1 (AMI: p < 0.05, IS: p >
0.05), and BAX (AMI: p > 0.05, IS: p > 0.05). Thus, the correlation
between NK cell abundance and the expression of the genes
A

B

FIGURE 8 | Pearson correlation coefficient between immune cells and apoptosis-related genes in (A) AMI and (B) IS. The Pearson correlation coefficient was
determined by Pearson correlation analysis and the P-values were calculated by t-test.
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PRKX and BAX was not significant. On the contrary, there was a
significant relationship between the expression level of the genes
TNFRSF1A, PRKACA, PRKACB, IRAK3, IL1R1, IL1B, CAPN1,
ATM, and APAF1 and NK cell abundance. Consequently, these
genes could play key roles in the relationship between NK cell
abundance and apoptosis in AMI and IS.
DISCUSSION

Since cardiovascular and cerebrovascular diseases are the leading
causes of death worldwide (1), with a high prevalence that
increases with age, new approaches to improve cardiac healing
are urgently required. Recent studies have highlighted the crucial
role that the immune system plays in orchestrating angiogenesis,
the resolution of inflammation, the regeneration of injured
tissues, and post-infarction tissue remodeling after ischemic
injury, including AMI and IS (5, 32). However, inflammation
can also facilitate cell death in target organs and infarct
expansion, thereby determining the degree of injury and
course of the disease. Immune cells can remove necrotic cell
debris and produce a milieu that is vital for the reconstruction of
the extracellular matrix, neo-vascularization, and subsequent
organ recovery. In particular, NK cells possess both direct and
indirect cytotoxic effector mechanisms (33). In addition to the
exocytosis of lytic granules, activated NK cells can mediate
apoptosis by expressing TRAIL and/or Fas ligand (FasL) to
engage TRAIL-R1/-R2 or CD95/Fas, respectively, on the
surface of diseased cells (33). Moreover, NK cells can interact
with inflammatory macrophages via the IFN-g/TNF-a/IL-12
cytokine axis in order to potentiate one another’s activity and
increase inflammation in the infarcted zone (6). However, it has
also been reported that NK deficiency during AMI is correlated
with reduced cardiac cell apoptosis in post-infarcted
myocardium (34). In this study, we compared the different
expression patterns of genes in AMI and IS. And according to
the results of GO and KEGG enrichment, the DEGs were mainly
enriched in activities of immune cells and related to the process
of cell death. Consequently, we compared the patterns of
immune cell infiltration and cell death in patients with AMI or
IS. Surprisingly, the alterations in NK cell abundance were
significantly different between AMI and IS, while other cell
types showed no or smaller differences. Moreover, apoptosis
was only statistically significant in IS. After the analyses of the
correlation between immune infiltration and cell death as well as
the relationship between NK cell abundance and apoptosis
related genes. We confirmed for the first time that the
proportion of NK cells and the activation of apoptosis are
highly correlated. This observation may be partially explained
by apoptosis-related genes whose expression clearly correlated
with NK cell abundance in AMI and IS.

Tumor necrosis factor (TNF) receptor superfamily member
1A (TNFRSF1A) is a member of the TNF superfamily that
encodes the type 1 TNF receptor (TNFR1, TNFRSF1A, p55,
CD120A) (35). In this study, we found that it correlated
negatively with NK cell abundance in both AMI and IS.
Frontiers in Immunology | www.frontiersin.org 11
Moreover, it was upregulated in these diseases. Heterozygous
mutations in TNFRSF1A on chromosome 12p13 have been
shown to induce TNF receptor-associated periodic syndrome
(TRAPS), a rare dominantly inherited disease characterized by
recurrent episodes of fever and generalized/localized
inflammation (35, 36). Others have also found an association
between the R92Q polymorphism of TNFRSF1A and the
development of atherosclerosis as well as inconsistency
between the presence of the R92Q in patients with AMI and IS
and disease occurrence (37). TNFRSF1A has also been shown to
mediate the protective role of cerebellar fastigial nucleus
stimulation in reducing the severity of post-stroke depression
(38). Together, these findings and researches of others indicate
that TNFRSF1A may present genetic changes or polymorphism,
thereby leading to different patterns of NK cell infiltration and
apoptosis in AMI and IS.

Protein kinase CAMP-activated catalytic subunit alpha
(PRKACA) encodes the PKA catalytic subunit alpha (Ca)
isoform which has three alternately spliced transcripts in
humans: Ca1, Ca2 (Cas), and Ca3 (39). PRKACB is an
important paralog of this gene that encodes Cb of PKA. The
targeted deletion of PRKACA in mice has been found to result in
growth retardation in those that survive, while Ca deficiency has
been linked to spinal neural tube defects (40, 41). PRKACA has
also been reported to be involved in various cancers (42–45). The
functions of PRKACA and PRKACB are profoundly associated
with those of PKA, a serine/threonine kinase that is responsible
for phosphorylating various downstream substrates. Here, we
found that PRKACA expression was elevated after IS but not
AMI and correlated positively with the abundance of NK cells in
IS but negatively with their abundance in AMI. In contrast,
PRKACB was downregulated after AMI but not IS and
correlated positively with the abundance of NK cells in both
AMI and IS. It has been reported that Ca but not Cb is required
for normal immune reactivity, demonstrating that PKA catalytic
subunits can exert isoform-specific functions in the same cell (46).
However, whether the isoform-specific functions also exist in NK
cells or target organ cells during AMI and IS remains unclear.

Interleukin 1 receptor associated kinase 3 (IRAK3) is a
member of the IRAK family that encodes IRAK-M, which is
only expressed in human monocytes and macrophages in an
inducible manner (47–49). IRAK3 has been reported to
negatively regulate TLR signaling (50) as well as the alternative
NF-kB pathway in a TLR2-specific manner (51). Moreover,
silencing IRAK3 impedes cardiac rupture and ventricular
remodeling by inactivating the NF-kB signaling pathway (52),
while IRAK-M deficiency was shown to increase infarct volume,
exacerbate brain edema, elevate the incidence of hemorrhage
transformation, and increase inflammatory responses (53).
Downregulation of IRAK3 may lead to lesions in the heart and
brain caused by hypoxia injury through inflammatory pathways.
In our study, we found that IRAK3 was downregulated in both
AMI and IS, and correlated negatively with the changes in NK
cell abundance.

Interleukin 1 receptor type 1 (IL1R1) belongs to the
interleukin 1 receptor family, whose members sense the barrier
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integrity and fitness of cells (54). IL-1R1 mediates IL-1-
dependent activation via IL-1a and IL-1b (55). In addition, IL-
1R1 has a soluble isoform that inhibits the interaction of soluble
IL-1 ligands with IL-1R1 (56), which regulates post-MI
remodeling via the IL-1R1/cardiac fibroblast signaling axis
(57). Brain endothelial and neuronal (cholinergic) IL-1R1 has
also been shown to mediate the detrimental effects of IL-1 in the
brain during an ischemic stroke (58). In the present study, we
showed that IL1R1 was upregulated in both diseases and
correlated negatively with NK cell abundance in both AMI and
IS. Our findings point to the possibility of different IL1R isoforms
being involved in AMI and IS.

Interleukin 1 beta (IL1b) is a central mediator of innate
immunity and inflammation (59) that was first identified as
being responsible for resistance against microbes (60). IL-1b is
produced by various types of cells, including monocytes,
macrophages, skin dendritic cells, and brain microglia, in
response to Toll-like receptors (TLR), activated complement
components, other cytokines (e.g., TNF-a), and IL-1 itself (61).
The active form of IL-1b is released into the extracellular space
when its precursor is cleaved by caspase-1, which requires
proenzyme (procaspase-1) cleavage by the inflammasome. IL1b
has been strongly associated with cancers (62, 63) and one IL-1b
haplotype has been linked to the risk of stroke in small vessels
(64). In this study, we found that IL1b was positively correlated
with the abundance of NK cells in IS, but negatively correlated
with their abundance in AMI.

Calpain 1 (CAPN1) is a member of the calpain family of at
least 15 enzymes (65), among which calpain-1 (m-calpain) and
calpain-2 (m-calpain) are the most ubiquitous in all tissues and
organs. Activated calpain-1 may exert neuroprotective effects by
cleaving PHLPP1, which activates Akt and leads to neuronal
survival (66, 67). In addition, CAPN1 mutations have been
reported to induce cerebellar ataxia in some human families
and missense mutations in calpain-1 have been found to cause
spinocerebellar ataxia in dogs (66, 68, 69). Although some studies
have documented that calpains can play crucial roles in
ischemia/reperfusion injury in the heart and other organs (70–
74), few studies have investigated the role of calpain-1 in AMI
and IS. Here, we demonstrated that CAPN1 was upregulated
after IS but not in AMI, and correlated positively with the
abundance of NK cells in IS but negatively with their
abundance in AMI.

Ataxia telangiectasia mutated (ATM) is a protein-coding gene
that causes the autosomal recessive disease, ataxia telangiectasia.
ATM kinases play key roles in orchestrating signaling cascades
that lead to programmed cell death, such as the DNA damage
response, DNA repair pathways, and cell cycle checkpoint
regulation (75–81). ATM also exerts dual roles in neuronal
protection during ischemic preconditioning and the promotion
of neuronal death in lethal ischemic injury (82). Similarly, ATM
deficiency has been observed to attenuate cardiac dysfunction
early post-MI but exacerbate cardiac remodeling during late
post-MI by affecting cardiac function, fibrosis, apoptosis, and
myocyte hypertrophy (83, 84). Moreover, ATM can mediate the
spontaneous regression of Em-myc-driven murine B-cell
Frontiers in Immunology | www.frontiersin.org 12
leukemia in a natural killer and T cell-dependent manner (85).
In this study, we found that the apoptosis-related gene ATM was
significantly downregulated both in AMI and IS. Further analysis
revealed that ATM correlated positively with the abundance of
NK cells in AMI but not in IS, consistent with our hypothesis
that ATM is linked with apoptosis in AMI and IS via its effects on
NK cell abundance.

Apoptotic peptidase activating factor 1(APAF1) is a key
component of the apoptosome which also contains cytochrome
c, (d)ATP, and procaspase-9 (86). Under normal conditions,
Apaf-1 is stored in an inactive monomeric form in the cytosol.
Intracellular stressors such as hypoxia, growth factor
deprivation, cell detachment, and stress signals, cause
cytochrome c to be released from the mitochondrial
intermembrane space into the cytosol where it interacts with
and activates Apaf-1, leading to apoptosome formation (86).
Apaf-1 has been reported to mediate the beneficial effect of miR-
136 during aging (87) and interventions targeting Apaf-1 have
demonstrated protective effects in AMI and IS (88–90). Here, we
observed a negative correlation between APAF1 expression and
changes in NK cell abundance in AMI and IS.

In summary, we hypothesize that apoptosis-related DEGs
including TNFRSF1A, PRKACB, PRKACA, IRAK3, IL1R1,
IL1B, CAPN1, ATM, and APAF1, together with their
correlations with NK cell abundance, likely play important
roles in mechanisms underlying the distinct patterns of
apoptosis in AMI and IS. However, the function of these genes
in NK cells and whether they play different roles in AMI and IS
remain to be investigated. Thus, our findings provide potential
avenues for the further elucidation of pathogenic mechanisms of
ischemic injury in both the heart and brain, as well as promising
therapeutic targets for the clinical treatment of AMI and IS.
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